Lateral and Surface Area

Formulas, Examples and Practice Questions (W/Solutions)

Topics include pyramids, prisms, triangles, cylinders, cones, slant height, and more.

Lateral Area and Surface Area

Right Rectangular Prism: Lateral Area $(\mathrm{LA})=2$ (length)(height) +2 (width)(height) (Box)

Base Area $(\mathrm{BA})=$ (length $)($ width $)$
Surface Area $=\mathrm{LA}+2 \mathrm{BA}$

Observation: The surface area is the sum of all 6 areas

Example: What is the surface area of a box with dimensions 4 " x 7 " x 9 " ?

$$
\begin{aligned}
& \mathrm{LA}=2\left(9^{\prime \prime}\right)\left(7^{\prime \prime}\right)+2\left(4^{\prime \prime}\right)\left(7^{\prime \prime}\right)=126^{\prime \prime}+56^{\prime 2}=182^{\prime 2} \\
& \mathrm{BA}=9^{\prime \prime} \times 4^{\prime \prime}=36^{\prime \prime} 2 \\
& 2 \mathrm{BA}=72^{\prime \prime} \\
& \mathrm{SA}=182+72=254 \text { square inches }
\end{aligned}
$$

(Right Circular)
Cylinder: Lateral Area (LA) $=2 \pi$ (radius)(height)
LA = Circumference(Height)
$\mathrm{LA}=$ Circumference(Height)
Base Area $(\mathrm{BA})=\pi$ (radius) 2
Surface Area $(S A)=L A+2 B A$

$$
=\pi(\text { diameter)(height) }
$$

$$
\text { Surface Area }(\mathrm{SA})=\mathrm{LA}+2 \mathrm{BA}
$$

Observation: The circumference of each base (circle) is the same as the length of the rectangle.

Example: Find the surface area of a right cylinder with base diameter of 10 feet and height 12 feet.

Lateral Area $=2 T \mathrm{rh}=2 \Pi(5$ feet $)(12$ feet $)=60 \Pi$ feet 2
Base $=$ area of a circle $=T r^{2}=T \zeta(5 \text { feet })^{2}=25 T T_{\text {feet }}{ }^{2}$
Surface area $=\mathrm{LA}+2 \mathrm{~B}=60 \mathrm{~T}_{\text {feet }}{ }^{2}+2 \cdot 25 T_{\text {feet }}{ }^{2}$
$=110 \Pi$ square feet

Square Right Pyramid:

4 congruent triangles and a square base

height (h) extends from top to middle of the base slant height (l) extends from top to middle of base side

$$
=\frac{1}{2}(4 \mathrm{~s})(l)
$$

Base Area $(\mathrm{BA})=(\text { side })^{2}$
Surface Area $(\mathrm{SA})=\mathrm{LA}+\mathrm{BA}$

Example: Find the surface area of a square pyramid with base side length 16 and height 6 .
Step 1: Draw a sketch, and label known parts

Step 3: Use formulas to find surface area

$$
\begin{aligned}
\mathrm{LA} & =\frac{1}{2}(\text { perimeter }) \text { (slant height) } \\
& =\frac{1}{2}(64)(10)=320 \\
\mathrm{BA} & =(\text { side })^{2}=256 \\
\mathrm{SA} & =\mathrm{LA}+\mathrm{BA}=576 \text { square units }
\end{aligned}
$$

Step 2: Find missing parts
We need the slant height to find the lateral area:

Pythagorean Theorem reveals slant height $(l)=10$

$$
\text { Area of triangle }=\frac{1}{2} b h
$$

Alternate approach: Find area of each side individually
bottom (square) area is 256
4 triangle sides: $80,80,80,80$ total of all 5 faces $=576$

Lateral and Surface Area Questions

1) What is the surface area?

2) Find the total surface area of the right cylinder:

3) The surface area of a cube is 900 square feet. What is the length of each edge?
4) Find the lateral area of a Great Pyramid with height 470 feet and each side of its square base is 710 feet.

Lateral and Surface Area Questions
5) Find the surface area of the figure:

12
6) The roof of a house is a square pyramid with side length 10 yards and height 5 yards.

What is the slant height?
How much roofing material is needed to cover the roof?
7) Find the surface area of the figure:

Lateral and Surface Area Questions
8) Find the surface area of the cone:

9) The lateral area of a square pyramid is 240 square feet. The base edges are 12 feet each.
What is the height of the pyramid?
10) If the surface area of the triangular prism is 560 square units, what is the height?

15
11) If the height of a cylinder is $6^{\prime \prime}$ and the surface area is $110^{\circ} \mathrm{T} \mathrm{T}^{\text {inches }}{ }^{2}$, what is the radius of the cylinder?

12) A hole is drilled through the solid.

What is the surface area (inside and out)?

LanceAF \#39 7-1-12
In its 1000 year history, no one ever passed Mr. Devlin's Geometry class.

SOLUTIONS- -

1) What is the surface area?

Note: We ignore the middle circle (i.e. the top of the cone), because it is not exposed

Also, the slant height of the cone is 13 (5-12-13 right triangle)
2) Find the total surface area of the right cylinder:

Step 1: Area of the top
The top surface (base) is a circle:

$$
\begin{aligned}
\text { Area of circle } & =\pi \text { (radius }^{2} \\
& =25 \pi
\end{aligned}
$$

Step 2: Area of middle

The middle shape is a cylinder:

$$
\begin{aligned}
\text { Lateral Area of cylinder } & =2 \Pi \text { (radius) (height) } \\
& =2 \Pi(5)(6)=60 \Pi
\end{aligned}
$$

Step 3: Area of bottom
The bottom shape is a cone:

$$
\begin{aligned}
\text { Lateral Area of a cone } & =\frac{1}{2} 2 \Pi \text { (radius) (slant height) } \\
& =\Pi(5)(13)=65 \Pi
\end{aligned}
$$

$$
\text { Total surface area }=150 \pi
$$

$\begin{aligned} & \text { Lateral Area of cylinder }=2 \Pi \text { (radius) (height) } \\ & \qquad \text { "circumference times the height" } \\ & \text { Surface Area of cylinder }=\text { Lateral Area }+ \text { Area of } 2 \text { bases } \\ & \text { Base area }=\Pi \text { (radius) }^{2} \end{aligned}$
Area of 1 base $=\Pi$ (3.5) ${ }^{2}=12.25 \pi$
$\left\{\begin{array}{l} \text { Area of } 2 \text { bases }=24.5 \pi \\ \text { Lateral Area }=2 \Pi(3.5)(10)=70 \pi \\ =\quad \text { Total surface area }=94.5 \pi \end{array}\right.$

3) The surface area of a cube is 900 square feet. What is the length of each edge?

The cube has six congruent square sides.
The area of each side is $\frac{900}{6}=150$ square feet Length of each edge $=\sqrt{150}=5 \sqrt{6}$

4) Find the lateral area of a Great Pyramid with height 470 feet and each side of its square base is 710 feet.

Lateral Area $=\frac{1}{2}($ perimeter $)($ slant height $)$

Use Pythagorean Theorem:

Slant height $=\sqrt{(470)^{2}+(355)^{2}}=589$
$L A=\frac{1}{2}(2840)(589)=836,380$ sq. feet

5) Find the surface area of the figure:

Method 1: Use the formulas
Method 2: Find area of each side

$$
\begin{aligned}
\mathrm{LA} & =\frac{1}{2}(\text { perimeter })(\text { slant height }) \\
& =\frac{1}{2}(48)(10)=240 \text { square units } \\
\text { Base } & =\text { (length)(width) } \\
& =(12)(12)=144 \text { square units } \\
\mathrm{SA} & =\mathrm{LA}+\text { Base } \\
& =240+144=384 \text { square units }
\end{aligned}
$$

$$
\begin{aligned}
\text { Base }(\text { square })= & 12 \times 12=144 \text { square units } \\
\text { Side }(\text { triangle })= & \frac{1}{2}(\text { base })(\text { height }) \\
& \frac{1}{2}(12)(10)=60 \text { square units }
\end{aligned}
$$

4 sides: 240 square units
Total of 5 sides: 384 square units
6) The roof of a house is a square pyramid with side length 10 yards and height 5 yards.

What is the slant height?
How much roofing material is needed to cover the roof?

Use Pythagorean Theorem to find slant height:

$$
\begin{aligned}
& \text { slant height }=5 \sqrt{2} \text { yards } \\
& \text { LA }=\frac{1}{2}(\text { perimeter })(\text { slant height }) \\
&=\frac{1}{2}(40 \text { yards })(5 \sqrt{2} \text { yards })=100 \sqrt{2} \text { sq. yards }
\end{aligned}
$$

At least 141.2 square yards of material are necessary to cover the roof.

Lateral and Surface Area Questions

7) Find the surface area of the figure:

(note: the upper square is ignored, because it is 'hidden' between the pyramid and prism)

$$
\text { Surface area }=60+240+36=336 \text { square units }
$$

8) Find the surface area of the cone:

$$
\begin{aligned}
\text { Surface area } & =\text { LA }+ \text { Base Area } \\
& =144 \pi \text { square inches }
\end{aligned}
$$

SOLUTIONS

Base:

The base is a square, so the area is $6 \times 6=36$

Middle:

method 1: Lateral area $=($ perimeter)(height)

$$
=(24)(10)=240
$$

method 2: Add up the 4 sides' areas!

$$
60+60+60+60=240
$$

Top:
Lateral area of the pyramid $=\frac{1}{2}($ perimeter $)($ slant height $)$

(1/2 of 6)
slant height is 5

$$
\mathrm{LA}=\frac{1}{2}(24)(5)=60
$$

Base:
Base is a circle
Base is a circle, so the area is $\Pi r^{2}=36 \Pi$ square inches
Lateral Area:
$\mathrm{LA}=\frac{1}{2}$ (Perimeter of base)(slant height)
(The perimeter of the base is the circumference of the circle)
$\mathrm{LA}=\frac{1}{2} \cdot 12 \Pi T^{\prime \prime} \cdot 18^{\prime \prime}=108 \Pi$ square inches

height is 8 feet

Lateral and Surface Area Questions

10) If the surface area of the triangular prism is 560 square units, what is the height?

15

8-15-17 Pythagorean Triple (right triangle)

SOLUTIONS

Surface Area $(S A)=$ Lateral Area $(L A)+2($ Base $)$

The base area is the area of a triangle:

$$
\frac{1}{2}(8)(15)=60
$$

The lateral area is:

$$
(\text { perimeter of base })(\text { height })=(8+15+17(\text { height })=40 \mathrm{~h}
$$

OR

$$
\text { add up the } 3 \text { area sides: } \quad \text { 'left' }=8 \text { (height) }
$$

$$
\text { 'top' }=17 \text { (height) }
$$

'bottom' = 15(height)

$$
8 h+17 h+15 h=40 h
$$

Substitute: $\quad 560=40 h+2(60)$

$$
440=40 \mathrm{~h}
$$

11) If the height of a cylinder is $6^{\prime \prime}$ and the surface area is $110^{\circ} \mathrm{T} \tau^{\prime}$ inches 2, what is the radius of the cylinder?

Surface area $=$ Lateral Area +2 (Base)
(cylinder)

$$
\begin{array}{cc}
\begin{array}{c}
\text { LA }=\text { Perimeter(height) } \\
\text { or Circumference(height) }
\end{array} & \text { Base }=\text { Area of circle } \\
\pi \text { (radius) }^{2} \\
110 \Pi T_{\text {inches }}{ }^{2}=2 \Pi \text { (radius)(6 inches) } & +2(\pi)(\text { radius })^{2} \\
=\left(12 T T \text { inches)(radius) }+2(\Pi)(\text { radius })^{2}\right. \\
\text { (divide out } \Pi \text { and the inches squared) }
\end{array}
$$

$$
110=12 r+2 r^{2}
$$

$$
2\left(\mathrm{r}^{2}+6 \mathrm{r}-55\right)=0 \quad \text { radius }=5 \text { or }-11
$$

$$
2(r+11)(r-5)=0 \quad \text { But, since length cannot }
$$ be negative, the radius must be 5 inches

12) A hole is drilled through the solid. What is the surface area (inside and out)?

mathplane.com
Find the area of each part: top (and bottom): area of circle: Π (radius) 2

> entire circle: $\Pi(3)^{2}$
> drilled out circle: $\Pi(1)^{2} \quad$ area of each base: 8Π

Lateral area (exterior): $\mathrm{LA}=($ circumference)(height)

$$
\begin{gathered}
\mathrm{LA}=\Pi(6)(8)=48 \Pi \\
\text { Lateral area (interior): } \mathrm{LA}=\Pi(2)(8)=16 \Pi
\end{gathered}
$$

$$
\begin{aligned}
\text { Surface Area } & =2(\text { area of base })+\mathrm{LA} \text { (exterior) }+\mathrm{LA} \text { (interior) } \\
& =16 \Pi+48 \pi+16 \pi=80 \Pi \begin{array}{c}
\text { square } \\
\text { units }
\end{array}
\end{aligned}
$$

Thanks for visiting. (Hope it helped!)
If you have questions, suggestions, or requests, let us know.
Enjoy

Also, find us at Facebook, Google+, Pinterest, and TeachersPayTeachers

