Graphing I: Transformations and Parent Functions

 Notes, Examples, and practice quiz

Transformations and Parent Functions

A common way to graph equations is plot points, identify intercepts, and determine the end behavior.

Examples:

$$
\mathrm{Y}=\mathrm{X}^{2}-4
$$

X	Y
-3	5
-2	0
-1	-3
0	-4
1	-3
2	0
3	5

X -intercepts: $(-2,0)$ and (2,0)
Y-intercept: ($0,-4$)
After plotting points, we observe that the end behavior is "up to the left" and "up to the right" (or positive ∞)

Domain $(-\infty, \infty)$
Range: $[-4, \infty$]

$$
\mathrm{f}(\mathrm{x})=3 \sqrt{\mathrm{x}-2}
$$

x	$\mathrm{f}(\mathrm{x})$
11	9
6	6
3	3
2	0
0	---

X - intercept: $(2,0)$
Y - intercept: NONE
End behavior: "up to the right" and "when going left, stops at $\mathrm{X}=2$

Domain $[2, \infty)$
Range: $[0, \infty)$

Now, suppose you want to sketch $\mathrm{f}(\mathrm{x})=-3(\mathrm{x}+14)^{2}+10$
Plotting a few points and identifying intercepts could be difficult and time consuming...

However, using parent functions and transformation techniques can be an effective way to sketch complicated graphs.
"Parent Function" -- A basic function used as a 'building block' for more complicated functions

Common Examples:	$\mathrm{f}(\mathrm{x})=\mathrm{x}^{2}$	(parabola)
	$\mathrm{f}(\mathrm{x})=\sqrt{\mathrm{x}}$	(square root)
	$\mathrm{f}(\mathrm{x})=\|\mathrm{x}\|$	(absolute value)
	$\mathrm{f}(\mathrm{x})=\mathrm{x}^{3}$	(cubic curve)

(Other parent functions include trig functions, logarithms, exponents, greatest integer, and reciprocals)
"Transformation" -- Operations that alter a function (e.g. reflections, translations, stretches, compressions, or rotations)

If $f(x)$ is the parent function,
$\mathrm{a} f(\mathrm{~b}(\mathrm{x}-\mathrm{c}))+\mathrm{d}$ is the transformed function where
a is the "stretch"
b is the "compression"
c is the "horizontal shift"
d is the "vertical shift"

Transformations and Parent Functions

The "vertical shift" : d
This transformation is the easiest to recognize and utilize. To shift a function up or down (along the y-axis), simply $\mathrm{add} /$ subtract the amount at the end of the function.

Compare:
$\mathrm{f}(\mathrm{x})=|\mathrm{x}| \quad$ (absolute value parent function)
$\mathrm{g}(\mathrm{x})=|\mathrm{x}|+7 \quad$ ("vertical shift" up 7)

\[

\]

${ }^{* *}$ Note: the vertical shift is the value outside the function.

$$
\mathrm{f}(\mathrm{x}+7) \neq \mathrm{f}(\mathrm{x})+7 \quad|\mathrm{x}+7| \neq|\mathrm{x}|+7
$$

Compare:
$\mathrm{f}(\mathrm{x})=\mathrm{x}^{2}$ (parent function)
$h(x)=x^{2}-4$

x	$\mathrm{f}(\mathrm{x})$	x	$\mathrm{h}(\mathrm{x})$
-2	4	-2	0
-1	1	-1	-3
0	0	0	-4
1	1	1	-3
2	4	2	0

(Note: every output of the transformed function $\mathrm{h}(\mathrm{x})$ is exactly 4 less than the output of the parent function $\mathrm{g}(\mathrm{x})$)

Compare:
$\mathrm{f}(\mathrm{x})=\sqrt{\mathrm{x}} \quad$ (square root parent function)
$\mathrm{g}(\mathrm{x})=\sqrt{\mathrm{x}}+3$

x	$\mathrm{f}(\mathrm{x})$
0	0
1	1
4	2
9	3
16	4

$$
\begin{array}{l|l}
\mathrm{x} & \mathrm{~g}(\mathrm{x}) \\
\hline 0 & 3 \\
1 & 4 \\
4 & 5 \\
9 & 6 \\
16 & 7
\end{array}
$$

Transformations and Parent Functions

The "horizontal shift": c
This transformation is very useful. (Similar to a vertical shift), the entire function is simply moved to the right (or left) along the x -axis, determined by the ' c ' value.

If $f(\mathrm{x})$ is the parent function,
$\mathrm{a} f(\mathrm{~b}(\mathrm{x}-\mathrm{c}))+\mathrm{d}$ is the transformed function where
a is the "stretch"
b is the "compression"
c is the "horizontal shift"
d is the "vertical shift"

Compare:

$\mathrm{f}(\mathrm{x})=|\mathrm{x}| \quad$ (absolute value parent function)
$g(x)=|x-5|$

x	$\mathrm{f}(\mathrm{x})$	$\mathrm{g}(\mathrm{x})$
-1	1	6
0	0	5
1	1	4
3	3	2
5	5	0
7	7	2
9	9	4

Note: the x-intercept of $|x|$ is $(0,0)$ and the x-intercept of $|x-5|$ is $(5,0)$, verifying a 5 space shift to the right

$f(x)=x^{2} \quad$ (parabola parent function)
$h(x)=(x+4)^{2}$

x	$f(x)$	$h(x)$
-4	16	0
-3	9	1
-2	4	4
-1	1	9
0	0	16
1	1	25
2	4	36
3	9	49
4	16	64

Note: The output values of $h(x)$ would be the same as $f(x)$ if the inputs were shifted by 4
$y=x^{3} \quad$ (cubic equation)
$y^{\prime}=(x-2)^{3}$

x	y	y^{\prime}
-2	-8	-64
-1	-1	-27
0	0	-8
1	1	-1
2	8	0
3	27	1
4	64	8

Note: the table shows the y^{\prime} values are the same as the y values when shifted by 2 rows

(shift to the right)

Transformations and Parent Functions

The "horizontal shift": c
The "vertical shift": d

Sketch the following functions:

If $f(x)$ is the parent function,
$\mathrm{a} f(\mathrm{~b}(\mathrm{x}-\mathrm{c}))+\mathrm{d}$ is the transformed function where
a is the "stretch"
b is the "compression"
c is the "horizontal shift"
d is the "vertical shift"
$f(x)=|x+6|+5$
$g(x)=\sqrt{x-4}-8$
$h(x)=(x+8)^{2}-12$

Solutions:
$f(x)=|x+6|+5$
(the parent function is absolute value $|\mathrm{x}|$)

We use a vertical shift "up 5" and
a horizontal shift "left 6"

To check your sketch, select random points and plug the values into the function.

$$
\begin{aligned}
& \mathrm{x}=-6 \mathrm{f}(\mathrm{x})=5 \\
& \mathrm{f}(-6)=|-6+6|+5=5 \\
& \mathrm{x}=0 \quad \mathrm{f}(\mathrm{x})=11 \\
& \mathrm{f}(0)=|0+6|+5=11 \\
& \mathrm{x}=-12 \mathrm{f}(\mathrm{x})=11 \\
& \mathrm{f}(-12)=|-12+6|+5=11
\end{aligned}
$$

$h(x)=(x+8)^{2}-12$
(the parent function is x^{2})
vertical shift: "down 12" horizontal shift: "left 8"
y - intercept:
$(0+8)^{2}-12=52$

Transformations and Parent Functions

The "stretch" (or "shrink"): a
This transformation expands (or contracts) the parent function up and down (along the y-axis).
If $\mathrm{a}>1$, the function's rate of change increased.
If $0<\mathrm{a}<1$, the function's rate of change is decreased.
(**For -a , the function changes direction)

If $f(\mathrm{x})$ is the parent function,
$\mathrm{a} f(\mathrm{~b}(\mathrm{x}-\mathrm{c}))+\mathrm{d}$ is the transformed function where
a is the "stretch"
b is the "compression"
c is the "horizontal shift"
d is the "vertical shift"

Compare:

$f(x)=x^{2}$
$g(x)=4 x^{2}$
note: $4 x^{2} \neq(4 \mathrm{x})^{2}$

x	$\mathrm{f}(\mathrm{x})$	$\mathrm{g}(\mathrm{x})$
$\mathbf{- 3}$	9	36
$\mathbf{- 2}$	4	16
$\mathbf{- 1}$	1	4
0	0	0
$\mathbf{1}$	1	4
$\mathbf{2}$	4	16
3	9	36

$$
g(x)=4 \cdot f(x)
$$

$\mathrm{g}(\mathrm{x})$ is growing 4 times as fast as f (x)

$$
\begin{aligned}
& \mathrm{g}(\mathrm{x}) \text { is a 'stretched' } \\
& \text { transformation of the } \\
& \text { parent function }
\end{aligned}
$$

Compare:

$f(x)=|x|$
$h(x)=1 / 2|x|$

x	$\mathrm{f}(\mathrm{x})$	$\mathrm{h}(\mathrm{x})$
-6	6	3
-4	4	2
-2	2	1
0	0	0
2	2	1
4	4	2
6	6	3

In this example, the output values of $\mathrm{h}(\mathrm{x})$ are all $1 / 2$ the value of the parent function's output values.
'Shrink'

Compare:

$f(x)=\sqrt{x}$
$g(x)=-3 \sqrt{x}$

x	$\mathrm{f}(\mathrm{x})$	$\mathrm{g}(\mathrm{x})$
-1	--	--
0	0	0
1	1	-3
4	2	-6
9	3	-9
16	4	-12

Since $\mathrm{a}>0$ and it is negative, the function is stretched in the other direction.

Transformations and Parent Functions

"Compression" (or "expansion"): b
This transformation compresses (or expands) the parent function lengthwise (along the x -axis).
If $\mathrm{b}>1$, then the function gets compressed (i.e. squeezed)
If $0<b<1$, then the function expands wider.
(**For -b, the function is flipped over the y -axis)

Compare:

$\mathrm{f}(\mathrm{x})=|\mathrm{x}| \quad$ (absolute value function)

x	$\mathrm{f}(\mathrm{x})$	$\mathrm{g}(\mathrm{x})$
-3	3	12
-2	2	8
-1	1	4
0	0	0
1	1	4
2	2	8
3	3	12

Compare:

$f(x)=x^{2}$
$h(x)=(3 x)^{2}$

x	$\mathrm{f}(\mathrm{x})$	$\mathrm{h}(\mathrm{x})$
$\mathbf{- 3}$	9	81
$\mathbf{- 2}$	4	36
$\mathbf{- 1}$	1	9
0	0	0
$\mathbf{1}$	1	9
$\mathbf{2}$	4	36
$\mathbf{3}$	9	81

Compare:
$g(x)=(4 x)^{2}$
transformation: $f(\mathrm{bx})$
("compression")
$h(x)=4(x)^{2}$
transformation: a $f(x)$ ("stretch")

If $f(\mathrm{x})$ is the parent function,
$\mathrm{a} f(\mathrm{~b}(\mathrm{x}-\mathrm{c}))+\mathrm{d}$ is the transformed function where
a is the "stretch"
b is the "compression"
c is the "horizontal shift"
d is the "vertical shift"
$g(x)=|4 x|$

Note: In this case, $|4 \mathrm{x}|=4|\mathrm{x}|$
However, in general,
$f(b x)$ is not the same as $b f(x)$
(see the third example)
-

Compressed

Transformations and Parent Functions

(Complicated examples)

Sketch the following functions:

$$
\begin{aligned}
& \mathrm{f}(\mathrm{x})=3(\mathrm{x}+7)^{2}-6 \\
& \mathrm{~g}(\mathrm{x})=-|2 \mathrm{x}+5|-4 \\
& \mathrm{~h}(\mathrm{x})=\frac{1}{2} \sqrt{\mathrm{x}-6}+5
\end{aligned}
$$

Solutions:

$$
f(x)=3(x+7)^{2}-6
$$

$$
\begin{array}{ll}
\mathrm{a}=3 & \text { stretch is } 3 \\
\mathrm{~b}=1 & \text { no compression } \\
\mathrm{c}=7 & \text { horizontal shift: left } 7 \\
\mathrm{~d}=-6 & \text { vertical shift: down } 6 \\
\text { parent function: } \mathrm{x}^{2}
\end{array}
$$

$$
\begin{aligned}
& \mathrm{g}(\mathrm{x})=-|2 \mathrm{x}+5|-4 \\
& \begin{array}{ll}
\mathrm{a}=-1 & \text { change of direction } \\
\mathrm{b}=2 & \text { compression of } 2 \\
\left(\begin{array}{c}
* * * \text { the compression will alter the } \\
\text { horizontal shift!! }
\end{array}\right. \\
\mathrm{c}=5 & \text { horizontal shift is } 5 / 2 \text { to the left } \\
\mathrm{d}=-4 & \text { vertical shift: down } 4
\end{array}
\end{aligned}
$$

parent function: $|\mathrm{x}|$
$h(x)=\frac{1}{2} \sqrt{x-6}+5$
$\mathrm{a}=1 / 2$ "shrink" ("flatter")
$\mathrm{b}=1$ no horizontal compression
$\mathrm{c}=-6$ horizontal shift: right 6
$\mathrm{d}=5$ vertical shift: up 5
parent function: \sqrt{x}

$$
\begin{gathered}
(-7,-6) \quad 3(-7+7)^{2}-6=-6 \\
x=-7 \quad f(-7)=-6
\end{gathered}
$$ y-intercept: find $\mathrm{f}(0)$

$$
3(0+7)^{2}-6=141
$$

$(0,141) \quad$
x-intercepts: find $f(x)=0$

$$
\begin{aligned}
& 3(x+7)^{2}-6=0 \\
& (x+7)^{2}=2 \\
& x=-7 \pm \sqrt{2}
\end{aligned}
$$

(Plug the points into the function
If $f(\mathrm{x})$ is the parent function,
$\mathrm{a} f(\mathrm{~b}(\mathrm{x}-\mathrm{c}))+\mathrm{d}$ is the transformed function where
a is the "stretch"
b is the "compression"
c is the "horizontal shift"
d is the "vertical shift"

To check your graph, select some points:
neck your graph, select some points:
x-marcepts. find $f(x)=0$

to confirm the sketch)

In the following, a) identify the parent function
b) describe any translations and transformations
c) sketch the functions
d) (optional) determine the domain and range

1) $y=|x-2|+4$

2) $y=2 \sqrt{x-1}+3$

3) $y=-(x-3)^{3}+3$

4) $f(x)=-\frac{1}{2}(x+3)^{2}$

5) $y=-|3 x-3|+5$

6) $g(x)=\frac{(x+4)^{2}}{2}$

In the following, a) identify the parent function
b) describe any translations and transformations
c) sketch the functions
d) (optional) determine the domain and range

If $f(\mathrm{x})$ is the parent function,
$\mathrm{a} f(\mathrm{~b}(\mathrm{x}-\mathrm{c}))+\mathrm{d}$ is the transformed function where
a is the "stretch"
b is the "compression"
c is the "horizontal shift"
d is the "vertical shift"

1) $y=|x-2|+4$
parent function: $y=|x|$
horizontal shift (c):
2 units to the right
vertical shift (d):
4 units up
domain: all real numbers range: $\mathrm{y} \geq 4$

2) $y=2 \sqrt{x-1}+3$
parent function: $\mathrm{y}=\sqrt{\mathrm{x}}$
horizontal shift (c):
1 unit to the right
vertical shift (d):
3 units up
ampitude (a):
vertical stretch by 2
domain: $x \geq 1$
(term under radical must be non-negative)
range: $y \geq 3$

3) $f(x)=-\frac{1}{2}(x+3)^{2}$ parent function:

$$
f(x)=x^{2}
$$

horizontal shift (c): 3 units to the left amplitude (a): $1 / 2$ (shrink by 2)
reflection over the x -axis domain: all real numbers $(-\infty, \infty)$
range: $f(x) \leq 0$
$(-\infty, 0]$

4) $y=-|3 x-3|+5$

6) $g(x)=\frac{(x+4)^{2}}{2}$ $g(\mathrm{x})=\frac{1}{2}(\mathrm{x}+4)^{2}$
parent function: $y=x^{2}$
horizontal shift (c):
4 units to the left
amplitude (a): $1 / 2$, so it shrinks
domain: all real numbers
range: $\quad g(\mathrm{x}) \geq 0$

RELATED TOPIC:

Example: Graph the function $f(\mathrm{x})=\mathrm{x}^{2}-2 \mathrm{x}$

Graphing: Completing the square and transformations

This quadratic does not have a "direct parent function"....
But, if we complete the square:

$$
x^{2}-2 x+1 \longrightarrow(x-1)(x-1)=(x-1)^{2}
$$

Then, compare the result with the original function:

$$
\begin{aligned}
x^{2}-2 x+1 & =(x-1)^{2} \\
\text { so, } x^{2}-2 x & =(x-1)^{2}-1
\end{aligned}
$$

Now, let's graph:
parent function: x^{2}
horizontal shift: 1 unit to the right
vertical shift: 1 unit down

Example: Graph the function $\mathrm{x}^{2}+4 \mathrm{x}+7$
(by completing the square and using the parent function)
Take the quadratic term and linear term, $x^{2}+4 x$, and complete the square

$$
\begin{aligned}
& x^{2}+4 x+4 \longrightarrow(x+2)(x+2)=(x+2)^{2} \\
& x^{2}+4 x+4=(x+2)^{2}
\end{aligned}
$$

$$
\text { so, } \quad x^{2}+4 x+7=(x+2)^{2}+3
$$

Now, let's graph:

parent function: x^{2}
horizontal shift: 2 units to the left
vertical shift: 3 units up

Thanks for visiting the site. (Hope it helped!)
If you have questions, suggestions, or feedback, contact us at mathplane.com Cheers...

Also, at Facebook, Google+, Pinterest, TES, and TeachersPayTeachers

