Graphing I: Transformations and Parent Functions Notes, Examples, and practice quiz

A common way to graph equations is plot points, identify intercepts, and determine the end behavior.

Examples:

Χ	Y
-3	5
-2	0
-1	-3
0	-4
1	-3
2	0
3	5

X-intercepts: (-2, 0) and (2, 0)

Y-intercept: (0, -4)

After plotting points, we observe that the end behavior is "up to the left" and "up to the right" (or positive ∞)

Domain: $(-\infty, \infty)$ Range: $[-4, \infty]$ $f(x) = 3 \sqrt{x-2}$

X - intercept: (2, 0) Y - intercept: NONE

End behavior: "up to the right" and "when going

left, stops at X = 2

Domain: $[2, \infty)$ Range: $[0, \infty)$

Now, suppose you want to sketch $f(x) = -3(x+14)^2 + 10$

Plotting a few points and identifying intercepts could be difficult and time consuming...

However, using parent functions and transformation techniques can be an effective way to sketch complicated graphs.

"Parent Function" -- A basic function used as a 'building block' for more complicated functions

Common Examples: $f(x) = x^2$

$$f(x) = x^2$$
 (parabola)

$$f(x) = \sqrt{x}$$
 (square root)

f(x) = |x| (absolute value)

 $f(x) = x^3$ (cubic curve)

(Other parent functions include trig functions, logarithms, exponents, greatest integer, and reciprocals)

"Transformation" -- Operations that alter a function (e.g. reflections, translations, stretches, compressions, or rotations)

If f(x) is the parent function,

a f(b(x - c)) + d is the transformed function where

a is the "stretch"

b is the "compression"

c is the "horizontal shift"

d is the "vertical shift"

The "vertical shift": d

This transformation is the easiest to recognize and utilize. To shift a function up or down (along the y-axis), simply add/subtract the amount at the end of the function.

Compare:

f(x) = |x| (absolute value parent function)

g(x) = |x| + 7 ("vertical shift" up 7)

If f(x) is the parent function, $af(b(x-c))+d \quad \text{is the transformed function where}$ $a \quad \text{is the "stretch"}$ $b \quad \text{is the "compression"}$ $c \quad \text{is the "horizontal shift"}$ $d \quad \text{is the "vertical shift"}$

**Note: the vertical shift is the value outside the function.

$$f(x+7) \neq f(x) + 7$$

$$|\mathbf{x} + 7| \neq |\mathbf{x}| + 7$$

Compare:

$$f(x) = x^2$$
 (parent function)

$$h(x) = x^2 - 4$$

X	f(x)	X	h (x)
-2	4	-2	0
-1	1	-1	-3
0	0	0	-4
1	1	1	-3
2	4	2	0

(Note: every output of the transformed function h(x) is exactly 4 less than the output of the parent function g(x))

Compare:

$$f(x) = \sqrt{x}$$
 (square root parent function)

$$g(x) = \sqrt{x} + 3$$

X	f(x)	X	g (x)
0	0	0	3
1	1	1	4
4	2	4	5
9	3	9	6
4 9 16	4	16	7

The "horizontal shift": c

This transformation is very useful. (Similar to a vertical shift), the entire function is simply moved to the right (or left) along the x-axis, determined by the 'c' value.

Compare:

f(x) = |x| (absolute value parent function)

$$g(x) = |x - 5|$$

X	f(x)	g (x)
-1	1	6
0	0	5
1	1	4
3	3	2
5	5	0
7	7	2
9	9	4

Note: the x-intercept of |x| is (0,0) and the x-intercept of |x - 5| is (5,0), verifying a 5 space shift to the right

$$f(x) = x^2$$
 (parabola parent function)

$$h(x) = (x+4)^2$$

X	f(x)	h (x)
-4	16	10
-3	9	/,1
-2	4 /	14
-1	1//	/,9
0	0//	16
1	1///	25
2 3	4//	36
3	9//	49
4	16	64
100		

Note: The output values of h(x) would be the same as f(x) if the inputs were shifted by 4

$$y = x^3$$
 (cubic equation)

$$y' = (x - 2)^3$$

X	у	y'
-2	-8 <	-64
-1	-1	-64 -27
0	0	-8
1	1	-1
2	8	0
3	27	1
4	64	8

Note: the table shows the y' values are the same as the y values when shifted by 2 rows

(shift to the right)

^{**}As you can see, if the c value is $\underline{negative}$, the shift is to the right. And, when the c value is $\underline{positive}$, the shift is to the left

The "horizontal shift": c

The "vertical shift": d

Sketch the following functions:

$$f(x) = |x + 6| + 5$$

$$g(x) = \sqrt{x-4} - 8$$

$$h(x) = (x+8)^2 - 12$$

If f(x) is the parent function,

a f(b(x - c)) + d is the transformed function where

a is the "stretch"

b is the "compression"

c is the "horizontal shift"

d is the "vertical shift"

Solutions:

$$f(x) = |x + 6| + 5$$

(the parent function is absolute value |x|)

We use a vertical shift "up 5" and a horizontal shift "left 6"

To check your sketch, select random points and plug the values into the function.

$$x = -6$$
 $f(x) = 5$

$$f(-6) = |-6 + 6| + 5 = 5$$

$$x = 0$$
 $f(x) = 11$

$$f(0) = |0+6| + 5 = 11$$

$$x = -12 f(x) = 11$$

$$f(-12) = |-12 + 6| + 5 = 11$$

$$g(x) = \sqrt{x-4} - 8$$

(the parent function is square root $\sqrt[4]{x}$)

We observe a vertical shift "down 8" and a horizontal shift "right 4"

$$h(x) = (x+8)^2 - 12$$

(the parent function is x^2)

vertical shift: "down 12" horizontal shift: "left 8"

y - intercept:

$$(0+8)^2-12=52$$

The "stretch" (or "shrink"): a

This transformation expands (or contracts) the parent function up and down (along the y-axis). If a > 1, the function's rate of change increased. If 0 < a < 1, the function's rate of change is decreased. (**For -a, the function changes direction)

If f(x) is the parent function,

a f(b(x - c)) + d is the transformed function where

a is the "stretch"

b is the "compression"

c is the "horizontal shift"

d is the "vertical shift"

Compare:

$$f(x) = x^2$$

$$g(x) = 4x^2$$

note:
$$4x^2 \neq (4x)^2$$

X	f(x)	g (x)
-3	9	36
-2	4	16
-1	1	4
0	0	0
1	1	4
2	4	16
3	9	36

$$g(x) = 4 \cdot f(x)$$

g (x) is growing 4 times as fast as f (x)

g (x) is a 'stretched' transformation of the parent function

Compare:

$$f(x) = |x|$$

$$h(x) = 1/2 |x|$$

X	f(x)	h (x)
-6	6	3
-4	4	2
-2	2	1
0	0	0
2	2	1
4 6	4	2
6	6	3
		I .

In this example, the output values of h(x) are all 1/2 the value of the parent function's output values.

'Shrink'

Compare:

$$f(x) = \sqrt{x}$$

$$g(x) = -3\sqrt{x}$$

X	f(x)	g (x)
-1		
0	0	0
1	1	-3
4	2	-6
9	3	-9
16	4	-12

Since a > 0 and it is negative, the function is stretched in the <u>other</u> direction.

f(x): domain: $[0, \infty)$ range : $[0, \infty)$

g (x): domain: $[0, \infty)$ range : $(-\infty, 0]$

"Compression" (or "expansion"): b

This transformation compresses (or expands) the parent function lengthwise (along the x-axis). If b > 1, then the function gets compressed (i.e. squeezed) If 0 < b < 1, then the function expands wider. (**For -b, the function is flipped over the y-axis)

If f(x) is the parent function,

a f(b(x - c)) + d is the transformed function where

a is the "stretch"

b is the "compression"

c is the "horizontal shift"

d is the "vertical shift"

Compare:

f(x) = |x| (absolute value function)

$$g(x) = |4x|$$

Note: In this case, |4x| = 4|x|However, in general, f(bx) is <u>not</u> the same as b f(x)(see the third example)

X	f(x)	g (x)	
-3	3	12	
-3 -2	2	8	
-1	1	4	
0	0	0	
1	1	4	
2	2	8	
3	3	12	

b = 4 > 0Compressed

$\int_{-\infty}^{g(x)} f(x)$

Compare:

$$f(x) = x^2$$

$$h(x) = (3x)^2$$

X	f(x)	h (x)
-3	9	81
-3 -2	4	36
-1	1	9
0	0	0
1	1	9
2	4	36
3	9	81

Compare:

$$g(x) = (4x)^2$$

transformation: f(bx) ("compression")

$$h(x) = 4(x)^2$$

transformation: a f(x) ("stretch")

X	g (x)	h (x)
-3	144	36
-2	64	16
-1	16	4
0	0	0
1	16	4
2	64	16
3	144	36

(Complicated examples)

Sketch the following functions:

$$f(x) = 3(x+7)^2 - 6$$

$$g(x) = -|2x+5|-4$$

$$h(x) = \frac{1}{2} \sqrt{x - 6} + 5$$

Solutions:

$$f(x) = 3(x+7)^2 - 6$$

a = 3 stretch is 3

b = 1 no compression c = 7 horizontal shift: left 7

d = -6 vertical shift: down 6

parent function: x2

$$g(x) = -|2x+5| - 4$$

a = -1 change of direction

b = 2 compression of 2

(***the compression will alter the horizontal shift!!)

c = 5 horizontal shift is 5/2 to the left

d = -4 vertical shift: down 4

parent function: |x|

If
$$f(x)$$
 is the parent function,

a f(b(x - c)) + d is the transformed function where

a is the "stretch"

b is the "compression"

c is the "horizontal shift"

d is the "vertical shift"

To check your graph, select some points:

$$(-7, -6) 3(-7 + 7)^{2} - 6 = -6$$

$$x = -7 f(-7) = -6$$

y-intercept: find f(0)

$$3(0+7)^2 - 6 = 141$$

(0, 141)

x-intercepts: find f(x) = 0

$$3(x+7)^2-6=0$$

$$(x+7)^2 = 2$$

$$x = -7 + \sqrt{2}$$

(Plug the points into the function to confirm the sketch)

$$h(x) = \frac{1}{2} \sqrt{x - 6} + 5$$

a = 1/2 "shrink" ("flatter")

b = 1 no horizontal compression c = -6 horizontal shift: right 6 d = 5 vertical shift: up 5

parent function: \sqrt{x}

Using his geometry background, The Math Guy excels in his new profession.

LanceAF #49A (9-9-12) www.mathplane.com

Practice Quiz (w/Solutions)-→

In the following, a) identify the parent function
b) describe any translations and transformations
c) sketch the functions
d) (optional) determine the domain and range

1)
$$y = |x - 2| + 4$$

2)
$$f(x) = -\frac{1}{2}(x+3)^2$$

3)
$$y = 2 \sqrt{x-1} + 3$$

4)
$$y = -|3x - 3| + 5$$

5)
$$y = -(x-3)^3 + 3$$

6)
$$g(x) = \frac{(x+4)^2}{2}$$

In the following, a) identify the parent function

- b) describe any translations and transformations
- c) sketch the functions
- d) (optional) determine the domain and range

If f(x) is the parent function,

a f(b(x - c)) + d is the transformed function where

- a is the "stretch"
- b is the "compression"
- c is the "horizontal shift"
- d is the "vertical shift"

1)
$$y = |x - 2| + 4$$

parent function: y = |x|

horizontal shift (c): 2 units to the right

vertical shift (d): 4 units up

 $\begin{array}{ll} \text{domain: all real numbers} \\ \text{range: } y \geq 4 \end{array}$

2)
$$f(x) = -\frac{1}{2}(x+3)^2$$

parent function:

$$f(x) = x^2$$

horizontal shift (c): 3 units to the left

amplitude (a): 1/2 (shrink by 2)

reflection over the x-axis

range:
$$f(x) \le 0$$

($-\infty$, 0]

3)
$$y = 2\sqrt{x-1} + 3$$

parent function: $y = \sqrt{x}$

horizontal shift (c): 1 unit to the right

vertical shift (d): 3 units up

ampitude (a): vertical stretch by 2

domain: $x \ge 1$ (term under radical must be non-negative)

range: $y \ge 3$

4)
$$y = -|3x - 3| + 5$$

**first, rewrite the equation

$$y = -|3(x - 1)| + 5$$

horizontal shift (c): 1 unit to the right

vertical shift (d): 5 units up

reflected over the x-axis

"compression" (b): 1/3 of the width

domain: all real numbers range: $y \le 5$

parent function: y = |x|

5)
$$y = -(x-3)^3 + 3$$

parent function: $y = x^3$ (cubic)

horizontal shift (c): 3 units to the right

vertical shift (d): up 3 units

reflected over the x-axis

domain: all real numbers range: all real numbers

6)
$$g(x) = \frac{(x+4)^2}{2}$$

$$g(x) = \frac{1}{2}(x+4)^2$$

parent function: $y = x^2$

horizontal shift (c): 4 units to the left

amplitude (a): 1/2, so it shrinks

domain: all real numbers range: $g(x) \ge 0$

RELATED TOPIC:

Example: Graph the function $f(x) = x^2 - 2x$

Graphing: Completing the square and transformations

This quadratic does not have a "direct parent function".... But, if we complete the square:

$$x^2 - 2x + 1$$
 \longrightarrow $(x - 1)(x - 1) = (x - 1)^2$

Then, compare the result with the original function:

$$x^2 - 2x + 1 = (x - 1)^2$$

so,
$$x^2 - 2x = (x-1)^2 - 1$$

Now, let's graph:

parent function: x2

horizontal shift: 1 unit to the right

vertical shift: 1 unit down

Example: Graph the function $x^2 + 4x + 7$ (by completing the square and using the parent function)

Take the quadratic term and linear term, $x^2 + 4x$, and complete the square

$$x^2 + 4x + 4$$
 \longrightarrow $(x + 2)(x + 2) = (x + 2)^2$

$$x^2 + 4x + 4 = (x + 2)^2$$

so,
$$x^2 + 4x + 7 = (x+2)^2 + 3$$

Now, let's graph:

parent function: x2

horizontal shift: 2 units to the left

vertical shift: 3 units up

Thanks for visiting the site. (Hope it helped!)

Cheers...

If you have questions, suggestions, or feedback, contact us at mathplane.com

Also, at Facebook, Google+, Pinterest, TES, and TeachersPayTeachers