Geometry: Volume

Notes, Formulas, Examples, and Practice (with Solutions)

Topics include surface area, prisms, interpreting 2-D 'blueprints', spheres, cylinders, and more.

The circles fold up (and down), and the parallelogram rolls up --- forming a cylinder..

Volume of Cylinder =
$$\uparrow \uparrow (radius)^2 (height)$$

Volume = $\uparrow \uparrow \uparrow (4)^2 (12)$

= 192 $\uparrow \uparrow \uparrow$

Example: Cement is poured into a hemisphere that is 8" across. What is the volume of the cement that is used?

Volume of sphere =
$$\frac{4}{3}$$
 \(\tau\) (radius)³

Volume of hemisphere = $\frac{2}{3}$ \(\tau\) (radius)³

= $\frac{2}{3}$ \(\tau\) (4 inches)³

= $\frac{128}{3}$ \(\tau\) cubic inches

Example: What is the volume and surface area of the figure?

Volume of rectangular = (length)(width)(height)
prism
(area of base)(height)

Top block: volume =
$$(5)(5)(3) = 75$$

Bottom block: volume = $(11)(3)(5) = 165$
total volume = 240 cubic units

Since this is a prism, we can use Lateral Area = (perimeter)(height)

$$= (10+11+5+6+5+5)(3)$$
$$= (42)(3) = 126$$

then, the area of each base is top: (5)(5) = 25bottom: (11)(5) = 55total: 80...

total surface area = 126 + 2(80) = 286 square units...

Also, the surface area can be found by adding up each face of the figure..

Step 1: Cut into sections The figure is a rectangular prism and 1/2 cylinder.

Step 2: Find total area of prism base (main face)

The base of the rectangular prism is a rectangle:

Area = length x width =
$$(15)(8) = 120$$

The base of the 1/2 cylinder is a semicircle:

Area =
$$\frac{1}{2} \text{ Tr (radius)}^2 = \frac{1}{2} \text{ Tr (4)}^2 = 8 \text{ Tr}$$

Step 3: Multiply height (depth) to get volume

Since the area of the entire base of the prism is 120 + 8 TT

the volume is
$$10(120 + 8 \text{ TT}) = 1200 + 80 \text{ TT} \approx 1451.3$$
 cubic units

Height area (depth)

Example: Find the volume and surface area:

The volume is the entire box minus the two cut-outs. **Since each cut-out is a semi-circle, they can be combined to create a cylinder (with diameter 6)!

Volume of box = (length)(width)(height)

$$= (10)(6)(4) = 240$$
 cubic units

Volume of cylinder = (area of base)(height) (2 cut-outs)

=
$$T \Gamma (3)^2 (4) = 36 T \Gamma$$
 cubic units

Total volume =
$$240 - 36 \,\text{Tr} \approx 126.9 \,\text{units}^3$$

Front (and back) area: $2 \times (4)(10) = 80 \text{ sq. units}$

Top (and bottom) area:
$$2 \times \left((10)(6) - 77(3)^2 \right) = 120 - 1877 \text{ sq. units}$$

entire top cut out semi-circles

(again, the 2 semi-circles combine to a circle)

Left (and right) area:
$$6 \text{ Tr}(4) = 24 \text{ Tr}$$
 sq. units

combined, the two sides form a cylinder...

So, we need to find the lateral area of the cylinder...

(circumference of base x height)

Total surface area =
$$200 + 6 \text{ Tr}$$
 \approx 218.8 sq. units

Practice Questions -→

2) A grain silo has a cylindrical base and dome top (i.e. 1/2 sphere). What is the interior volume?

3) A cone has volume 900 TT cubic inches.

What are 2 possible measures of the radius and height?

Volume Questions

- 4) A water cooler uses cone shaped paper cups. The opening of the cup has a diameter of 3 inches, and the side edge is 5 inches.
 - a) How much water can a full cup hold?
 - b) How much water is in a cup where the water level is halfway up?

5) Find the volume of the hollowed out cylinder:

7) The areas of each part are labeled. What is the volume of the constructed figure?

8) Describe the constructed 3-d figure. Then, find its volume.

9) Find the volume and surface area of the figure.

(Note: the 'radius' is 4 units)

Volume and Surface Area Questions

10) The height of a cylinder is 6". If the volume of the cylinder is 1527 cubic inches, what is the approximate radius?

11) Determine the volume and surface area of the figure.

Solutions \rightarrow

The volume of a rectangular prism is

(area of base) x (height/depth)

Area of base =
$$length x width$$
 rectangle

$$= 6' \times 3' = 18 \text{ sq. feet}$$

then, the volume is

SOLUTIONS

2) A grain silo has a cylindrical base and dome top (i.e. 1/2 sphere). What is the interior volume?

Divide silo into two parts: cylinder and 1/2 sphere...

Base of cylinder is a circle ---> Area is Tradius)²

$$V = T (30')^2 (100') = 90,000 T$$
 cubic feet

Volume of sphere =
$$\frac{4}{3}$$
 $\uparrow \uparrow \uparrow$ (radius)³

Volume of dome =
$$\frac{1}{2}$$
 (volume of sphere)

$$\frac{1}{2} \cdot \frac{4}{3} \text{ TT} (30)^3 = 18,000 \text{ TT cubic feet}$$

Total Volume:
$$108,000 \text{ Tr} \text{ feet}^3$$
 approx. $339,292 \text{ cubic feet}$

Volume = $\frac{1}{3} \uparrow \uparrow \uparrow \text{ (radius)}^2 \text{ (height)}$

3) A cone has volume 900 T cubic inches.

What are 2 possible measures of the radius and height?

900 TT cubic inches. =
$$\frac{1}{3}$$
 TT (radius)² (height)

possibilities

If radius were 10, then height is 27.

If radius were 15, then height is 12

two

Volume Questions

4) A water cooler uses cone shaped paper cups.

The opening of the cup has a diameter of 3 inches, and the side edge is 5 inches.

- a) How much water can a full cup hold?
- b) How much water is in a cup where the water level is halfway up?

Volume (cone) = $\frac{1}{3}$ (Base area)(height)

Base area: Tradius a) = 2.25 🍴

Height: 4.77

Volume = $\frac{1}{3}$ (4.77)(7.07) \approx 11.24 cubic inches

b) If water level is halfway up, we'll use proportional tirangles...

Notice the difference in volume of the upper "half" vs. lower "half"!

Base area: Tradius) = .5625 1

Height: 2.39 Volume = $\frac{1}{3}$ (1.77)(2.39) \approx 1.41 cubic inches

5) Find the volume of the hollowed out cylinder:

Volume (cylinder) = Area base(height)
=
$$\uparrow \uparrow \uparrow$$
 (radius) 2 (height)

Entire cylinder volume =
$$\iint (6)^2 (14)$$
 — Hallowed out volume = $\iint (2)^2 (14)$
(inside space) = 56 \iint

Total Volume = 448 T \approx 1407 cubic units

6) If you fold up the parts of this figure, what is the volume?

Volume Questions

The circles fold up (and down), and the parallelogram rolls up --- forming a cylinder..

7) The areas of each part are labeled. What is the volume of the constructed figure?

The circles fold up/down, and the rectangle gets 'rolled up' to form a cylinder...

- **Since the area of each circle is 16 $\top\!\!\!\top,$ the radius
 - is 4 units... Then, if the radius is 4 units, the circumference is $8\, \top\!\!\!\! \uparrow \ldots$

Therefore, if the circumference is $4\,\text{TT}$, and the area of the rectangle is $24\,\text{TT}$, then the width is 3 units!

Volume of the cylinder = 16 TT x 3 = 48 TT cubic units

8) Describe the constructed 3-d figure. Then, find its volume.

If you fold the triangles up (and down), then fold the right rectangle up... and, finally, fold the left rectangle over the top, you form a triangular prism!

Volume =
$$\frac{1}{2}$$
 (length)(width)(depth)
area of base
= $\frac{1}{2}$ (19.6)(10)(15) = 1470

mathplane.com

9

Volume and Surface Area Questions

The figure is a cylinder split in half and a rectangular prism..

Volume of the cylinder =
$$\uparrow \uparrow \uparrow (radius)^2 (height)$$

= $\uparrow \uparrow \uparrow (16)(9) = 144 \uparrow \uparrow \uparrow$

$$= (7)(8)(9) = 504$$

$$504 + 144 \text{ T} \text{ units}^3$$

Surface area: front/back of prism =
$$2 \times (9)(7) = 126$$

top/bottom of prism = $2 \times (7)(8) = 112$

two halves of cylinder =
$$8 \text{ Tr} \times (9) = 72 \text{ Tr}$$

top/bottom of cylinder = $2 \times 16 \text{ Tr} = 32 \text{ Tr}$

Total SA =
$$238 + 104 \text{ T}$$

10) The height of a cylinder is 6". If the volume of the cylinder is 1527 cubic inches, what is the approximate radius?

$$1527 = \prod_{r}^{2} (6)$$

$$254.5 = \prod_{r}^{2}$$

$$81.00 = r^2$$

11) Determine the volume and surface area of the figure.

Volume of 'entire block' - volume of 'cut out block' = volume of figure

$$(10)(10)(7)$$
 — $(3)(4)(7)$ = 616 cubic units

Surface Area:
$$top = 100 - 12 = 88$$

$$left = 70$$

right =
$$6 \times 7 = 42$$

front = $7 \times 7 = 49$

$$\text{front} = 7 \times 7 = 4$$

$$right = 21$$

total: 456 square units

Thanks for visiting! (Hope it helped)

If you have questions, suggestions, or requests, let us know.

Enjoy

Also, at Facebook, Google+, Pinterest, and TeachersPayTeachers

One more volume question?

(measured in cubic feet,) how much dirt is in a rectangular shaped hole that is 4 feet by 6 feet and 18 inches deep?

Volume Question:

(Measured in cubic feet), how much dirt is in a rectangular shaped hole that is 4 feet by 6 feet and 18 inches deep?

Answer: 0 (there is no dirt in a hole!)

(If the hole were filled, it would have a volume of $4' \times 6' \times 1.5' = 36$ cubic feet...)