Polynomials 2: Factors, Roots, and Theorems

Examples, Notes, and Practice Tests (with Solutions)

Topics include rational root, factoring, conjugates, graphing, synthetic division, long division, sum and product rules, and more.

Mathplane.com

$$g(x) = x^4 + 8x^3 + 15x^2 - 4x - 20$$

(There is no greatest common factor (GCF))

Step 1: Use Rational Root Theorem to find factor

'p': factors of 20: 1, 2, 4, 5, 10, 20 'q': factors of 1: 1

Possible rational roots: $\frac{+}{1} \frac{'p'}{'q'} = \pm 1, \pm 2, \pm 4, \pm 5, \pm 10, \pm 20$

Step 2: Use Remainder/Factor Theorem to select a root

Test (-1):
$$g(-1) = (-1)^4 + 8(-1)^3 + 15(-1)^2 - 4(-1) - 20$$

= -8 Since
$$g(-1) = -8$$
, the remainder of $g(x) \cdot (x+1)$ is 8...

It is NOT a root (factor)

Test (1):
$$g(1) = (1)^4 + 8(1)^3 + 15(1)^2 - 4(1) - 20$$

(x - 1)

= 0 Since
$$g(1) = 0$$
, the remainder of $g(x) \div (x - 1)$ is 0

It is a root (factor)

Step 3: Use Synthetic Division to reduce the polynomial by 1 degree

Repeat Steps 1, 2, and 3 to find the next root:

$$x^3 + 9x^2 + 24x + 20$$

'p': factors of 20: 1, 2, 4, 5, 10, 20 'q': factors of 1: 1

Possible rational roots:
$$\frac{+}{q'}$$
 $\frac{p'}{q'}$ $\frac{\pm 1}{2}$, ± 2 , ± 4 , ± 5 , ± 10 , ± 20

Since -1 did not work before, we'll test -2

$$h(-2) = (-2)^3 + 9(-2)^2 + 24(-2) + 20$$

= 0

h(x)

Note: Since each term in the polynomial has a positive coefficient, the remaining rational roots will NOT be positive! (i.e. using the remainder theorem, there is no way h(x) = 0 if x is a positive number...)

Step 4: Factor the quadratic..

$$x^2 + 7x + 10x = (x+2)(x+5)$$

Note: the discriminant $b^2 - 4ac = 49 - 40 = 9$ since 9 > 0, the solutions/zeros are REAL and, since 9 is a perfect square, they are RATIONAL (x + 2)(x + 5)

Step 5: Using the factors and equation, sketch the curve

$$g(x) = x^{4} + 8x^{3} + 15x^{2} - 4x - 20$$
or
$$g(x) = (x+2)^{2}(x-1)(x+5)$$

x-intercepts are the zeros: -2, -2, 1, -5 ---> (-2, 0) (1, 0) and (-5, 0) y-intercept is (0, -20)

end behavior: The degree is 4, so the ends go in the same direction.. The lead coefficient is positive, so the curve goes up

as
$$x \longrightarrow \infty$$
, $g(x) \longrightarrow \infty$
 $x \longrightarrow -\infty$, $g(x) \longrightarrow \infty$

since the zero (-2) has a multiplicity of 2 (i.e. (x + 2)(x + 2)), there will be a "bounce" at -2

Random Polynomial Notes & Examples

Example:
$$y = x^4 - 3x^3 - 13x^2 + 15x$$
 zeros 1, -3, 5, 0 intercepts (1, 0) (-3, 0) (5, 0) (0, 0) or the origin "roots" 1, -3, 5, 0

factors

Searching for rational roots: A Shortcut

Example: Find the roots of the polynomial

$$f(x) = x^3 + 12x^2 + 21x + 10$$

NOTE: When considering the p's and q's -- the possible rational roots -- we can eliminate all the positive possiblities!

There is no way that f(x) = 0 if x is positive....

Since the polynomial cannot be factored by grouping, we'll check for rational roots...

(x-1)(x+3)(x)(x-5)

According to rational root theorem, possible rational roots include 1, 2, 5, 10, -1, -2, -5, -10

Which possible rational root shall we check first?

Since we can eliminate all the positive numbers, we'll start with -1:

$$f(-1) = (-1)^3 + 12(-1)^2 + 21(-1) + 10 = 0$$

(according to remainder/factor theorems, -1 is a root)

Sum and Product Rules of Roots:

Example: Write a quadratic equation with zeros (3 + 5i) and (3 - 5i)

Method 1: Using sum and product rule of roots

SUM of the roots:
$$(3 + 5i) + (3 - 5i) = 6$$

PRODUCT of the roots:
$$(3 + 5i)(3 - 5i) =$$

$$9 + 15i - 15i - 25i^2$$

$$9 - (-25) = 34$$

$$\frac{\text{Sum of roots}}{A} = -B$$

$$\frac{\text{Product of roots}}{A} = C$$

$$1x^2 - 6x + 34$$

so factor is (x + 1)

Method 2: FOIL and binomials

$$(x - (3 + 5i))(x - (3 - 5i))$$

$$(x-3-5i)(x-3+5i)$$

$$x(x-3+5i)$$
 $x^2-3x+5ix$

$$-3 (x - 3 + 5i)$$
 $-3x + 9 - 15$

$$x^2 - 6x + 34$$

Then, what is the cubic with zero -1

$$(x+1)(x^2-6x+34)$$
 $x(x^2-6x+34)$ x^3-6x^2+34x
zero is -1, $x^2-6x+34$ $x^2-6x+34$

$$x^3 - 6x^2 + 34x$$

$$1 (x^2 - 6x + 34) x^2 - 6x + 34$$

$$x^3 - 5x^2 + 28x + 34$$

Example: Given the polynomial $g(x) = x^7 - 3x^2 - 1$

What is the remainder of $\frac{g(x)}{(x-3)}$?

Evaluate with synthetic division... Then, check with remainder theorem....

(synthetic division)

(remainder theorem)

$$g(3) = (3)^{7} - 3(3)^{2} - 1$$
$$= 2187 - 27 - 1$$
$$= 2159$$

Conjugate Root Theorem

Since 3i is a root, then -3i must be a root, too...

$$(x + 3i)(x - 3i) = x^{2} + 3ix - 3ix - 9i^{2}$$
$$= x^{2} + 9$$

Example: $x^5 + 4x^4 + 6x^3 + 18x^2 - 27x - 162$

If 3i is a zero, find the other zeros...

Then, write the polynomial in factored form...

Polynomial Long Division

$$x^{3} + 4x^{2} - 3x - 18$$

$$(x^{2} + 9) \quad x^{5} + 4x^{4} + 6x^{3} + 18x^{2} - 27x - 162$$

$$- x^{5} + 9x^{3}$$

$$4x^{4} - 3x^{3} + 18x^{2}$$

$$- 4x^{4} + 36x^{2}$$

$$- 3x^{3} - 18x^{2} - 27x$$

$$- 3x^{3} - 18x^{2} - 27x$$

$$- 18x^{2} - 162$$

$$- 18x^{2} - 162$$

Rational Root Theorem

Possible rational roots: "p": 1, 2, 3, 6, 9, 18
"q": 1
1, -1, 2, -2, 3, -3, 6, -6, 9, -9, 18, -18

Remainder/Factor Theorem

If
$$x = 1$$
, $(1)^3 + 4(1)^2 - 3(1) - 18 = -16$ NOT a factor

If
$$x = -1$$
, $(-1)^3 + 4(-1)^2 - 3(-1) - 18 = -12$ NOT a factor

If
$$x = 2$$
, $(2)^3 + 4(2)^2 - 3(2) - 18 = 0$ FACTOR!! $(x-2)$

Synthetic Division

Factor a quadratic

$$x^2 + 6x + 9 = (x + 3)(x + 3)$$

Zeros are 3i, -3i, -3, and 2

Polynomial in factored form:
$$(x^2 + 9)(x - 2)(x + 3)^2$$

Example: Factor:
$$8x^5 - 25y^3 + 80x^4 - x^2y^3 + 200x^3 - 10xy^3$$

 $8x^5 + 80x^4 + 200x^3 - x^2y^3 - 10xy^3 - 25y^3$ rearrange
 $8x^3(x^2 + 10x + 25) - y^3(x^2 + 10x + 25)$ group and greatest common factors (GCF)
 $(8x^3 - y^3) \cdot (x^2 + 10x + 25)$ regroup
 $(2x - y)(4x^2 + 2xy + y^2)(x + 5)(x + 5)$ different of cubes and factoring
 $(2x - y)(4x^2 + 2xy + y^2)(x + 5)^2$

Example: Factor:
$$2x^4 + x^3 - 8x^2 - x + 6$$

$$x^3 - x + 2x^4 - 8x^2 + 6 \qquad \text{rearrange}$$

$$x(x^2 - 1) + 2(x^4 - 4x^2 + 3) \qquad \text{greatest common factor}$$

$$x(x^2 - 1) + 2(x^2 - 1)(x^2 - 3) \qquad \text{factor the trinomial}$$

$$(x^2 - 1)(x + 2(x^2 - 3)) \qquad \text{regroup (using greatest common factor)}$$

$$(x^2 - 1)(2x^2 + x - 6) \qquad \text{difference of squares}$$

"A different kind of grouping"

Example: Factor
$$x^2 - 4x + 4 - 100y^2$$

The polynomial has 4 terms, and it can be grouped... The first 3 terms separated from the fourth:

$$x^{2}-4x+4$$
 - 100y²
 $(x-2)(x-2)$ - 100y²
 $(x-2)^{2}-100y^{2}$ then, difference of squares
 $(x-2+10y)(x-2-10y)$

Example: Factor
$$a^2 + 8a + 16 - b^2$$

$$a^2 + 8a + 16 - b^2$$

$$(a + 4)(a + 4) - b^2$$

$$(a + 4)^2 - b^2$$

$$(a + 4 - b)(a + 4 + b)$$

Practice Exercises-→

1)
$$x^6 - 7x^3 + 6$$

2)
$$9a^4b - 12a^2b^4 + 4b^7$$

2)
$$9a^4b - 12a^2b^4 + 4b^7$$
 3) $x^6 - 2x^5 + x^4 - x^2 + 2x - 1$

4)
$$x^2 - y^2 - 10y - 25$$

5)
$$25 - x^2 - 4xy - 4y^2$$

6)
$$2x^3 - 3ax^2 - 18x + 27a$$

7)
$$20x^3 - 8x^2 - 35x + 14 = 0$$

8)
$$x^2(x-2) + x(x-2)^2 = 0$$
 9) $27x^3 + 21x^2 - 14x - 8$

9)
$$27x^3 + 21x^2 - 14x - 8$$

10)
$$(a^2 + 2a)^2 - 2(a^2 + 2a) - 3$$

11)
$$x^{\frac{3}{2}} + 5x^{-\frac{1}{2}} - 6x^{\frac{1}{2}} = 0$$

12)
$$(x^2+1)^2-7(x^2+1)+10$$

1)
$$x^4 + 8x^3 + 5x^2 - 38x + 24 \div (x+1)$$

2)
$$x^3 - 10x^2 + 6 \div (x - 2)$$

3)
$$x^4 - x^2 - 3 \div (x - \sqrt{2})$$

4)
$$x^5 + 4x^4 + 6x^3 + 18x^2 - 27x - 162 \div (x^2 + 9)$$

5)
$$x^2 - 4x - 2 \div [x - (3 + 4i)]$$

6)
$$x^6 - 4x^3 + 6x^2 + 10 \div (2x^2 + 5)$$

2) Find a 4th degree polynomial with zeros 3i and -1, -1 has a multiplicity of 2.

- 3) A) Write a quadratic equation in standard form whose solutions are (2 + 5i) and (2 5i)
 - B) Now, write a cubic equation whose solutions (zeros) are -1, 2 + 5i, and 2 5i
 - C) And, finally, write a quartic equation in factored form whose solutions (zeros) are -1, 2 + 5i, and 2 5i
- 4) Using synthetic division, determine the following:

A)
$$x^3 + 7x - 1 \div (x - 2)$$

B)
$$3x^3 - 2x^2 + 5x + 1 \div (3x + 1)$$

5) Why can't +1 be a possible root of

$$f(x) = 3x^4 + x^3 + 9x^2 + 6x + 15$$
?

(in other words, why is (x - 1) NOT a factor?)

6) $g(x) = 2x^3 - 10x^2 + 200x - 1000$

Consider the possible rational roots. Which ones should you omit? Which should you test first? Explain.

7) Find the zeroes: $f(x) = x^6 + 6x^5 + 15x^4 + 36x^3 + 54x^2$

8) Let
$$g(x) = 2x^3 - 5x^2 - 4x + 3$$

Find the possible rational zeros of g

Determine the complete factorization

What are the x-intercepts? The y-intercept?

Sketch the graph

Polynomials Concepts: Graphing

Sketch the following polynomial:

$$y = \frac{1}{10}(x+3)(x-2)(x-5)^2$$

Label the intercepts...

Write the equation of the polynomial in the following graph:

Write the equation of the polynomial in the following graph:

- 1) What is Q(3)?
- 2) Find $\frac{Q(x)}{x+2}$
- 3) Find the equation of the polynomial Q(x) in standard form.
- 4) Write the equation of the polynomial as a product of linear factors (or factored form)

Solutions \rightarrow

1)
$$x^6 - 7x^3 + 6$$
 $(x^3 - 1)(x^3 - 6)$

$$(x-1)(x^2+x+1)(x^6-6)$$

2)
$$9a^4b - 12a^2b^4 + 4b^7$$

GCF
$$b \cdot [9a^4 - 12a^2b^3 + 4b^6]$$

$$b(3a^2-2b^3)^2$$

4)
$$x^2 - y^2 - 10y - 25$$

$$x^2 - 1 \cdot (y^2 + 10y + 25)$$

$$x^2 - (y+5)(y+5)$$

$$x^2 - (y + 5)^2$$

$$(x + y + 5)(x - y - 5)$$

7)
$$20x^3 - 8x^2 - 35x + 14 = 0$$

Group the 1st and 3rd terms; Group the 2nd and 4th terms. Then, factor (GCF)

$$5x(4x^2 - 7) + (-2)(4x^2 - 7) = 0$$

Regroup:
$$(5x-2)(4x^2-7) = 0$$

Solve:
$$x = 2/5$$
 or $x = + \sqrt{\frac{7}{4}}$

10)
$$(a^2 + 2a)^2 - 2(a^2 + 2a) - 3$$

Let
$$B = (a^2 + 2a)$$

$$B^2 - 2B - 3$$

$$(B + 3)(B + 1)$$

$$(a^2 + 2a - 3)(a^2 + 2a + 1)$$

$$(a-1)(a+3)(a+1)(a+1)$$

2)
$$9a^4b - 12a^2b^4 + 4b^7$$

GCF
$$b \cdot [9a^4 - 12a^2b^3 + 4b^6]$$

$$b \cdot (3a^2 - 2b^3)(3a^2 - 2b^3)$$

$$b(3a^2-2b^3)^2$$

5)
$$25 - x^2 - 4xy - 4y^2$$

$$25 - (x^2 + 4xy + 4y^2)$$

$$25 - (x + 2y)(x + 2y)$$

$$25 - (x + 2y)^2$$

$$[5 - (x + 2y)] \cdot [5 + (x + 2y)]$$

$$(5 - x - 2y)(5 + x + 2y)$$

8)
$$x^2(x-2) + x(x-2)^2 = 0$$

GCF
$$x(x-2) \cdot [x + (x-2)] = 0$$

$$x(x+2)(2x-2) = 0$$

$$x = 0, 1, 2$$

$$\frac{3}{2} + 5x - 6x = 0$$

$$\frac{-1}{x^{2}}(x^{2} + 5 - 6x) = 0$$

$$\frac{x^2 + 5 - 6x}{\sqrt{x}} = 0$$

$$\frac{(x-1)(x-5)}{\sqrt[4]{x}} = 0$$

$$x = 1, 5$$

NOT a polynomial... (fractional and negative exponents)

3)
$$x^6 - 2x^5 + x^4 - x^2 + 2x - 1$$

$$x^{4}(x^{2} + 2x + 1) - 1(x^{2} - 2x + 1)$$

$$(x^4 - 1)(x^2 - 2x + 1)$$

$$(x^2 + 1)(x^2 + 1)(x - 1)(x - 1)$$

$$(x+1)(x-1)(x^2+1)(x-1)^2$$

$$(x+1)(x^2+1)(x-1)^3$$

6)
$$2x^3 - 3ax^2 - 18x + 27a$$

$$x^2(2x + 3a) - 9(2x - 3a)$$

$$(2x - 3a)(x^2 - 9)$$

$$(2x - 3a)(x + 3)(x - 3)$$

9)
$$27x^3 + 21x^2 - 14x - 8$$

Group 1st and 4th terms; Group 2nd and 3rd terms..

$$27x^3 - 8 + 21x^2 - 14x$$

$$27x^3 - 8 + 7x(3x - 2)$$

ReGroup

$$(3x-2)(9x^2+6x+4) - 7x(3x-2)$$
 Difference of Cubes

$$(3x-2)[(9x^2+6x+4)-7x]$$

$$(3x-2)(9x^2-x+4)$$

12)
$$(x^2 + 1)^2 - 7(x^2 + 1) + 10$$

Let
$$U = x^2 + 1$$

$$U^2 - 7U + 10$$

$$(U-2)(U-5)$$

$$(x^2 + 1 - 2)(x^2 + 1 - 5)$$

$$(x^2 - 1)(x^2 - 4)$$

$$(x+1)(x-1)(x+2)(x-2)$$

1)
$$x^4 + 8x^3 + 5x^2 - 38x + 24 \stackrel{\bullet}{=} (x+1)$$

$$\begin{array}{r}
x^3 + 7x^2 - 2x + 36 + \frac{60}{x+1} \\
x+1 \overline{\smash)x^4 + 8x^3 + 5x^2 - 38x + 24} \\
-\underline{x^4 + x^3} \\
7x^3 + 5x^2 \\
-\underline{7x^3 + 7x^2} \\
-2x^2 - 38x \\
-\underline{2x^2 - 38x} \\
-\underline{36x + 24} \\
-\underline{36x - 36} \\
60
\end{array}$$

2)
$$x^3 - 10x^2 + 6 \div (x-2)$$

$$x^{2} + 8x - 16 - \frac{26}{x - 2}$$

$$x - 2 \quad x^{3} - 10x^{2} + 0x + 6$$

$$- x^{3} + 2x^{2}$$

$$- 8x^{2} + 0x$$

$$- (-8x^{2} + 16x)$$

$$- (-16x + 6)$$

$$- (-16x + 32)$$

$$- (-26)$$

(using the remainder theorem)

$$f(-1) = (-1)^4 + 8(-1)^3 + 5(-1)^2 - 38(-1) + 24 =$$

$$1 + -8 + 5 + 38 + 24 = 60$$

also, synthetic division:

$$x^3 + 7x^2 - 2x + 36 + \frac{60}{x+1}$$

(using the remainder theorem)

$$f(2) = (2)^3 - 10(2)^2 + 6 =$$

8 - 40 + 6 = -26

also, synthetic division:

$$x^2 + 8x - 16 + \frac{26}{x - 2}$$

3) $x^4 - x^2 - 3 - (x - \sqrt{2})$

(using the remainder theorem)

$$f(\sqrt{2}) = (\sqrt{2})^4 + (\sqrt{2})^2 + 3 =$$

$$4 - 2 - 3 = +1$$

also, synthetic division:

4)
$$x^5 + 4x^4 + 6x^3 + 18x^2 - 27x - 162 \div (x^2 + 9)$$

5)
$$x^2 - 4x - 2 \div [x - (3 + 4i)]$$

$$x + 4i + 1 + \frac{-21 + 8i}{x - (3 + 4i)}$$

$$4i \cdot \frac{x - (3+4i)}{x - (3+4i)}$$

$$\frac{4ix - 12i - 16i^{2}}{x - (3+4i)} + \frac{-21+8i}{x - (3+4i)} = \frac{-5+4xi - 4i}{x - (3+4i)}$$

6)
$$x^6 - 4x^3 + 6x^2 + 10 \div (2x^2 + 5)$$

$$(2x^{2}+5) \begin{array}{|c|c|c|c|}\hline \frac{1}{2}x^{4} & -\frac{5}{4}x^{2} - 2x + \frac{49}{8}\\ \hline x^{6} + 0x^{5} + 0x^{4} - 4x^{3} + 6x^{2} + 0x + 10\\ \hline - x^{6} & +\frac{5}{2}x^{4}\\ \hline & -\frac{5}{2}x^{4} - 4x^{3} + 6x^{2}\\ \hline & -\frac{5}{2}x^{4} - \frac{25}{4}x^{2}\\ \hline & -4x^{3} + \frac{49}{4}x^{2}\\ \hline & -\frac{4x^{3}}{4}x^{2} + 10x + 10\\ \hline & -\frac{49}{4}x^{2} + \frac{245}{8}\\ \hline & 10x - \frac{165}{8}\\ \hline \end{array}$$

$$x^3 + 4x^2 - 3x - 18$$

SOLUTIONS

(using the remainder theorem)

$$f(3+4i) = (3+4i)^{2} - 4(3+4i) - 2$$

$$9 + 24i + 16i^{2} - 12 - 16i - 2$$

$$8i - 21$$

(using synthetic division)

$$\frac{1}{2}x^4 - \frac{5}{4}x^2 + 2x + \frac{49}{8} + \frac{10x - \frac{165}{8}}{(2x^2 + 5)}$$

Possible rational roots are 1, -1, 2, -2...

$$f(1) = 1 + 1 - 1 + 1 - 2 = 0$$
 so, 1 is a root...

$$x^3 + 2x^2 + x + 2$$

we can use grouping to factor the remaining part.)

$$x^{3}+2x^{2} + x + 2$$

 $x^{2}(x+2) + 1(x+2)$
 $(x^{2}+1)(x+2)$

 $(x-1)(x+2)(x^2+1)$

2) Find a 4th degree polynomial with zeros 3i and -1, -1 has a multiplicity of 2.

Since 3i is a zero, -3i must be a zero... (conjugate root theorem)

Since -1 has a multiplicity of 2, there are two zeros that are -1...

$$3i -3i -1 -1$$

 $(x - 3i)(x + 3i)(x + 1)(x + 1)$ $(x^2 + 9)(x + 1)^2$

$$(x^2+9)(x+1)^2$$

3) A) Write a quadratic equation in standard form whose solutions are (2 + 5i) and (2 - 5i)

$$(x - (2 + 5i)(x - (2 - 5i)(x - 2 + 5i)(x - 2 + 5i)(x - 2 + 5i)$$

$$x^2 - 4x + 29$$

B) Now, write a cubic equation whose solutions (zeros) are -1, 2 + 5i, and 2 - 5i

-1 2 + 5*i* 2 - 5*i*

$$(x + 1)(x - (2 + 5i)(x - (2 - 5i)$$

 $(x + 1)(x^2 - 4x + 29)$ or $x^3 - 3x^2 + 25x + 29$

C) And, finally, write a quartic equation in factored form whose solutions (zeros) are -1, 2 + 5i, and 2 - 5i

Since complex numbers must come in pairs, the fourth zero must be -1...

$$(x+1)(x+1)(x-(2+5i)(x-(2-5i)$$

$$(x+1)^2 (x-2-5i)(x-2+5i)$$

4) Using synthetic division, determine the following:

A)
$$x^3 + 7x - 1 \div (x - 2)$$

$$x^2 + 2x + 11 + \frac{21}{(x-2)}$$

B)
$$3x^3 - 2x^2 + 5x + 1 \div (3x + 1)$$

first, rewrite:
$$(3x^3 - 2x^2 + 5x + 1) \div 3(x + \frac{1}{3})$$

Then, divide by the 3...
$$3x^{2} - 3x + 6 - \frac{1}{(x + \frac{1}{2})}$$

$$x^{2} - x + 2 - \frac{1}{(3x + 1)}$$

5) Why can't +1 be a possible root of

$$f(x) = 3x^4 + x^3 + 9x^2 + 6x + 15$$
?

(in other words, why is (x - 1) NOT a factor?)

6) $g(x) = 2x^3 - 10x^2 + 200x - 1000$

Consider the possible rational roots. Which ones should you omit? Which should you test first? Explain.

According to factor/remainder theorem, f(1) must equal 0 in order for 1 to be a root. Since all the polynomial terms are > 0, there is no way synthetic substitution will lead to 0! (the result must be greater than 0)

SOLUTIONS

Since the degree of the trinomial is 3, there are up to 3 possible rational roots. The possible roots include all factors of 1000. (positive and negative). divided by 1 and 2

Since g(c) must equal zero if c is a root, we can eliminate 1 and -1

(result is much less than zero)

 $-10x^2 + 200x - 1000$ will end in zero for all integers

we can skip 2, -2, 4, -4, 8, -8 (because the results will not end in zero)

So, start with 5 and -5

7) Find the zeroes: $f(x) = x^6 + 6x^5 + 15x^4 + 36x^3 + 54x^2$

(factor the GCF)
$$x^2(x^4 + 6x^3 + 15x^2 + 36x + 54)$$

 $(rational\ root\ theorem) \quad possible\ roots\ are \quad 1,\,2,\,3,\,6,\,9,\,18,\,27,\,54$ -1, -2, -3, -6, -9, -18, -27, -54

> since all the coefficients are positive, this eliminates all positive roots... so, possible roots are -1, -2, -3, -6, -9, -18, -27, -54

test -1: 1 - 6 + 15 - 36 + 54 = 28... remainder is 28 (not a root)

test -2: 16 - 48 + 60 - 72 + 54 = 10... remainder is 10 (not a root)

test -3: 81 - 162 + 135 - 108 + 54 = 0... remainder is 0 (factor!)

factors: $x^2(x+3)^2 (x^2+6)$

zeros: 0 (multiplicity of 2); -3 (multiplicity of 2)

test -3: -27 + 27 - 18 + 18 = 0remainder is 0 (-3 is a zero again)

remaining zeros are $-\sqrt{6}$ and $\sqrt{6}$

8) Let $g(x) = 2x^3 - 5x^2 - 4x + 3$

Find the possible rational zeros of g

Determine the complete factorization

What are the x-intercepts? The y-intercept?

'p's: 1, 3 possible rational roots: 1, -1, 3, -3, 1/2, -1/2, 3/2, -3/2 'q's: 1, 2

degree is 3 end behavior is "up right" and "down left" x-intercepts and y-intercept are labeled

Sketch the graph

 $g(-1) = 2(-1)^3 - 5(-1)^2 - 4(-1) + 3 = 0$ -1 is a zero; (x + 1) is a factor

 $2x^2 - 7x + 3 = (2x - 1)(x - 3)$

factored form: (2x-1)(x-3)(x+1)

x-intercepts: (-1, 0) (1/2, 0) (3, 0) y-intercept: (0, 3)

Sketch the following polynomial:

$$y = \frac{1}{10} (x + 3)(x - 2)(x - 5)^2$$

Label the intercepts...

The above polynomial is in *factored form* or *intercept form*, so the x-intercepts (zeros) are shown:

$$(-3,0)$$
 $(2,0)$ $(5,0)$

Note: (x - 5) has a multiplicity of 2, so there will be a "bounce" at (5, 0)

The y-intercept occurs when the function is at x = 0. (0, ?)

$$y = \frac{1}{10}(0+3)(0-2)(0-5)^2 = -15$$

y-intercept: (0, -15)

Write the equation of the polynomial in the following graph:

Write the equation of the polynomial in the following graph:

Step 1: Identify the x-intercepts

(-2, 0) (1, 0) and (4, 0), so the zeros are -2, 1, and 4
$$y = a(x + 2)(x - 1)(x - 4)$$

Step 2: Note the end behavior and any 'bounces'...

There is a "bounce" at (1, 0) ---> multiplicity of 2

The end behavior indicates a polygon of degree 4

$$y = a(x + 2)(x - 1)^{2}(x - 4)$$

Step 3: Find the "a" value by substituting another point...

$$1 = a(0+2)(0-1)^{2}(0-4)$$

$$1 = -8a$$
 $a = -1/8$

$$y = -\frac{1}{8}(x-1)^2(x-4)(x+2)$$

Step 1: Identify the x-intercepts

$$y = a (x + 3)(x - 2)(x - 4)$$

Step 2: Note the end behavior and any 'bounces'...

There are no 'bounces' or multiplicity of the zeros....

And, the end behavior indicates a cubic...

Step 3: Find the "a" value by substituting another point...

Using
$$(0, 4)$$
 $4 = a(0 + 3)(x - 2)(x - 4)$
 $4 = 24a$

$$a = 1/6$$

$$y = \frac{1}{6}(x+3)(x-2)(x-4)$$

Polynomials: Concepts and Synthetic Division

SOLUTIONS

1) What is Q(3)? (Utilize the remainder theorem!) Q(3) = -56

It's the remainder of $Q(x) \div (x-3)$

2) Find
$$\frac{Q(x)}{x+2}$$
 (Recognizing Synthetic Division)

3) Find the equation of the polynomial Q(x) in standard form.

Pick any from above, convert to polynomials, and multiply!

EX: -2

$$1 -5 \quad 11 \quad -37 \mid 54$$

 $(x+2)(x^3 -5x^2 + 11x - 37 + \frac{54}{(x+2)})$

$$x^{4} + 2x^{3} - 5x^{3} - 10x^{2} + 11x^{2} + 22x - 37x - 74 + 54$$

$$Q(x) = x^{4} - 3x^{3} + x^{2} - 15x - 20$$

4) Write the equation of the polynomial as a product of linear factors (or factored form)

Pick out one of the roots (i.e. remainder is 0): either -1 or 4

 $x^2 + 5$

the roots/zeros are -1 and 4 $(x+1)(x-4)(x^2+5)$

Then, divide by the other root:

or, $(x+1)(x-4)(x+\sqrt{5}i)(x-\sqrt{5}i)$

Thanks for visiting. (Hope it helped!)

If you have questions, suggestions, or requests, let us know.

Enjoy.

Also, at Facebook, Google+, Pinterest, TES, and TeachersPayTeachers