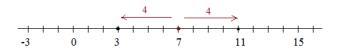

Geometry

Midpoint and Distance

Notes, Applications, and Practice Quiz (& Solutions)

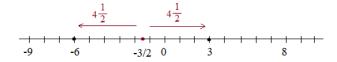
Topics include number lines, cartesian plane, formulas, triangles, circles, and more.

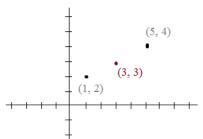
Midpoint and Distance: Notes, Examples, and Formulas


Midpoint

What is it? The "half-way point between two locations". It is equidistant to each point.

Number line: The midpoint between 3 and 11 is 7.


7 is four units from both 3 and 11.


The midpoint between -6 and 3 is $\frac{-3}{2}$

The midpoint extends to the Cartesian Plane:

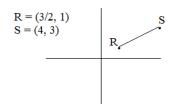
Simply find the midpoint of the X values. And, the midpoint of the Y values.

The midpoint of the X Values:

$$\frac{1+5}{2}=3$$

The midpoint of the Y Values: $\frac{2+4}{2} = 3$

$$\frac{2+4}{2} = 3$$


The midpoint is similar to the "average"

$$\frac{P_1 + P_2}{2}$$
 = Midpoint

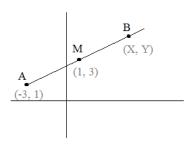
$$\left(\frac{X_1 + X_2}{2} \int \frac{Y_1 + Y_2}{2}\right)$$

Midpoint Formula

Where does the perpendicular bisector pass through \overline{RS} ?

Find the midpoint of \overline{RS} :

X coordinate:
$$\frac{3/2+4}{2} = \frac{11/2}{2} = \frac{11}{4}$$


Y coordinate:
$$\frac{1+3}{2} = 2$$

$$= (4, 3)$$

$$= (2\frac{3}{4}, 2)$$

Given AB with midpoint M: A = (-3, 1) M = (1, 3) What is B?

"Formula" Method

$$\frac{X_A + X_B}{2} = X_M \qquad \frac{Y_A + Y_B}{2} = Y_M$$

$$\frac{-3 + X_B}{2} = 1 \qquad \frac{1 + Y_B}{2} = 3$$

$$X_{B} = 5$$
 $(5, 5)$ $Y_{B} = 5$

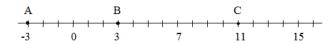
"Travel" Method

Start at the endpoint. Determine how far you "travel" to the midpoint. Then, add the same amount.

$$\begin{array}{ccc}
A & M \\
(-3, 1) & \longrightarrow (1, 3)
\end{array}$$

X value increased 4 units..

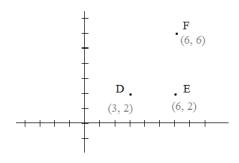
$$\begin{array}{ccc}
M & B \\
(1,3) & \longrightarrow & (1+4,3+2) \\
\hline
 & (5,5)
\end{array}$$


Midpoint and Distance: Notes, Examples, and Formulas

Distance

What is it? The space between 2 points.

The length of the line segment connecting two points.

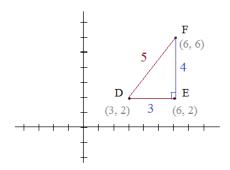

Number Line:

Length of $\overline{AB} = 6$ units $\overline{AC} = 14$ units

Distance between A and B is 6 between A and C is 14

Cartesian Plane:

The distance between D and E is 3 units...

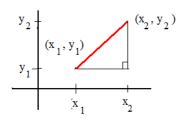

And, the distance between E and F is 4 units...

So, what is the distance between D and F?

(And, it is not 7!!)

Pythagorean Theorem

$$a^2 + b^2 = c^2$$


Notice, in this case, that the points can be vertices of a right triangle..

So,
$$\overline{DE}^2 + \overline{EF}^2 = \overline{DF}^2$$

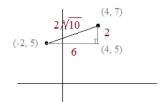
9 + 16 = 25

Therefore, the length of \overline{DF} (i.e. distance between D and F)

$$d = \sqrt{(x_1 - x_2)^2 + (y_1 - y_2)^2}$$

Distance Formula

Find the distance between (-2, 5) and (4, 7).

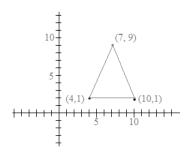

Using Distance Formula:

$$d = \sqrt{(-2-4)^2 + (5-7)^2}$$

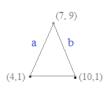
$$= \sqrt{(-2-4)^2 + (5-7)^2}$$

$$= \sqrt{36+4} = 2\sqrt{10}$$

Using Pythagorean Theorem:



A <u>vertical</u> line drawn from (4, 7) intersects a <u>horizontal</u> line from (-2, 5) at (4, 5).. These form a right triangle!


Then, using the pythagorean theorem, the hypotenuse is $2 \sqrt{10}$

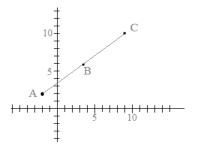
Distance and Midpoint Applications

- I. Verify the following
 - 1) The triangle is isosceles

Def. of isosceles: triangle with 2 congruent sides.

$$a = \sqrt{(7-4)^2 + (9-1)^2}$$
$$= \sqrt{9+64} = \sqrt{73}$$

$$b = \sqrt{(7-10)^2 + (9-1)^2}$$
$$= \sqrt{9+64} = \sqrt{73}$$


a = b, therefore the triangle is isosceles...

2) The length of AB equals the length of BC

$$A = (-2, 2)$$

$$B = (3.5, 6)$$

$$C = (9, 10)$$

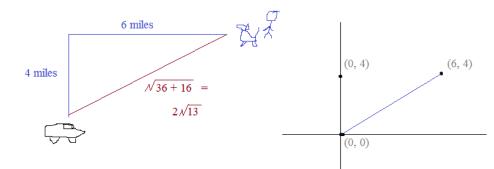
Midpoint:

Midpoint of
$$\overline{AC}$$

$$\left\langle \frac{-2+9}{2} \right\rfloor \frac{2+10}{2}$$

(3.5, 6)

 $\frac{\text{since B is the midpoint of}}{\overline{AC}}, \quad \overline{AB} = \overline{BC}$


Distance:

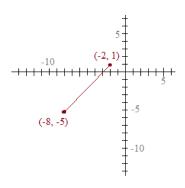
$$d\overline{AB} = \sqrt{(-2 - 3.5)^2 + (2 - 6)^2}$$

= $\sqrt{30.25 + 16} = \boxed{6.80}$

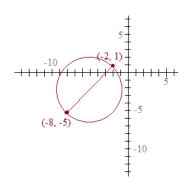
$$d\overline{BC} = \sqrt{(3.5 - 9)^2 + (6 - 10)^2}$$
$$= \sqrt{30.25 + 16} = \boxed{6.80}$$

$$d\overline{AB} = d\overline{BC}$$

II. My dog and I go for a hike in a field. We leave the car and walk due north 4 miles. Then, we turn 90° to the right and continue 6 miles due east. We get hungry and decide to go straight back to the car. How far must we go?


distance of AB

$$\sqrt{(6-0)^2 + (4-0)^2}$$


$$= \sqrt{52} = 2\sqrt{13}$$

III. Write the standard form of a circle with endpoints (-2, 1) and (-8, -5)

Step 1: Sketch the figure

Step 2: Establish the strategy

The standard form of a circle is

$$(x-h)^2 + (y-k)^2 = r^2$$

where r is the radius and (h, k) is the center.

We need the center: *midpoint* of the diameter..

And, radius: *distance* between center and endpoint (or, 1/2 *distance* of diameter)

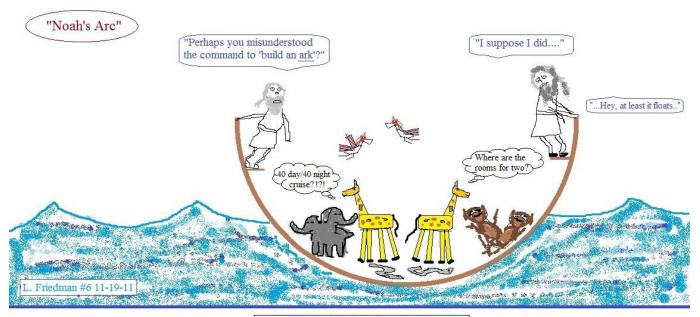
Step 3: Solve

Center: Find the midpoint of endpoints (-2, 1) and (-8, -5)

$$\left(\frac{-2+(-8)}{2}\right)\frac{1+(-5)}{2} = (-5, -2)$$

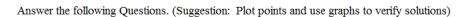
Diameter: Distance between endpoints (-2, 1) and (-8, -5)

distance =
$$\sqrt{(-2 - (-8))^2 + (1 - (-5))^2} = \sqrt{36 + 36} = 6\sqrt{2}$$


Or, Radius: Distance between center (-5, -2) and endpoint (-8, -5)

distance =
$$\sqrt{(-5 - (-8))^2 + (-2 - (-5))^2}$$
 = $\sqrt{9 + 9}$ = $3\sqrt{2}$

$$(x-h)^{2} + (y-k)^{2} = r^{2}$$


$$(x-(-5))^{2} + (y-(-2))^{2} = 3\sqrt{2}^{2}$$

$$(x+5)^{2} + (y+2)^{2} = 18$$

Eventually, Noah realizes that this assignment was NOT a geometry construction

Practice Review Quiz

I. Midpoint

- 1) Find the midpoint between:
 - A) (0, 1) and (8, 3)
 - B) (11, -4) and (-6, -4)
 - C) (-17, -7) and (-7, -6)
- 2) Answer the following:
 - A) The midpoint of AB is (3, -3). If point A = (-2, -4), what is point B?
 - B) The endpoint of a segment is (5, -5). The midpoint of the segment is (9, -5). What is the other endpoint?

II. Distance

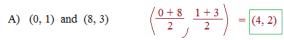
- 1) What is the distance between:
 - A) (3, 6) and (7, 9)
 - B) (7, -1) and (7, 7)
 - C) (-4, 5) and (1, 12)
- 2) The distance d between two points is given. Find the value(s) of b:
 - A) (0, b) and (3, 1); d = 5
 - B) (b, -7) and (-5, 1); d = 10
 - C) (-9, -2) and (b, 5); d = 7

III. Geometry application

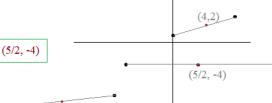
- A) Using the distance formula, determine whether the following are vertices of a right triangle (i.e. Distances and converse of Pythagorean Theorem)
 - 1) (5, 8) (5, 2) and (0, 2)

2) (3, -1) (1, 4) and (-3, 0)

3) (-1, 1) (2, 4) and (3, -3)

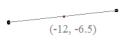

- B) Find the perpendicular bisectors of the following line segments: (express your answer in point slope form)
 - 1) Line segment \overline{AB} , where A = (4, 7) and B = (11, 6)

2) Line segment \overline{CD} , where C = (3, -9) and D = (-6, -9)

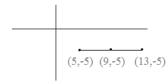

Answer the following Questions. (Suggestion: Plot points and use graphs to verify solutions)

I. Midpoint

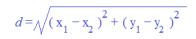
1) Find the midpoint between:



average of x terms: $(11 + (-6))/2 = \frac{5}{2}$ B) (11, -4) and (-6, -4)

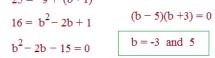

y terms are the same (no vertical change)

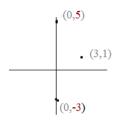
C) (-17, -7) and (-7, -6) (-12, -6.5)



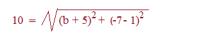
- 2) Answer the following:
 - A) The midpoint of AB is (3, -3). If point A = (-2, -4), what is point B? A $\xrightarrow{\text{M}}$ B (-2, -4) ---> (3, -3) ---> (8, -2) \times add 5; y add 1
 - The endpoint of a segment is (5, -5). The midpoint of the segment is (9, -5). What is the other endpoint?
- II. Distance

$$(9, -5) = \left(\frac{5+x}{2}, \frac{-5+y}{2}\right)$$
 $x = 13$ $y = -5$ (13, -5)


- 1) What is the distance between:
 - A) (3, 6) and (7, 9) $d = \sqrt{(7-3)^2 + (9-6)^2} = \sqrt{16+9} = 5$
 - B) (7, -1) and (7, 7) Vertical line connecting both points: 8 units from -1 to 7
 - C) (-4, 5) and (1, 12) $d = \sqrt{(-4-1)^2 + (5-12)^2} = \sqrt{25+49} = \sqrt{74}$

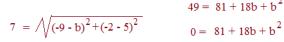


- 2) The distance d between two points is given. Find the value(s) of b:
 - A) (0, b) and (3, 1); d = 5


$$25 = 9 + (b - 1)^2$$

$$5 = \sqrt{(0-3)^2 + (b-1)^2}$$
 (square both sides and solve)

B) (b, -7) and (-5, 1); d = 10


$$100 = b^2 + 10b + 25 + 64$$

$$b^2 + 10b - 11 = 0$$

C) (-9, -2) and (b, 5); d = 7

$$49 = 81 + 18b + b^2 + 49$$

$$0 = 81 + 18b + b^{2}$$

$$(b+9)(b+9) = 0$$

There is only one point that has a y coordinate 5 AND is 7 units

III. Geometry application

A) Using the distance formula, determine whether the following are vertices of a right triangle (i.e. Distances and converse of Pythagorean Theorem)

AB
$$^2 + BC^2 = AC^2$$

1) (5, 8) (5, 2) and (0, 2) $dAB = 6$ $BC = 5$ $AC = \sqrt{61}$

$$dAC = \sqrt{(5-0)^2 + (8-2)^2}$$

AB $^2 + BC^2 = AC^2$

36 + 25 = 61

61 = 61 V vertices of right triangle

$$= \sqrt{25 + 36} = \sqrt{61}$$

2)
$$(3, -1)$$
 $(1, 4)$ and $(-3, 0)$
E F G
$$= \sqrt{29}$$

$$dEG = \sqrt{(3+3)^2 + (-1-0)^2}$$

$$= \sqrt{82}$$

$$dFG = \sqrt{(1+3)^2 + (4-0)^2}$$

$$= \sqrt{32}$$

$$dEG = \sqrt{(3+3)^2 + (-1-0)^2}$$

$$= \sqrt{82}$$

$$EF^2 + FG^2 = EG^2$$

$$29 + 32 = 82$$

$$61 \neq 82$$

$$\sqrt{(-1, 1)} \quad (2, 4) \text{ and } (3, -3)$$

$$Vertices are not a right triangle$$

$$dMN = \sqrt{18}$$

$$dNP = \sqrt{50}$$

$$dMP = \sqrt{32}$$

$$MN^{2} + MP^{2} = NP^{2}$$

$$18 + 32 = 50$$

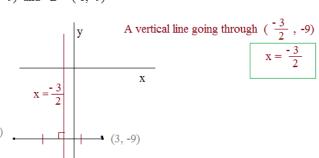
50 = 50 Yes! Vertices of a right triangle

- B) Find the perpendicular bisectors of the following line segments: (express your answer in point slope form)
 - 1) Line segment \overline{AB} , where A = (4, 7) and B = (11, 6)

Find midpoint of \overline{AB} :

Find midpoint of AB: To find perpendicular line, find slope of
$$\overline{AB}$$
:

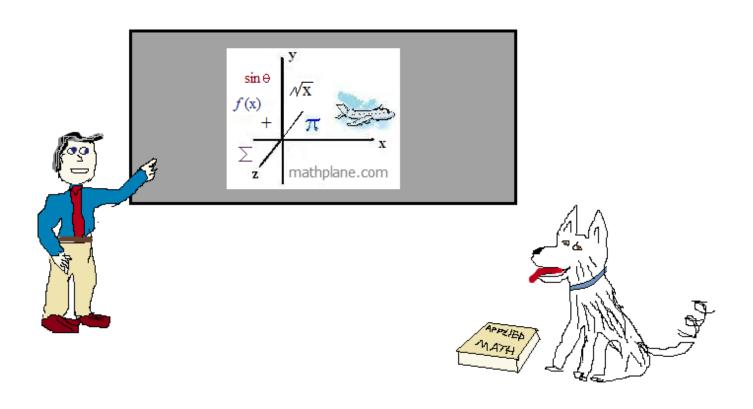
$$\left(\frac{4+11}{2}, \frac{7+6}{2}\right) = (15/2, 13/2) \qquad m = \frac{7-6}{4-11} = \frac{-1}{7}$$


 $y - \frac{13}{2} = 7 (x - \frac{15}{2})$

2) Line segment \overline{CD} , where C = (3, -9) and D = (-6, -9)

Midpoint of \overline{CD} is (-3/2, -9)

Segment CD is horizontal!


Therefore, the perpendicular bisector will be vertical...

Thanks for visiting the site. (Hope it helped!)

If you have questions, suggestions, or requests, let us know!

Cheers.

One more question

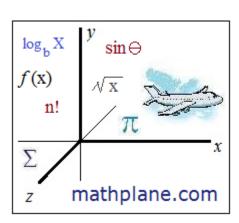
The distance between A and B is 10 units.

If A is (3, 11) and B is (x, 5), then what is x?

The distance between A and B is 10.

If A is (3, 11) and B is (x, 5), what is x?

distance =
$$\sqrt{(x_1 - x_2)^2 + (y_1 - y_2)^2}$$


$$10 = \sqrt{(3 - x)^2 + (11 - 5)^2}$$

$$100 = (3 - x)^2 + 36$$

$$64 = (3 - x)^2$$

$$\frac{+}{8} = 3 - x$$

$$x = -5$$
 or 11

