SAT Math Level 2 Practice Test A

25 multiple choice math questions (and solutions)

Mathplane.com

Topics include arc length, distance, probability, circles, functions, summation, sequences, trigonometry, domain, range, and more.

Practice test -→

- 1) If $f(x) = \frac{3x + 7}{6x + 4}$ what value does f(x) approach as x gets infinitely larger?
 - a) 0
 - b) 1/2
 - c) 3/4
 - d) 7/4
 - e) infinity
- 2) O is the center of the circle, and the diameter is 12. What is the arc length \widehat{AB} ?
 - a) 3 🏋
 - b) 6 TT
 - c) 91T
 - d) 18 TT
 - e) 36 ∏

- 3) What is the distance in space between (1, 0, 5) and (-3, 6, 3)?
 - a) 4
 - b) 6
 - c) 2 $\sqrt{11}$
 - d) $2\sqrt{14}$
 - e) 12
- 4) |5-7|-|7-5|=
 - a) -4
 - b) 0
 - c) 2
 - d) 4
 - e) 12
- 5) A line has the parametric equation x = t + 5 and y = t + 10. What is the slope of the line?
 - a) 1
 - b) 2
 - c) 5
 - d) 10
 - e) 50

- 6) Two dice are tossed. What is the probability that neither die is a 4?
 - a) 1/6
 - b) 1/3
 - c) 2/3
 - d) 25/36
 - e) 5/6
- 7) (1, 6), (3, -2), and (-2, K) are collinear points. What is K?
 - a) -6
 - b) 2
 - c) 8
 - d) 10
 - e) 18
- 8) Vectors u and v are given by u = (3, 0) and v = (1, -4). What is the length of vector w, given by w = 2u v?
 - a) $2\sqrt{10}$
 - b) $\sqrt{41}$
 - c) $6 \sqrt{17}$
 - d) 3
 - e) √23
- 9) The domain of $g(x) = \frac{3}{\sqrt{4-x^2}}$ is:
 - a) [-2, 2]
 - b) (-2, 2)
 - (0, 2)
 - d) (^{-∞} , -2)
 - e) $(-\infty, 2)$
- 10) The radius of circle $x^2 4x + y^2 + 6y = 3$
 - a) 3
 - b) √3
 - c) 4
 - d) 8
 - e) 16

11)
$$f(x) = 2x + 1$$
 $g(x) = x^2 - 1$

$$(f \circ g)(x) =$$

a)
$$x^2 + 2x$$

b)
$$2x^3 + x^2 - 2x - 1$$

c)
$$2x^2 - 1$$

d)
$$4x^2 + 4x$$

e)
$$2(x^2 + x + 1)$$

12) The intersection of line
$$x + y = 2$$
 and circle $x^2 + y^2 = 4$ occurs when $x =$

13) Which is a zero of the function
$$f(x) = \sin 2(x) - 1/2$$
?

15) Find the sum

$$\sum_{n=1}^{100} (n-2)$$

- 16) In the xy-plane, the vertices of a triangle are (-1, 3) (6, 3) and (-1, -4). The area of the triangle is:
 - a) 10
 - b) 17.5
 - c) 24.5
 - d) 35
 - e) 42
- 17) A right cylinder has radius 5 and height 5. If A and B are points on the surface, what is the maximum possible (line) distance between them?
 - a) 5
 - b) 5 √2
 - c) 10
 - d) 12.5
 - e) 5√5
- 18) In the figure, AB = AC and $\angle A = 80$. What is x?
 - a) 8
 - b) 10.3
 - c) 11.4
 - d) 12
 - e) 12.7

What is a 6?

- 19) $f(x) = 2x^2$ is translated 2 units to the right and 1 unit up.
 - If the resulting graph is g(x), then what is g(3)?
 - a) 3
 - b) 11
 - c) 15
 - d) 26
 - e) 31
- 20) A sequence is (recursively) defined as $a_1 = 0$ $a_2 = 1$ and, for n > 2 $a_n = a_{n-1} 3a_{n-2}$
 - a) -8
 - b) 1
 - c) 18
 - d) 72
 - e) 109

- 21) If $\sin \ominus = .47$, then $\sin(\neg \neg \neg \ominus) =$
 - a) -.47
 - b) -.43
 - c) 0
 - d) .43
 - e) .47
- 22) What is the range of the function defined as $g(x) = \frac{1}{x} + 3$
 - a) all real numbers
 - b) all real numbers except 0
 - c) all real numbers > 3
 - d) all real numbers except 3
 - e) all real numbers > 1
- 23)

For the matrices
$$A = \begin{bmatrix} 1 & 3 \\ 0 & -1 \end{bmatrix}$$
 $B = \begin{bmatrix} 2 & 2 \\ -1 & 4 \end{bmatrix}$ What is BA?

- a) $\begin{bmatrix} 3 & 5 \\ -1 & 3 \end{bmatrix}$ b) $\begin{bmatrix} 1 & -1 \\ -1 & 5 \end{bmatrix}$ c) $\begin{bmatrix} -1 & 14 \\ 1 & -4 \end{bmatrix}$ d) $\begin{bmatrix} 2 & 4 \\ -1 & -7 \end{bmatrix}$ e) none of the above
- 24) In the figure, there is a regular hexagon with sides of length 6. If the coordinate of A is (9, 0), what is the y-coordinate of B?
 - a) 0
 - b) 3
 - c) $3\sqrt{2}$
 - d) $3\sqrt{3}$
 - e) 4 1/2

- 25) A sample of 25 scores has a mean 75, median 79, and standard deviation of 8. If you increase every score by 10, which of the following is true?
 - a) I only
 - b) II only
 - c) I and II only
 - d) none
 - e) I, II, and III

- I. The new mean is 85
- II. The new median is 89
- III. The new standard deviation is 18

Solutions \rightarrow

1) If $f(x) = \frac{3x+7}{6x+4}$ what value does f(x) approach as x gets infinitely larger?

a) 0 b) 1/2

Since the rational expression is neither "top heavy" nor "bottom heavy", look at the lead coefficients....

 $\frac{3}{6} = 1/2$

c) 3/4 d) 7/4

e) infinity

2) O is the center of the circle, and the diameter is 12. What is the arc length \overrightarrow{AB} ?

a) 3 11

Circumference = \(\frac{1}{1}\) (diameter) or 2 1 (radius)

b) 6 TT c) 91T

So, circumference of circle O is 121

Since \(\times AOB \) is 90 degrees, e) 36 TT the arc length of AB is 1/4 of the

$$\frac{90^{\circ}}{360^{\circ}} \cdot \uparrow \uparrow (12) = 3 \uparrow \uparrow \uparrow$$

3) What is the distance in space between (1, 0, 5) and (-3, 6, 3)?

- a) 4
- b) 6
- c) $2\sqrt{11}$
- d) $2\sqrt{14}$
- e) 12

distance =
$$\sqrt{(x_1 - x_2)^2 + (y_1 - y_2)^2 + (z_1 - z_2)^2}$$

$$= \sqrt{(1 - (-3))^2 + (0 - 6)^2 + (5 - 3)^2} = \sqrt{16 + 36 + 4} = \sqrt{56}$$

$$2\sqrt{14}$$

4)
$$|5-7|-|7-5|=$$

- b) 0
- c) 2
- d) 4
- e) 12

|-2| - |2| = 2 - 2 = 0

5) A line has the parametric equation x = t + 5 and y = t + 10. What is the slope of the line?

- a) 1
- b) 2
- x = t + 5
- c) 5 d) 10
- y = (x 5) + 10 \longrightarrow y = x + 5 (slope is 1)

then, using substitution,

e) 50

6) Two dice are tossed. What is the probability that neither die is a 4?

c) 2/3

p(1st is NOT 4) = 5/6

p(2nd is NOT 4) = 5/6

since each die is independent,

p(neither is
$$4$$
) = $(5/6)(5/6) = 25/36$

7) (1, 6), (3, -2), and (-2, K) are collinear points. What is K?

a) -6 b) 2

If 3 points are collinear, they are on the same line ---- i.e. each pair with have the same slope!

c) 8 d) 10

e) 18

slope of (1, 6) and (3, -2) is
$$\frac{-2 - 6}{3 - 1} = -4$$

$$\frac{K-6}{-2-1} = -4$$

8) Vectors u and v are given by u = (3, 0) and v = (1, -4). What is the length of vector w, given by w = 2u - v?

a)
$$2\sqrt{10}$$

b)
$$\sqrt{41}$$

$$w = 2(3, 0) - (1, -4)$$

c)
$$6 - \sqrt{17}$$

$$w = (5, 4)$$

$$\|\mathbf{w}\| = \sqrt{(5)^2 + (4)^2} = \sqrt{41}$$

9) The domain of $g(x) = \frac{3}{\sqrt{4-x^2}}$ is:

- a) [-2, 2]
- b) (-2, 2) (0, 2)

cannot have negative under a radical and cannot have zero in the denominator...

d) $(-\infty, -2)$

so, must be between -2 and 2

- e) $(-\infty, 2)$
- 10) The radius of circle $x^2 4x + y^2 + 6y = 3$
 - a) 3

complete the square to change into standard form...

- b) N/3
- c) 4
- $x^2 4x + 4 + y^2 + 6y + 9 = 3 + 4 + 9$
- d) 8

 $(x-2)^2 + (v+3)^2 = 16$

radius = 4

e) 16

$$(x - h)^2 + (y - k)^2 = r^2$$

(0, 2)

(2, 0)

11)
$$f(x) = 2x + 1$$
 $g(x) = x^2 - 1$

$$(f \circ g)(x) =$$

a)
$$x^2 + 2x$$

b)
$$2x^3 + x^2 - 2x - 1$$

$$f(g(x)) = 2(x^2 - 1) + 1$$

$$2x^2 - 2 + 1$$

d)
$$4x^2 + 4x$$

$$2x^{2} - 1$$

e)
$$2(x^2 + x + 1)$$

12) The intersection of line x + y = 2 and circle $x^2 + y^2 = 4$ occurs when x =

solve algebraically:

$$y = -x + 2$$

$$x^2 + (-x + 2)^2 = 4$$

$$x^2 + x^2 - 4x + 4 = 4$$

$$x^2 + y^2 = 4$$

$$2x^2 - 4x = 0$$

$$2x(x-2) = 0$$

$$x = 0, 2$$

- 2x(x-2) = 0 x = 0, 2
- 13) Which is a zero of the function $f(x) = \sin 2(x) 1/2$?

$$\sin 2x - 1/2 = 0$$

$$\sin 2x = 1/2$$

$$2x = \frac{\uparrow \uparrow}{6}$$

e) -1⊤

- $x = \frac{\uparrow \uparrow}{12}$
- 14) A circle is inscribed in a square. If the area of the square is 36 sq. units, what is the area of the circle?

Area of circle =
$$\uparrow \uparrow \uparrow r^2$$

c) 121T

area =
$$\uparrow \uparrow 3^2$$

d) 181T e) 36 T⊤

since area of square is 36, each side is 6...

If a side is 6, then the radius must be 3...

15) Find the sum

$$\sum_{n=1}^{100} (n-2)$$

$$\sum_{n=1}^{100} n - \sum_{n=1}^{100} 2$$

number first term last term of terms

sum formula:
$$n(a_1 + a_n)$$

- c) 4500 d) 4550
- e) 4850

$$(100 + 1)(50)$$
 — $2(100)$

=4850

16) In the xy-plane, the vertices of a triangle are (-1, 3) (6, 3) and (-1, -4). The area of the triangle is:

Area =
$$1/2$$
 (base)(height)

Area =
$$1/2(7)(7)$$

$$=49/2 = 24.5$$

17) A right cylinder has radius 5 and height 5. If A and B are points on the surface, what is the maximum possible (line) distance between them?

b)
$$5\sqrt{2}$$

e) 5
$$\sqrt{5}$$

radius is 5, so the diameter is 10!!

The maximum line distance is the hypotenuse of the "right triangle of the cylinder"

$$5^2 + 10^2 = AB^2$$

$$AB = \sqrt{125} = 5\sqrt{5}$$

18) In the figure, AB = AC and $\angle A = 80$. What is x?

d) 12 e) 12.7

use of law of sines:
$$\frac{\sin A}{x} = \frac{\sin C}{8}$$

$$x = \frac{8SinA}{SinC}$$

$$x = \frac{8(\sin 80)}{\sin 50} = \frac{8(.985)}{(.766)} = 10.3$$

$$AB = AC$$
, so

$$\angle B = \angle C$$

angles A + B + C = 180, so B and C are 50 degrees...

19) $f(x) = 2x^2$ is translated 2 units to the right and 1 unit up.

If the resulting graph is g(x), then what is g(3)?

$$f(\mathbf{x}) = 2\mathbf{x}$$

$$g(x) = 2(x - 2)^2 + 1$$

shift 2 units to the right:
$$2(x-2)^2$$

$$g(3) = 2(3-2)^2 + 1$$

) 26 shift 1 unit up:
$$2(x-2)^2 + 1$$

20) A sequence is (recursively) defined as $a_1 = 0$ $a_2 = 1$ and, for n > 2 $a_n = a_{n-1} - 3a_{n-2}$

$$\begin{array}{c|c} & \text{output} \\ \hline & 0 \\ \end{array}$$
 What is a $_6$?

SOLUTIONS

21) If $\sin \ominus = .47$, then $\sin(\neg \neg \neg \ominus) =$

Using the difference of angles trig identity:

sin(A - B) = sinAcosB - cosAsinB

 $\sin \pi \cos \ominus - \cos \pi \sin \ominus$

 $0 (\cos \ominus) - (-1) \sin \ominus = \sin \ominus$

22) What is the range of the function defined as $g(x) = \frac{1}{x} + 3$

- a) all real numbers
- b) all real numbers except 0

(the domain is all real numbers except 0)

c) all real numbers > 3

d) all real numbers except 3

The range represents all possible outputs... Since 1/x will never equal zero, 3 will never be an output!

e) all real numbers > 1

23)

NOTE: BA \neq AB For the matrices $A = \begin{bmatrix} 1 & 3 \\ 0 & -1 \end{bmatrix}$ $B = \begin{bmatrix} 2 & 2 \\ -1 & 4 \end{bmatrix}$ What is $BA ? BA = \begin{bmatrix} 2 & 2 \\ -1 & 4 \end{bmatrix} \begin{bmatrix} 1 & 3 \\ 0 & -1 \end{bmatrix} = \begin{bmatrix} 2(1) + 2(0) & 2(3) + 2(-1) \\ 1(1) + 4(0) & -1(3) + 4(-1) \end{bmatrix}$

- a) $\begin{bmatrix} 3 & 5 \\ -1 & 3 \end{bmatrix}$ b) $\begin{bmatrix} 1 & -1 \\ -1 & 5 \end{bmatrix}$ c) $\begin{bmatrix} -1 & 14 \\ 1 & -4 \end{bmatrix}$ d) $\begin{bmatrix} 2 & 4 \\ -1 & -7 \end{bmatrix}$
- e) none of the above

24) In the figure, there is a regular hexagon with sides of length 6. If the coordinate of A is (9, 0), what is the y-coordinate of B?

if hypotenuse of

- a) 0
- b) 3
- 30-60-90 right triangle is 6, then small side is 3 and middle leg is $3 \sqrt{3}$

- e) 4 1/2
- B is $(0, 3\sqrt{3})$

interior angles of regular hexagon are 120 degrees. exterior angles are 60 degrees

- 25) A sample of 25 scores has a mean 75, median 79, and standard deviation of 8. If you increase every score by 10, which of the following is true?
 - a) I only
 - b) II only
 - c) I and II only
 - d) none
 - e) I, II, and III

- I. The new mean is 85
- II. The new median is 89
- III. The new standard deviation is 18

note: the difference of each score relative to the mean hasn't changed, because all the scores increased together!

therefore the standard deviation is unchanged..

How did you do?

Want more test prep questions?

Available at mathplane.com – contact us or go to the travel log section. Or, visit TeachersPayTeachers.com

(\$5 for .pdf or .docx packet)

The proceeds go to site maintenance and treats for Oscar the Dog.

We appreciate your support. Thanks for visiting!