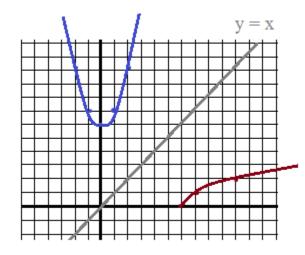
Inverse Functions

Practice questions (with solutions)



Includes graphing, finding inverses, symmetry, cryptography, and more...

Finding and Graphing Inverses

What is the inverse of X?

It is $\underline{\underline{\text{NOT}}} \ \frac{1}{X} \longrightarrow \frac{1}{X}$ is the "reciprocal".

1	is a Reciprocal
"Something"	is a recorprocai.

Therefore,

"Something" times "its reciprocal" equals 1

$$7 \times \frac{1}{7} = 1$$

$$\cos \ominus \cdot \sec \ominus = 1$$

$$X^3 \cdot \frac{1}{X^3} = 1$$

Reciprocal Examples

Sine ⊖

$$\frac{1}{\text{Sine} \ominus} = \text{Csc} \ominus$$

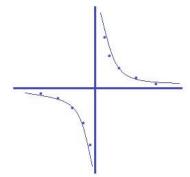
$$\sqrt{X}$$
 $\frac{1}{\sqrt{X}} = \frac{\sqrt{X}}{X}$

$$\frac{bcd}{xyz} \qquad \frac{1}{bcd} = \frac{xyz}{bcd}$$

Graph of Reciprocal Function

$$f(x) = \frac{1}{x}$$

	Λ
X	f(x)



Note: Reciprocals of continuous functions often have "asymptotes" because 0 cannot be in the denominator.

In this graph,

because there is no real value for f(0), there is an asymptote at x = 0 (the y-axis)

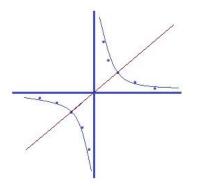
Other Graphs to Compare

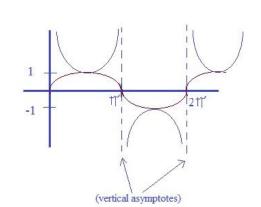
$$f(x) = \frac{1}{x}$$
 $g(x) = x$

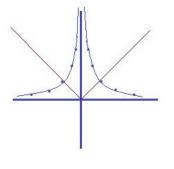
$$f(x) = \csc x$$
 g(

$$g(x) = \sin x$$

$$f(x) = \frac{1}{|X|}$$
 $g(x) = |X|$







Example 2:
$$y = 6x - 3$$

Find the inverse of y

The inverse of 6x - 3 is $\frac{(x+3)}{6}$

is NOT
$$\frac{1}{\text{Sine X}}$$
• The inverse of Sine X is Arcsin X or Sine $^{-1}$ X
• The reciprocal of Sine X is $\frac{1}{\text{Sine X}} = \text{Cosecant X}$

The inverse of Sine X

Example 3:
$$f(x) = 3x + 2$$

Find $f^{-1}(x)$

$$y = 3x + 2$$

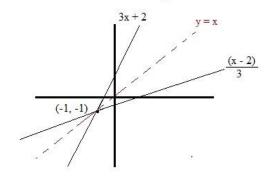
(reverse x/y)

$$x = 3y + 2$$

(solve for y)
$$y = X - 2$$

$$\frac{\text{(replace y with f}^{-1})}{\text{ with f}^{-1}} \qquad \text{f}^{-1}(x) = \frac{x-2}{3}$$

Graph f(x) and $f^{-1}(x)$



Checking your answer.

method 1: compare coordinates. If (x, y) is in f(x), then (y, x) must be in $f^{-1}(x)$

x	f(x)		х	f (x)
-2	-4	•	4	-2
-1	-1		-1	-1
0	2		0	-2/3
1	5		1	-1/3
2	8		2	0
			5	1/3
			5	1
		25		

method 2: In the graph, the line of symmetry between f(x) and $f^{-1}(x)$ is y = x

method 3: If f(x) and g(x) are inverses, then f(g(x)) = x or g(f(x)) = x

$$3\left(\frac{(x-2)}{3}\right) + 2 = \frac{(3x+2) - 2}{3} =$$

$$(x-2) + 2 = x$$

$$\frac{3x}{3} = x$$

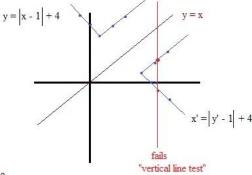
Finding and Graphing Inverses (continued)

Example 4: Find the inverse of y = |x - 1| + 4

1	plot	points	and	reverse:

x y x' y -2 7 7 7 -1 6 6 6 0 5 5 5 1 4 4 4	(inverse)		
-2 7 -1 6 6 0 5 5 1 4 4	(x)		
-1 6 6 0 5 5 1 4 4	y'		
0 5 5 1 4 4	-2		
1 4 4	-1		
1 4 4	0		
2 5	1		
2 3 5	2		
2 5 5 3 6 6 4 7 7	2		
4 7 7	4		
5 8 8	5		

graph:



function or relation?

(equation)
$$y = |x - 1| + 4$$
 function? yes, it satisfies "vertical line test" domain: all real numbers range: $[4, \infty)$

(inverse)
$$x' = \begin{vmatrix} y' - 1 \end{vmatrix} + 4$$
 function? no.
 $x' - 4 = \begin{vmatrix} y' - 1 \end{vmatrix}$ function? no.
domain: $\begin{bmatrix} 4, \infty \\ \text{range: all real numbers} \end{bmatrix}$
 $x' - 4 = \pm (y' - 1)$

Example 5: Find the inverse of $f(x) = 3x^2 + 1$

"Reverse" and solve:
$$y = 3x^{2} + 1$$

$$x = 3y^{2} + 1$$

$$3y^{2} = x - 1$$

$$y = \sqrt{\frac{(x - 1)}{3}}$$

f'(x)=	$\sqrt{\frac{(x-1)}{3}}$	function: yes domain: $[1, \infty)$ range: $[0, \infty)$
f'(x)=	$\sqrt{\frac{(x-1)}{3}}$	domain: [1, ∞)

inverse relation:

inverse function:

$$y = \pm \sqrt{\frac{(x-1)}{3}}$$

function: no domain: [1, ∞) range: all real numbers

check answer:

$$3\sqrt{\frac{(x-1)}{3}}^{2} + 1 = \sqrt{\frac{3(x-1)}{3}} + 1 = x \sqrt{\frac{3x^{2} + 1) - 1}{3}} = \sqrt{\frac{3x^{2}}{3}} = x \sqrt{\frac{3x^$$

$$\sqrt{\frac{(3x^2+1)\cdot 1}{3}} = \sqrt{\sqrt{\frac{3x^2}{3}}} = x$$

Review: Functions vs. Relations

Relation: a set containing pairs of related numbers.

Function: a relation where for each X value there is only ONE Y value.

(on the graph)

A "vertical line test" can determine if the set of pairs is a function. (If you can draw a vertical line through 2 or more points, then it is NOT a function)

Similarly, you can use the "horizontal line test" to determine if the inverse is a function. (If you can draw a horizontal line through 2 or more points, then the inverse is NOT a function)

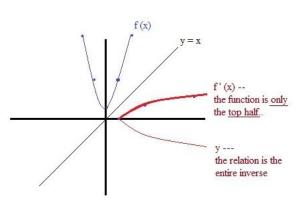
(inverse)

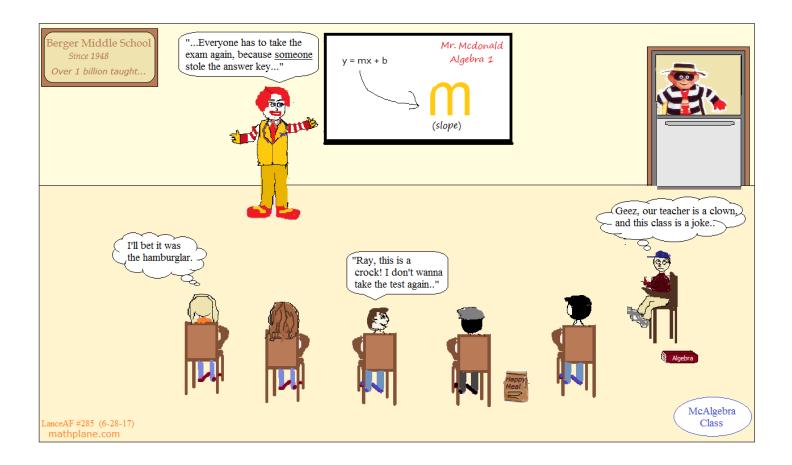
x	f'(x)
(28)	(-3)
(13)	(-2)
(4)	(-1)
1	0
4	1
13	2
28	3

f(x)

13 4

13

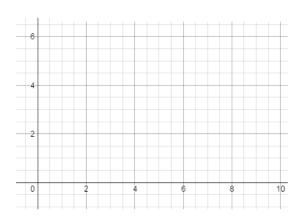




Exercises-→

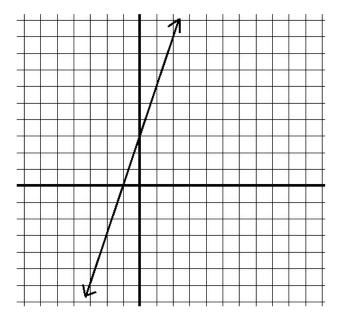
Domain, Range, and Inverse Functions

- 1) For the function $h(x) = \sqrt{3x 4}$
 - a) find the inverse $h^{-1}(x)$
 - b) what is the domain of h(x)? the range of h(x)?
 - c) what is the domain of $h^{-1}(x)$? the range of $h^{-1}(x)$?
 - d) Graph the function h(x), the inverse $h^{-1}(x)$, and the line y = x



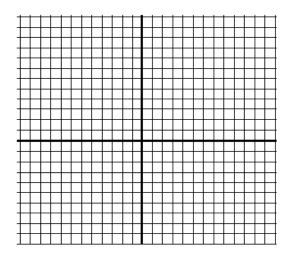
2) Graph the inverse:

Then, verify the results algebraically...



3) $g(x) = \sqrt[3]{(x-1)}$

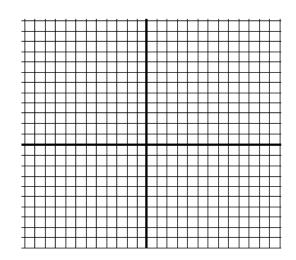
a) Sketch the function g(x)



b) Find the inverse of g(x)

c) What is the domain and range of $g^{-1}(x)$?

d) Graph $\neg(g(x))$



4) If f(x) = 5 - 2x, what is $f^{-1}(3)$?

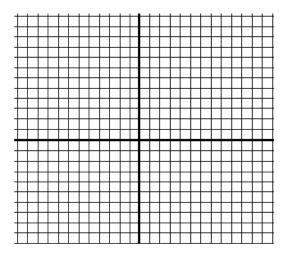
Domain, Range, and Inverse Functions

5)
$$f(x) = x^2 + 6$$

- a) Find the inverse $f^{-1}(x)$
- b) Verify the inverse -- find $f(f^{-1}(x))$ and $f^{-1}(f(x))$

c) What is the domain and range of f(x)? Of $f^{-1}(x)$? Are the "inverses" one-to-one?

d) Graph f(x) and $f^{-1}(x)$



a)

f(x)

 $f^{-1}(x)$

(-∞ ,∞) Domain

[8, 200]

Range

(5, 0)

(+2, 0)

y-intercept

x-intercept

additional point (14, -1)

b)

f(x)

 $f^{-1}(x)$

(+∞ ,∞) Domain

Range

[11, ∞)

x-intercept

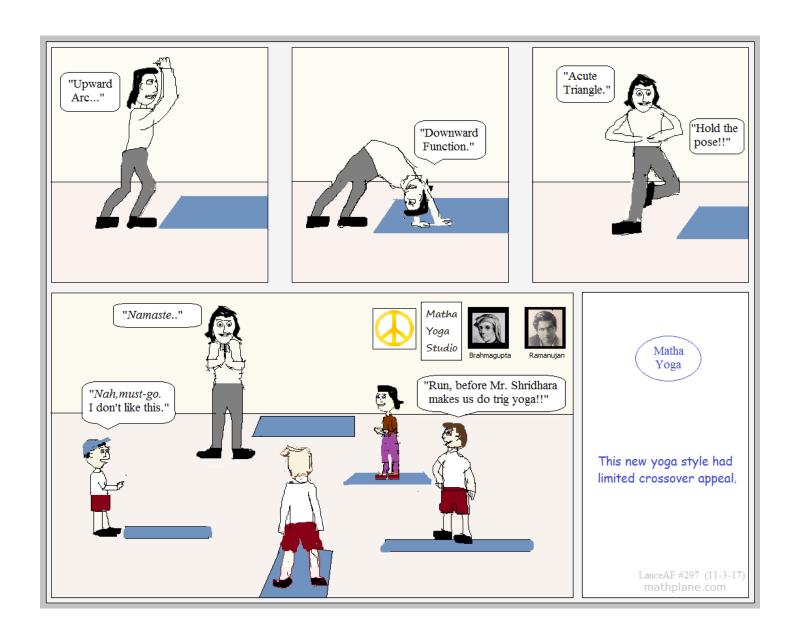
(4, 0)

y-intercept

(0, 7)

additional point (7, 15)

⁷⁾ For the one-to-one function $f(x) = (x-3)^2 + 5$ where $x \le 3$ find $f^{-1}(x)$



SOLUTIONS -→

SOLUTIONS

- 1) For the function $h(x) = \sqrt{3x 4}$
 - a) find the inverse $h^{-1}(x)$

for
$$y = /\sqrt{3x - 4}$$
 switch the x and y... $3y = x^2 + 4$ $y = \frac{x^2 + 4}{3}$ $x^2 = 3y - 4$ then, solve for y... $y = \frac{x^2 + 4}{3}$ $h^{-1}(x) = \frac{x^2 + 4}{3}$

- where $x \ge 0$

("restrict the domain" to make the functions 1 to 1)

b) what is the domain of h(x)? the range of h(x)?

(no negatives under a radical) domain:
$$x \ge \frac{4}{3}$$

range: $h(x) \ge 0$

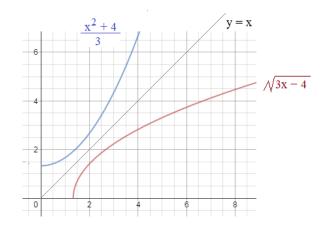
c) what is the domain of $h^{-1}(x)$? the range of $h^{-1}(x)$?

$$h^{-1}(x) = \frac{x^2 + 4}{3}$$
 domain: $h(x) \ge 0$

Notice: the domain of h(x) is the range of $h^{-1}(x)$ and, the range of h(x) is the domain of $h^{-1}(x)$

where $x \ge 0$ range: $x \ge \frac{4}{3}$

d) Graph the function h(x), the inverse $h^{-1}(x)$, and the line y = x



2) Graph the inverse.

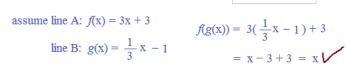
Then, verify the results algebraically...

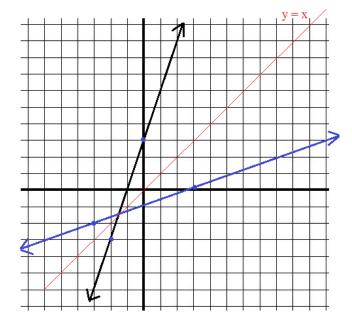
method 1: since it is a line, the inverse will be a line.. therefore, we need just 2 points! ---> pick two points and "flip the coordinates"...

then, draw a line throught the points...

method 2: the equation of the line is y = 3x + 3

find the inverse: x = 3y + 33y = x - 3 $y = \frac{x - 3}{3}$ solve for y $y = \frac{1}{3}x - 1$





3)
$$g(x) = \sqrt[3]{(x-1)}$$

SOLUTIONS

Domain, Range, and Inverse Functions

a) Sketch the function g(x)

note: this is
$$\sqrt[3]{x}$$
 shifted one unit to the right

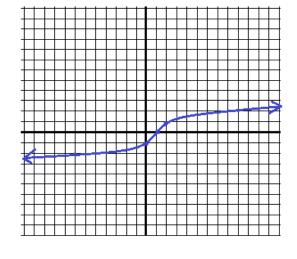
X	g(x)
-26	-3
-7	-2
0	-1
1	0
2	1
9	2
28	3

b) Find the inverse of g(x)

$$y = (x - 1)^{\frac{1}{3}}$$
 write in exponential form; switch x and y
$$x = (y - 1)^{\frac{1}{3}}$$
 solve for y

$$x^3 = y - 1$$
 $y = x^3 + 1$

$$y = x^3 + 1$$



$$g^{-1}(x) = x^3 + 1$$

c) What is the domain and range of $g^{-1}(x)$?

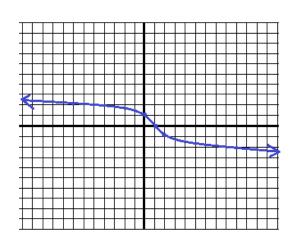
domain and range: all real numbers

d) Graph $\neg(g(x))$

$$-g(x) = -\sqrt[3]{(x-1)}$$

note: graph is 'opposite' image of above graph --- it is *reflected over the x-axis*

X	g(x)	-g(x)
-26	-3	3
-7	-2	2
0	-1	1
1	0	0
2	1	-1
9	2	-2
28	3	-3



4) If f(x) = 5 - 2x, what is $f^{-1}(3)$?

$$5 - 2x = 3$$
 $x = 1$

f(1) = 3 So, the inverse (reverse the coordinate) is (3, 1)

answer: 1

Domain, Range, and Inverse Functions

SOLUTIONS

5)
$$f(x) = x^2 + 6$$

a) Find the inverse $f^{-1}(x)$ $y = x^2 + 6$ (switch the x and y) note: since it is a function, the output is only $+ \sqrt{(\text{and not } -)}$ $y^2 = x - 6$ $y = \sqrt{x - 6}$ $f^{-1}(x) = \sqrt{x - 6}$

b) Verify the inverse -- find $f(f^{-1}(x))$ and $f^{-1}(f(x))$

$$f(\sqrt{x-6}) = (\sqrt{x-6})^{2} + 6 \qquad f^{-1}(x^{2}+6) = \sqrt{(x^{2}+6)-6}$$

$$= (x-6)+6 \qquad = x \qquad = x$$

c) What is the domain and range of f(x)? Of $f^{-1}(x)$? Are the "inverses" one-to-one?

$$f(\mathbf{x}) = \mathbf{x}^2 + 6$$

domain: all real numbers range: $f(x) \ge 6$

since domain of f(x) and range of $f^{-1}(x)$ are different, functions are not 1-to-1

d) Graph f(x) and $f^{-1}(x)$

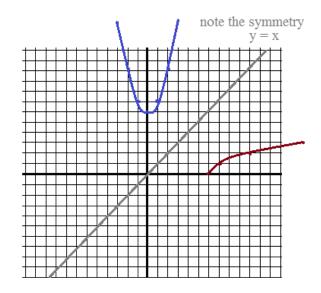
X	<i>f</i> (x)	X	$f^{-1}(\mathbf{x})$
-3 -2 -1 0 1 2 3	15 10 7 6 7 10	15 10 7 6 7 10 15	-3 2 1 0 1 2 3
3	15	22	4

note: the ordered pairs are reversed!

$$f^{-1}(\mathbf{x}) = \sqrt{\mathbf{x} - 6}$$

domain: $x \ge 6$ (if x < 6, then negative under the radical sign)

range: $y = f^{-1}(x) \ge 0$ (the opposites are omitted to preserve the function)



f(x)

 $f^{-1}(x)$

Domain $(+\infty, \infty)$

[8, 200]

Range

[8, 200]

(-∞ , ∞)

x-intercept

(5, 0)

(+2, 0)

y-intercept

Range

(0, -2)

(0, 5)

additional point (14, -1)

(-1, 14)

SOLUTIONS

.

Remember, the domain and range swap places.. (each individual point reflects over y = x)

Domain
$$(+\infty, \infty)$$

$$f^{-1}(x)$$

7) For the one-to-one function
$$f(x) = (x-3)^2 + 5$$
 where $x \le 3$ find $f^{-1}(x)$

domain of
$$f(x)$$
: $(-\infty, 3]$

range of f(x): [5, ∞)

so, the domain of f^{-1} (x): [5, ∞)

the range of f^{-1} (x): $(-\infty, 3]$ must restrict the range to the negative values!

 $x = (y-3)^2 + 5$

$$x - 5 = (y - 3)^2$$

$$\frac{+}{\sqrt{x-5}} = y-3$$

$$y = \frac{+}{\sqrt{x-5}}$$

$$y = \sqrt{x-5} + 3$$

mathplane.com

Inverses Application: Cryptography

Suppose we want to send a secret message (using an algebraic function/code)

We could establish a 1-1 function for the translation...

Example: f(x) = 3x + 7 where x is a number representing a letter in the alphabet...

$$A = 1$$

$$B = 2$$

$$C = 3$$

If we want to send the letter A, we would find f(1) = 3(1) + 7 = 10 and send "10"

Then, how would the receiver decode the message?

The receiver would input the number into the inverse function!

Find the inverse:
$$x = 3y + 7$$

$$3y = x - 7$$

$$y = \frac{x - 7}{3}$$
 To decode the message, use $f^{-1}(x) = \frac{x - 7}{3}$
$$f^{-1}(10) = \frac{10 - 7}{3} = 1$$
 "A"

Again, this works effectively (accurately), because it's a 1-1 function...

a) If I want to send the message "help", what number sequence would I send?

h ---> 8
$$f(8) = 31$$

e ---> 5 $f(5) = 22$
1 ---> 12 $f(12) = 43$
p ---> 16 $f(16) = 55$

b) If I received a message with the sequence 46, 10, 67, 31, what would it be?

$$f^{-1}(46) = 13 ---> m$$

$$f^{-1}(10) = 1 ---> a$$

$$f^{-1}(67) = 20 ---> t$$

$$f^{-1}(31) = 8 ---> h$$
 $f^{-1}(31) = 8 ---> h$

mathplane.com

Finding Inverse Functions

Example: Find the inverse of $f(x) = \frac{2x+5}{x-7}$

To check the answer:
$$f(f^{-1}(x)) = x$$
 or $f \circ f^{-1} = x$

$$\frac{2(\frac{7x+5}{x-2})+5}{(\frac{7x+5}{x-2})-7} = \frac{\frac{14x+10+5x-10}{x-2}}{\frac{7x+5-7x+14}{x-2}} = \frac{19x}{19} = x$$

Example: Find the inverse of $y = \frac{1+3x}{5-2x}$

"flip/change the x and y"
$$x = \frac{1+3y}{5-2y}$$
"solve for y" (cross multiply and simplify)
$$5x - 2xy = 1+3y$$

$$5x - 1 = 3y + 2xy$$

$$5x - 1 = y(3+2x)$$

$$y = \frac{5x-1}{2x+3}$$

Check:
$$\frac{1+3(\frac{5x-1}{2x+3})}{5-2(\frac{5x-1}{2x+3})} = \frac{\frac{2x+3+15x-3}{2x+3}}{\frac{10x+15-10x+2}{2x+3}} = \frac{17x}{17} = x$$

Example: Find the inverse: $y = x^2 + 2x$

$$x = y^2 + 2y$$

$$0 = y^2 + 2y - x$$

Use quadratic formula to find what y equals...

$$y = \frac{-2 + \sqrt{(2)^2 - 4(1)(-x)}}{2(1)}$$

$$=\frac{-2}{2} + \sqrt{4 + 4x}$$

$$= \frac{1}{1+\sqrt{1+x}}$$

Example: $y = x^2 + 8x + 5$

complete the square

$$y + 16 = x^2 + 8x + 16 + 5$$

$$y + 16 = (x + 4)^2 + 5$$

$$y = (x+4)^2 - 11$$

$$x = (y+4)^2 - 11$$

$$x + 11 = (y + 4)^2$$

$$y + 4 = \pm \sqrt{x + 11}$$

$$y = \pm \sqrt{x+11} - 4$$

Example:
$$y = x^2 + 7x + 12$$

$$x = y^2 + 7y + 12$$

$$0 = y^2 + 7y + (12 - x)$$

quadratic formula

find inverse

$$y = \frac{-7 + \sqrt{49 - (4)(1)(12 - x)}}{2}$$

$$-7 + \sqrt{49 - 48 + 4x}$$

$$y = \frac{-7 + \sqrt{49 + 48 + 4x}}{2}$$

$$y = \frac{-7}{2} + \sqrt{\frac{1+4x}{2}}$$

$$y = \frac{-7}{2} + \sqrt{4 \cdot (1/4 + x)}$$

$$y = \frac{-7}{2} + 2 / \sqrt{(1/4 + x)}$$

$$y = \frac{-7}{2} + \sqrt{(1/4 + x)}$$

random check: if x = 1, then y = 20

if
$$x = -8$$
, then $y = 20$

inverse: if x = 20, then y = 1 (or, -8)

$$y = 2x^3 + 1$$

Finding Inverse Functions

$$f^{-1}(x) =$$

$$f \circ f^{-1}(128) =$$

$$x = 2y^3 + 1$$

$$\frac{x-1}{2} = y^3$$

$$f^{-1}(x) = \sqrt[3]{\frac{x-1}{2}}$$

If f(x) and $f^{-1}(x)$ are inverses, then the composite is x

therefore,
$$f \circ f^{-1}(128) = 128$$

Example: Find the inverse of $\sqrt{x+7} - 3$

$$y = \sqrt{x+7} - 3$$

flip variables

$$x = \sqrt{y+7} - 3$$

solve for y

$$x + 3 = \sqrt{y + 7}$$

$$(x+3)^2 = y+7$$

$$y = (x + 3)^2 - 7$$

Now we must restrict the domain!

$$f(x) = \sqrt{x+7} - 3$$
 domain: $[-7, +\infty)$ range: $[-3, +\infty)$

$$f^{-1}(x) = (x+3)^2 - 7$$
 domain: [-3, + ∞) range: [-7, + ∞)

Therefore, the inverse is $(x + 3)^2 - 7$ where x > -3

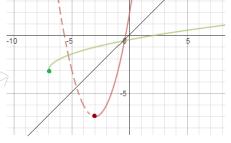
domain and range switch!

Note: the inverses reflect over y = x

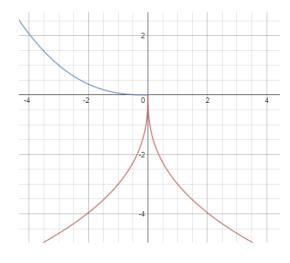
Also,
$$f(f^{-1}(x)) = x$$

$$f^{-1}(f(x)) = x$$

 $f^{-1}(f(x)) = x$



Graph and find the inverse



Since this graph fails the "horizontal line test", the inverse is not a function...

$$v = -3v \frac{2}{5}$$

$$\left(\frac{-1}{3} x\right)^{\frac{5}{2}} = y$$

NOTE: the inverse does not exist for positive numbers!

ex: if
$$x = 1$$
, then $y = (-1/3)^{\frac{5}{2}}$ DNE

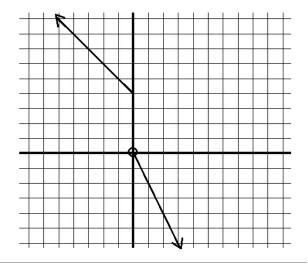
Therefore, the inverse does not exist UNLESS you restrict the domain...

(to
$$x \ge 0$$
)

$$f(x) = \begin{cases} -x + 4 & \text{if } x \le 0 \\ -2x & \text{if } x > 0 \end{cases}$$

Note: the function satisfies the vertical and horizontal line tests, so it is a 1-to-1 function..

What is f(3)? f(-3)? $f^{-1}(6)$?



ANSWERS...

Take the first half of the piecewise

$$v = -x + 4$$

function...

"flip the x and y"

$$x = -y + 4$$

then,

solve for y...

$$y = -x + 4$$

since the domain is $(-\infty\;,\,0]\;$ and range is [4, $\,\infty\;)$

since the domain is (-\omega, 0) and range is [4, \omega)

the inverse domain is $[4, \infty)$ and the inverse range is $(-\infty, 0]$

Now, take the second half of

$$v = -2x$$

the piecewise

$$y = -2$$

function...

"flip the x and y"

$$x = -2y$$

then, solve for y...

$$y = -\frac{1}{2} x$$

since the domain is $(0, \infty)$ and range is $(-\infty, 0)$

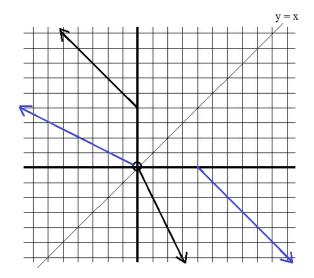
the inverse domain is $(-\infty, 0)$ and the inverse range is $(0, \infty)$

What is f(3)? Using the graph or the functions themselves....

$$f(-3)$$
? $f(3) = -6$

$$f^{-1}(6)$$
? $f(-3) = 7$

$$f^{-1}(6) = -2$$
 note: $f(-2) = 6$



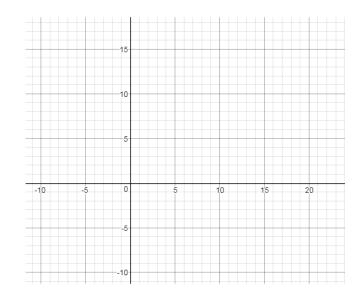
$$f^{-1}(x) = \begin{cases} -\frac{1}{2}x & \text{if } x < 0 \\ -x + 4 & \text{if } x \ge 4 \end{cases}$$

$$f(x) = 1 + \sqrt{x+1}$$

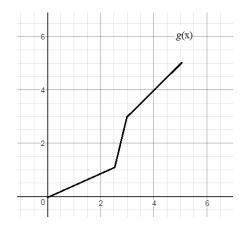
2)
$$f(x) = 3x + 7$$

What is $f^{-1}(16)$?

Sketch f(x) and its inverse...



3) Given the graph of g(x), sketch $g^{-1}(x)$



4) Find the inverse:
$$y = +5$$
 $x + 2$ -7

Inverses Exercises

5) Find the inverse of the quadratic
$$y = x^2 + 6x + 9$$

6)
$$f(x) = (x-2)^2 + 3$$
 for $x \le 2$

find $f^{-1}(x)$ where f(x) and $f^{-1}(x)$ are one-to-one...

1) Find the inverse function.... (You may need to restrict the domain.)

$$f(x) = 1 + \sqrt{x+1}$$

"switch the x's and y's"

$$x = 1 + \sqrt{y+1}$$

then, solve for y

$$x+1 = \sqrt{y+1}$$

$$(x+1)^2 = y+1$$

$$y = (x-1)^2 + 1$$

Since the range of f(x) is $[1, \infty)$

the domain of $f^{-1}(x)$ is also $[1, \infty)$

restrict the domain...

$$f^{-1}(x) = (x-1)^2 + 1$$

where $x \ge 1$

2)
$$f(x) = 3x + 7$$

What is $f^{-1}(16)$?

$$f(a) = 16$$
 when $f^{-1}(16) = a$

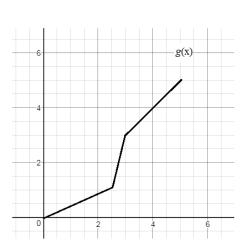
if
$$f(a) = 16$$
, then $3a + 7 = 16...$

so,
$$a = 3$$

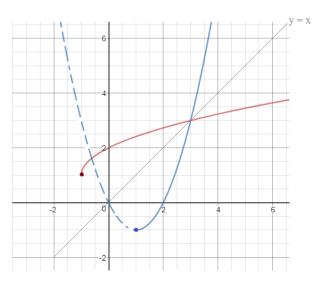
Sketch f(x) and its inverse...

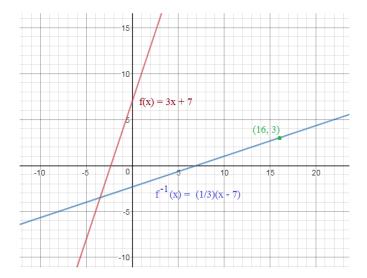
3) Given the graph of g(x),

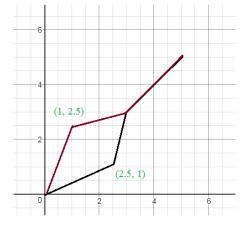
sketch $g^{-1}(x)$



("flip the x and y coordinates")







4) Find the inverse:
$$y = +5$$
 $x + 2$ $y = -7$

$$x = -5^{y+2} - 7$$

SOLUTIONS

Inverses Exercises

$$x + 7 = -5^{y+2}$$

$$-(x+7) = 5^{y+2}$$

$$\log_5 (-x - 7) = y + 2$$

$$y = \log_5 (-x - 7) + 2$$

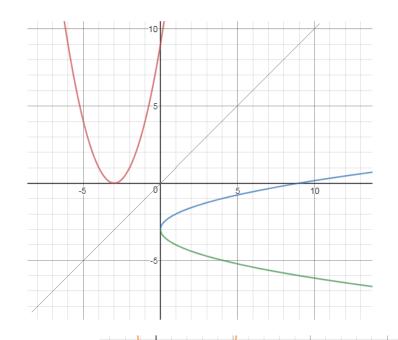
5) Find the inverse of the quadratic $y = x^2 + 6x + 9$

$$x = y^2 + 6y + 9$$

$$x = (y+3)^2$$
 perfect square

$$\frac{+}{\sqrt{x}} = y + 3$$

$$y = -3 + \sqrt{x}$$



6) $f(x) = (x-2)^2 + 3$ for $x \le 2$

find $f^{-1}(x)$ where f(x) and $f^{-1}(x)$ are one-to-one...

f(x) domain: $x \le 2$

$$x = (y-2)^2 + 3$$

range: $x \ge 3$

$$x - 3 = (y - 2)^2$$

$$\frac{+}{-}\sqrt{x-3}=(y-2)$$

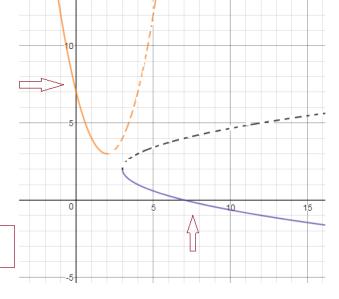
$$y = 2 \pm \sqrt{x-3}$$

domain must be $x \ge 3$

and

range must be $x \le 2$

so, $y = 2 - \sqrt{x-3}$

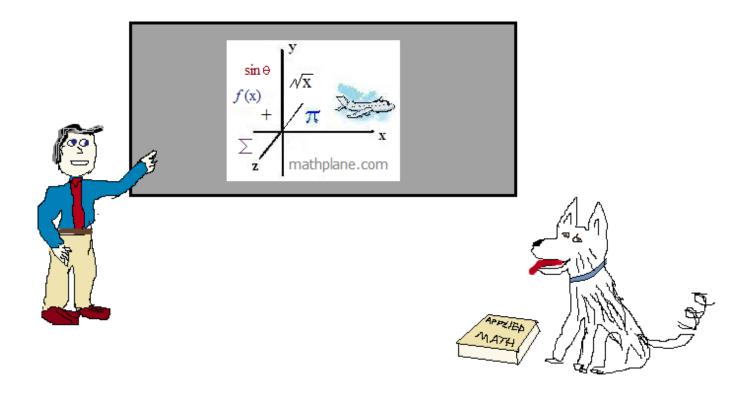


mathplane.com

Thanks for visiting! (Hope it helps)

If you have questions, suggestions, or requests, let us know.

Cheers



Also, at mathplane.ORG for mobile...

And, find our stores at TeachersPayTeachers and TES.