Variable Exponents & Higher Roots

Notes, Examples, and Practice Questions

Topics include rational exponents, exponential equations, using absolute value, negative exponents, and more.

Look for common exponent....

Example: 7³•3⁶

$$7^3 \cdot (3^2)^3 = 7^3 \cdot 9^3 = 63^3$$

Look for common base....

Example: 3 6 9 7

$$9^3 \cdot 9^7 = 9^{10}$$

Note:

Simplify the following

Sometimes using exponent form is better Example:

$$\sqrt[3]{7} \cdot \sqrt{7} = 7^{1/3} \cdot 7^{1/2} = 7^{5/6}$$

Sometimes using root form is better

Example:

$$\frac{90^{1/2}}{1/2} \qquad \qquad \frac{\sqrt{90}}{\sqrt{10}} = \sqrt{9} = 3$$

Example:

$$\sqrt{4 \left(\frac{c}{32b^3} \right)^4 \left(\frac{c}{2b^3} \right)^4} = \sqrt{4 \left(\frac{c}{2b^3} \right)^4} = \frac{\sqrt{4} \left(\frac{c}{2b^3} \right)^4}{2b^3} = \frac{1}{2} \sqrt{4 \left(\frac{c}{2b^3} \right)^4} =$$

$$\cdot \frac{\sqrt{\sqrt[4]{2^3 b}}}{\sqrt{\sqrt[4]{2^3 b}}} = -\frac{\sqrt{\sqrt{2^3 b}}}{\sqrt{2^3 b}}$$

But, wait!! it should be

why the absolute value?

Applying an absolute value to simplified expression

suppose b = -3 and c = -5

$$\sqrt{4\sqrt{\frac{-5}{32(-27)}}}$$

original

1st simplified

correction

(positive value)

this is not equivalent because it is negative! (positive value)

1)
$$\sqrt[3]{6} \cdot \sqrt{2}$$

2)
$$\sqrt[3]{ab^2} \cdot \sqrt{ab}$$

3)
$$\sqrt[3]{x+y} \cdot \sqrt[4]{(x+y)^2}$$

 $\sqrt[4]{(x+y)^3}$

4)
$$\sqrt[3]{3}$$
 $\sqrt[3]{25m}$

$$\begin{array}{c}
5) & \sqrt[3]{9} \\
\hline
2 + \sqrt[4]{9}
\end{array}$$

6)
$$\sqrt{4/x^6 y^4 z^3}$$

7)
$$\sqrt[5]{x} \cdot \sqrt[4]{x}$$

8)
$$2 + \sqrt[5]{2}$$
 $\sqrt[5]{9}$

9)
$$\sqrt[3]{16x^5 y^{-2}}$$

10)
$$\sqrt{\frac{3}{9^2 \cdot 81^{-1}}}$$

11)
$$\frac{\sqrt[3]{4}}{\sqrt[5]{8}}$$

12)
$$\sqrt[5]{x}$$
 $\sqrt[3]{x^4}$

3) $\sqrt[5]{128}$

6) $\sqrt{\frac{}{363}}$

Write any and all solutions:

$$x^{\frac{3}{5}} = -27$$

$$x^{\frac{2}{3}} = 49$$

$$x^{\frac{4}{3}} = -16$$

$$x^{\frac{3}{2}} = 8$$

$$\frac{3}{x^{4}} = -8$$

Solve for x...

1)
$$3^{3x} = 9$$

4)
$$\sqrt{125} = 5^{7x+2}$$

2)
$$4^{3x-1} = 8^{2x+7}$$

5)
$$3 \cdot 9^{X+2} = \sqrt{27}$$

$$\begin{array}{c} 3) & \frac{x}{16} \\ \hline & \frac{16}{4} \end{array} = 8^{6x}$$

6)
$$8^{x+3} = \frac{1}{32}$$

1)
$$\sqrt[3]{\frac{1}{24x^6y^7z^8}}$$

2)
$$\sqrt[4]{32p^4r^8s^9}$$

3)
$$\frac{7}{\sqrt{5/8x^3y^5z^7}}$$

4)
$$\left\langle \frac{9a^3b^2c}{16a^{-3}b^4c} \right\rangle (-1/2)$$

5)
$$\frac{\sqrt[3]{500a^4b^2c}}{(2a^{-3}b^5c^7)^{1/3}}$$

7)
$$\sqrt{4 \left(\frac{x^3 y^2 z^{-1}}{8x^{-1} y^{-5} z} \right)^{(3/2)}}$$

8)
$$(16x^4y^6z^{-8})^{(3/2)}$$

$$10) \frac{\sqrt{x} + 9}{\sqrt{x} - 9}$$

$$11) \qquad 5 \qquad \qquad 8+i$$

$$12) \quad \frac{3-2i}{4+i}$$

13)
$$\sqrt[3]{-16\text{m}^7 \text{ p}^6 \text{ q}^{-2}}$$

14)
$$(81x^5y^{-7}z^9)^{(2/3)}$$

15)
$$\frac{\sqrt[3]{\frac{16a^2b}{16a^3b^4}}}{\sqrt[5]{\frac{8a^3b^4}{16a^2b}}}$$

Solve (and assume variables may be positive OR negative)

1)
$$(4x)^{-2} = 100$$

2)
$$x - 3x^{\frac{1}{2}} = 4$$

3)
$$\frac{3}{x^4} = 2$$

3)
$$\frac{3}{x^4} = 27$$
 4) $\frac{3}{x^4} = -27$

5)
$$4^X - 2^X - 2 = 0$$

6)
$$(3^{x})^{x-5} = 1$$

$$7) \quad \frac{A^2}{A^2} = A^3 \cdot A^{-x}$$

5)
$$4^{x} - 2^{x} - 2 = 0$$
 6) $(3^{x})^{x-5} = 1$ 7) $\frac{A^{2}}{A^{-x}} = A^{3} \cdot A^{-x}$ 8) $\frac{7^{-3x+2}}{343^{x}} = 49^{-2x-1}$

9)
$$\frac{2}{x + 7x^{3} + 10x^{3}} = 0$$

$$10) \quad 5^{X} + 125(5^{-X}) = 30$$

11)
$$\left(\frac{7^{4x-3}}{7^{2x-3}}\right)^{x-7} = 1$$

9)
$$\frac{2}{x + 7x^{\frac{3}{4}} + 10x^{\frac{3}{4}}} = 0$$
 $10)$ $5^{x} + 125(5^{-x}) = 30$ $11)$ $\left(\frac{7}{4x-3}\right)^{x-7} = 1$ $12)$ $\frac{-1}{x^{\frac{2}{4}} + 2x^{\frac{1}{2}} + x^{\frac{3}{2}}} = 0$

A) Solve the system

$$3^X - 2^Y = 23$$

$$3^{x+1} + 2^{y+1} = 89$$

B) Write as b^n , where b and n are positive integers...

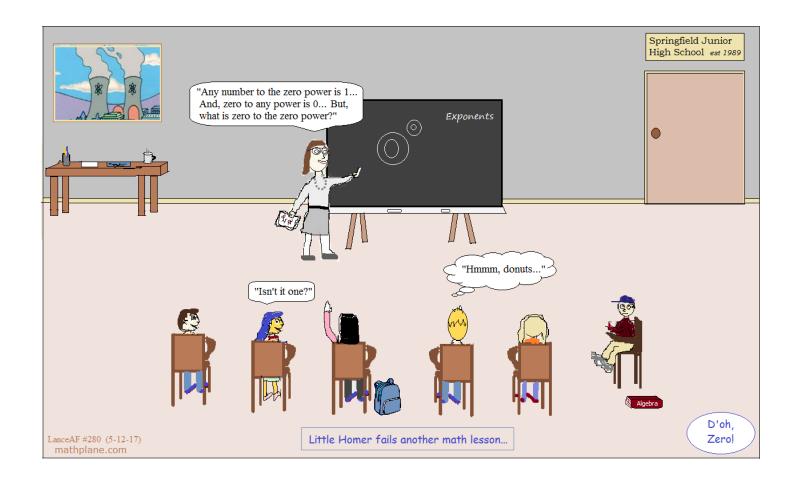
$$4^3 \cdot 5^2 =$$

C) Simplify. (Assume variables are negative or positive).

$$\sqrt[4]{\frac{c^2}{24a^3c^{-2}}}$$

D) Evaluate...

$$\left(\frac{4}{9}\right)^{\frac{2}{3}} =$$



SOLUTIONS-→

(assume positive OR negative variables)

SOLUTIONS

1) $\sqrt[3]{6} \cdot \sqrt{2}$

$$6^{\frac{1}{3}} \cdot 2^{\frac{1}{2}}$$

$$\frac{2}{6^{6}}$$
, $2^{\frac{3}{6}}$

$$\sqrt[6]{6^2} \cdot \sqrt[6]{2^3} = \sqrt[6]{288}$$

 $\sqrt[3]{ab^2} \cdot \sqrt{ab}$

$$(ab^2)^{\frac{1}{3}} \cdot (ab)^{\frac{1}{2}}$$

$$(ab^2)^{\frac{2}{6}} \cdot (ab)^{\frac{3}{6}}$$

$$\sqrt[6]{a^2 b^4} \cdot \sqrt[6]{a^3 b^3}$$

$$\sqrt[6]{a^5b^7}$$

$$|b|/\sqrt[6]{a^5b}$$

$$\frac{\sqrt[3]{3}}{\sqrt[3]{5 \cdot 5 \cdot m}} \cdot \frac{\sqrt[3]{5m^2}}{\sqrt[3]{5m^2}}$$

$$\frac{\sqrt[3]{15m^2}}{5m}$$

5) $\frac{\sqrt[3]{9}}{2 + \sqrt[4]{9}} \cdot \frac{2 - \sqrt[4]{9}}{2 - \sqrt[4]{9}}$

$$\frac{\frac{1}{3}}{9} \cdot \frac{\frac{1}{4}}{9} = 9^{7/12}$$
$$= \sqrt{\frac{12}{9}}$$

 $\frac{1}{9^{3}} \cdot \frac{1}{9^{4}} = 9^{7/12}$ $= \sqrt{12 \frac{7}{9^{7}}}$ $= \sqrt{12 \frac{7}{9^{7}}}$ $\frac{2 \sqrt{3} - \sqrt{12 \frac{7}{9^{7}}}}{4 - \sqrt{4} \sqrt{81}}$ $= \sqrt{12 \frac{7}{9^{7}}}$ $2 \sqrt{3} - \sqrt{12 \frac{7}{9^{7}}}$ $2 \sqrt{3} - \sqrt{12 \frac{7}{9^{7}}}$

7) \sqrt{5\overline{x} \cdot \sqrt{4/x}}

$$\frac{1}{x^{5}} \cdot x^{\frac{1}{4}}$$

$$\frac{1}{x^{\frac{1}{4}}} + \frac{1}{x^{\frac{1}{4}}}$$

 $\frac{1}{x^{5}} + \frac{1}{4}$

 $\frac{9}{x^{20}}$

$$\frac{2 + \sqrt[5]{2}}{\sqrt[5]{3 \cdot 3}} \cdot \frac{\sqrt[5]{3 \cdot 3 \cdot 3}}{\sqrt[5]{3 \cdot 3 \cdot 3}}$$

$$\frac{2\sqrt[5]{27} + \sqrt[5]{54}}{3}$$

 $\sqrt{\frac{3}{27}} \frac{27^5}{9^2 \cdot 81^{-1}}$

$$\sqrt{3 \left(\frac{(3^3)^5}{(3^2)^2 \cdot (3^3)^4} \right)^5} = \sqrt{3 \left(\frac{3^5}{3^4 \cdot 3^{-4}} \right)^{-1}}$$

$$=$$
 $\sqrt[3]{3^{15}} = 3^5 = 243$

 $\frac{\sqrt[3]{4}}{\sqrt[5]{8}} = \frac{\frac{1}{3}}{\frac{1}{8^{\frac{1}{5}}}} = \frac{(2^2)^{\frac{1}{3}}}{2^3}$

$$\frac{\frac{2}{2^{3}}}{\frac{3}{2^{3}}} = 2^{\frac{2}{3} - \frac{3}{5}}$$

3) $\sqrt[3]{(x+y)} \cdot \sqrt[4]{(x+y)^2}$

$$\frac{(x+y)^{\frac{1}{3}} \cdot (x+y)^{\frac{2}{4}}}{(x+y)^{\frac{3}{2}}}$$

$$(x+y)^{\frac{1}{3}} + \frac{2}{4} - \frac{3}{2} = (x+y)^{\frac{-2}{3}} = \frac{\sqrt[3]{(x+y)}}{(x+y)}$$

6) $\sqrt{\frac{4}{x^6} y^4 z^3}$

$$\sqrt{\frac{4}{x^4 \cdot x^2 \cdot y^4 \cdot z^3}}$$

$$|x||y|/\sqrt{x^2y^3}$$

9) $\sqrt{3/16x^5 y^{-2}} = \frac{\sqrt{3/8 \cdot 2 \cdot x^3} x^2}{\sqrt{3/y^2}}$

then, rationalize denominator...

$$\frac{2x\sqrt[3]{2x^2}}{\sqrt[3]{y^2}}\cdot \frac{\sqrt[3]{y}}{\sqrt[3]{y}}$$

$$\begin{array}{c}
2x \sqrt[3]{2x^2y} \\
y
\end{array}$$

$$\frac{\sqrt[5]{x^3}}{\sqrt[7]{x^4}} = \frac{\frac{3}{x^5}}{\frac{4}{x^7}}$$

Simplify the radicals...

1)
$$\sqrt{\frac{5}{-64}}$$
 $\sqrt{\frac{5}{32}} \cdot \sqrt{\frac{5}{2}}$

4)
$$\sqrt[4]{162}$$

4)
$$\sqrt[4]{162}$$
 $\sqrt[4]{2 \cdot 81} = \boxed{3 \sqrt[4]{2}}$

$$-2 \sqrt[5]{2}$$

2)
$$\sqrt{\frac{3}{375}}$$

$$\sqrt{3/125} \cdot \sqrt{3/3}$$

5)
$$\sqrt[3]{192}$$

2)
$$\sqrt[3]{375}$$
 $\sqrt[3]{125} \cdot \sqrt[3]{3}$ 5) $\sqrt[3]{192}$ $\sqrt[3]{3 \cdot 64} = 4\sqrt[3]{3}$

3)
$$\sqrt{\frac{5}{128}}$$
 $\sqrt{\frac{5}{2}}$

6)
$$\sqrt{363}$$
 $\sqrt{3 \cdot 121} = 11/\sqrt{3}$

 $2\sqrt{5/2} = 2\sqrt{5/4}$

SOLUTIONS

Write any and all solutions:

$$x^{\frac{3}{5}} = -27$$

-243

odd radicals can have negatives

$$x^{\frac{2}{3}} = 49$$

343, -343

$$x^{\frac{4}{3}} = -16$$

no solution

any value to the 4th power will be positive

$$x^{\frac{3}{2}} = 8$$

4 (-4 is NOT a solution)

$$\frac{3}{x^4} = -8$$

(If you check, you'll see that neither 16 nor -16 are solutions)

Solve for x...

Find common roots (bases).. Then, drop bases to solve...

1)
$$3^{3x} = 9$$

$$3x = 3$$

$$x = 2/3$$

6x - 2 = 6x + 21 no solution

1)
$$3^{3x} = 9$$
 $3^{3x} = 3$ $x = 2/3$ $x = 2/3$

4)
$$\sqrt{125} = 5^{7x+2}$$
 $5^{1} \cdot \frac{1}{5^{2}} = 5^{7x+2}$ $x = \frac{3}{2} = 7x+2$

$$5^{1} \cdot \frac{1}{5^{2}} = 5^{7x + 2}$$

$$\frac{3}{2} = 7x + 2$$

$$x = \frac{-1}{14}$$

2)
$$4^{3x-1} = 8^{2x+7}$$
 $2^{6x-2} = 2^{6x+21}$

5)
$$3 \cdot 9^{x+2} = \sqrt{27}$$
 $3 \cdot 3^{2x+4} = \frac{3}{3^2}$

$$\frac{1}{3 \cdot 3} 2x + 4 = \frac{3}{2}$$

$$3 \cdot 3^{2X+4} = 3^{2}$$

$$2X+5 = \frac{3}{2}$$

$$2x+5 = \frac{3}{2}$$

$$x = \frac{-7}{4}$$

3)
$$\frac{16^{x}}{4^{3x}} = 8^{6x} \frac{2^{4x}}{6x} = 18x$$

$$2^{-2x} = 2^{18x}$$

$$x = 0$$

6)
$$8^{X+3} = \frac{1}{32}$$

$$2^{3x+9} = 2^{-5}$$

$$3x + 9 = 2^{-5}$$

$$3x + 9 = -5$$

$$x = \frac{-14}{3}$$

1)
$$\sqrt[3]{\frac{24x^6y^7z^8}}$$

$$\frac{2}{3} \frac{3}{3}$$

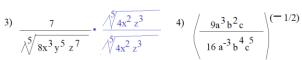
$$_{2}x^{2}\sqrt{3}/_{3}$$

$$2x^2y^2\sqrt[3]{3y}$$
 \Rightarrow $2x^2y^2z^2\sqrt[3]{3yz^2}$

2) $\sqrt[4]{32p^4r^8s^9}$ $_{2pr}^{2}s^{2}/_{2s}^{4}$

Note: if p < 0, the simplified version is not equal to expression! To correct, we'll add absolute value.

$$2|p|r^2s^2 \sqrt[4]{2s}$$



$$\frac{7\sqrt[5]{4x^2z^3}}{\sqrt[5]{32x^5y^5z^{10}}} = \underbrace{\left[\frac{7\sqrt[5]{4x^2z^3}}{2xyz^2}\right]} \left(\frac{9a^6}{16b^2c^4}\right)^{(-1/2)} \stackrel{\left(-1/2\right)}{\rightleftharpoons} \left(\frac{16b^2c^4}{9a^6}\right)^{1/2}}_{4|b|c^2}$$

8) $(16x^4y^6z^{-8})^{(3/2)}$

 $64x^6y^9z^{-12} =$

5)
$$\frac{\sqrt[3]{500a^4b^2c}}{(2a^{-3}b^5c^7)^{1/3}}$$

combine terms first... and, simplify...

$$\sqrt[3]{\frac{250a^7}{b^3c^6}} \implies \boxed{\frac{5a^2}{bc^2}}/\sqrt[3]{2a}$$

 $\frac{2\sqrt[3]{5}}{\sqrt[3]{16xy^3}} \cdot \frac{\sqrt[3]{2^2x^2}}{\sqrt[3]{2^2x^2}}$ 7) $\sqrt[4]{\frac{x^3y^2z^{-1}}{8x^{-1}y^{-5}z}}$

rationalize the denominator first..

$$\frac{2\sqrt{3} \frac{3}{20x^2}}{\sqrt[3]{3} \frac{3}{2^6 x^3 y^3}} = \frac{2\sqrt[3]{20x^2}}{4xy} = \frac{\sqrt[3]{20x^2}}{\sqrt[3]{4} \frac{3}{8z^2}} = \frac{\sqrt[4]{4z^2}}{\sqrt[4]{2z^2}}$$

$$\frac{\sqrt[4]{x^4 y^7}}{\sqrt[4]{8z^2}} \cdot \sqrt[4]{2z^2}$$

$$=\frac{\sqrt{\sqrt[4]{2x^4y^7z^2}}}{\sqrt[4]{16z^4}}=\boxed{\frac{|x|y/\sqrt[4]{2y^3z^2}}{2|z|}}$$

rationalize the denominator

$$\frac{6}{4 + \sqrt{7}} \cdot \frac{4 - \sqrt{7}}{4 - \sqrt{7}}$$

$$\frac{24 - 6\sqrt[3]{7}}{16 - 7} = \boxed{\frac{8 - 2\sqrt[3]{7}}{3}}$$

13) $\sqrt[3]{-16m^7 p^6 q^{-2}}$

simplify... and, rationalize..

$$\frac{-2m^2p^2\sqrt{\sqrt[3]{2m}}}{\sqrt[3]{q^2}} \cdot \sqrt{\sqrt[3]{q}} \sqrt[3]{q}$$

$$\frac{-2m^2p^2\sqrt{\sqrt[3]{2mq}}}{q}$$

$$\frac{\sqrt[h]{x}+9}{\sqrt[h]{x}-9} \bullet \frac{\sqrt[h]{x}+9}{\sqrt[h]{x}+9}$$

$$\frac{x + 18\sqrt{x} + 81}{x - 81}$$

14) $(81x^5v^{-7}z^9)^{(2/3)}$

$$\frac{81^{(2/3)} x^{(10/3)} z^{(18/3)}}{x^{(14/3)}} =$$

$$\frac{9x^{3}z^{6}\sqrt[3]{9x}}{y^{4}\sqrt[3]{y^{2}}} \cdot \sqrt[3]{\frac{\sqrt[3]{y}}{\sqrt[3]{y}}}$$

$$\frac{9x^{3}z^{6}\sqrt[3]{9xy}}{y^{5}}$$

Simplified form is
$$a + bi$$

$$5 \qquad 8 - i \qquad 40 - 5i$$

$$\frac{5}{8+i} \cdot \frac{8-i}{8-i} = \frac{40-5i}{64+8i-8i-i^2}$$

$$\frac{40}{65} - \frac{5}{65}i = \boxed{\frac{8}{13} - \frac{1}{13}i}$$

$$\frac{12 - 11i - 2}{16 + 1} = \boxed{\frac{10 - 11i}{17}}$$

12)
$$\frac{3-2i}{4+i} \cdot \frac{(4-i)}{(4-i)}$$

$$\frac{12-8i-3i+2i^2}{16+4i-4i-2}$$

$$\frac{12 - 11i - 2}{16 + 1} = \frac{10 - 11i}{10 - 11i}$$

15)
$$\frac{\sqrt[3]{16a^2b}}{\sqrt[5]{8a^3b^4}}$$

change to exponential form...

change to exponential form...

$$\frac{16^{(1/3)} a^{(2/3)} b^{(1/3)}}{8^{(1/5)} a^{(3/5)} b^{(4/5)}}$$

$$\frac{2^{(4/3)} a^{(10/15)} b^{(5/15)}}{2^{(3/5)} a^{(9/15)} b^{(12/15)}}$$

$$\frac{15}{2048 ab^{8}}$$

$$\frac{15}{2048 ab^{8}}$$

$$\frac{15}{2048 ab^{8}}$$

1)
$$(4x)^{-2} = 100$$

$$\frac{1}{16x^2} = 100$$

$$1 = 1600x^{2}$$

$$x^2 = \frac{1}{1600}$$

$$x = 1/40 \text{ or } -1/40$$

5) $4^X - 2^X - 2 = 0$

 $A^2 - A - 2 = 0$

(A - 2)(A + 1) = 0

A = 2 or -1

 $2^{X} = 2$ or

x = 1

2)
$$\frac{1}{x-3x^2} = 4$$

$$x-4 = 3\frac{1}{x^2}$$
 (square both sides)

$$x^2 - 8x + 16 = 9x$$

$$(x-1)(x-16) = 0$$

 $x = 1, 16$

So,
$$x = 16$$

equal
$$(2^{2})^{x} - 2^{x} - 2 = 0$$

$$(2^{x})^{2} - 2^{x} - 2 = 0$$

$$3^{x^{2} - 5x} = 3^{0}$$

$$x^2 - 5x = 0$$

$$x = 0 \text{ or } 5$$

3)
$$\frac{3}{x^{4}} = 27$$

$$\frac{\frac{4}{3}}{x^{\frac{4}{3}}} = 27$$

$$x = 81$$

$$7) \quad \frac{A^2}{A^{-X}} = A^3 \cdot A^{-X}$$

$$A^{2+x} = A^{3-x}$$

$$2 + x = 3 - x$$

$$x = 1/2$$

4)
$$\frac{3}{x^4} = -27$$

$$\left(\frac{1}{x^{4}}\right)^{3} = -27$$

$$\frac{1}{x^{4}} = -3$$

No solution (because the 1/4 root of a number is positive)

8)
$$\frac{7^{-3x+2}}{343^x} = 49^{-2x-1}$$

$$\frac{7^{-3x+2}}{7^{3x}} = 7^{-4x-2}$$

$$7^{-6x+2} = 7^{-4x-2}$$

$$-6x + 2 = -4x - 2$$

$$x = 2$$

9)
$$\frac{2}{x + 7x + 10x^{\frac{3}{3}}} = 0$$

Let
$$A = x^{\frac{1}{3}}$$

$$A^3 + 7A^2 + 10A = 0$$

$$A(A^2 + 7A + 10) = 0$$

$$A(A + 2)(A + 5) = 0$$

$$A = 0, -2, -5$$

$$x = 0, -8, -125$$

$$10) \ 5^{X} + 125(5^{-X}) = 30$$

$$5^{X} + 125(5^{-X}) + 30 = 0$$

multiply by
$$5^{X}$$

$$5^{2X} + 125 - 30(5^{X}) = 0$$
let $A = 5^{X}$

$$-2x^{2} - 14x - 7^{0}$$

$$A^2 - 30A + 125 = 0$$

$$(A - 5)(A - 25) = 0$$

$$A = 5, 25$$

$$5^{X} = 5 \qquad x = 1$$

$$5^{X} = 25 \qquad x = 2$$

10)
$$5^{X} + 125(5^{-X}) = 30$$

 $5^{X} + 125(5^{-X}) - 30 = 0$
11) $\left(\frac{7}{7}4x-3\right)^{X-7} = 1$

$$\left(7^{2x}\right)^{x-7} = 1$$

$$7^{2x^2 - 14x} = 7^0$$

$$2x^2 - 14x = 0$$

$$x = 0 \text{ or } 7$$

12)
$$\frac{-1}{x^{2}} + 2x^{\frac{1}{2}} + x^{\frac{3}{2}} = 0$$

$$\frac{-1}{x^{\frac{1}{2}}} \left(1 + 2x + x^{2} \right) = 0$$

$$\frac{-1}{x^{\frac{1}{2}}} \cdot (x+1)(x+1) = 0$$

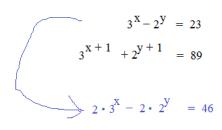
$$\frac{-1}{x^2} = 0$$
 \longrightarrow $\frac{1}{\sqrt{x}} = 0$ no solutions.

$$(x+1)(x+1) = 0 \implies x = -1$$

but, if
$$x = -1$$
, then $2x^{\frac{1}{2}} = 2(-1)^{\frac{1}{2}}$

however, $2\sqrt{-1}$ is not real

A) Solve the system



$$2 \cdot 3^{X} - 2^{Y+1} = 46$$

$$3^{X+1} + 2^{Y+1} = 89$$

$$2 \cdot 3^{X} + 3 \cdot 3^{X} = 135$$

$$5 \cdot 3^{X} = 135$$

If x = 3, then y = 2

SOLUTIONS

B) Write as
$$b^n$$
, where b and n are positive integers...

$$4^3 \cdot 5^2 = 64 \cdot 5^2 = 8^2 \cdot 5^2 = 40^2$$

C) Simplify. (Assume variables are negative or positive).

$$\sqrt[4]{\frac{c^2}{24a^3c^{-2}}} \qquad \sqrt[4]{\frac{c^4}{2 \cdot 2 \cdot 2 \cdot 3 \cdot a}} \qquad \frac{\sqrt[4]{2 \cdot 3 \cdot 3 \cdot 3 \cdot a}}{\sqrt[4]{2 \cdot 3 \cdot 3 \cdot 3 \cdot a}} = \boxed{\frac{|c| \sqrt[4]{54 \ a}}{6a}}$$

since original has a 3 , absolute value isn't necessary

since original had c^2 and c^{-2} , absolute value of c must be maintained to keep expressions equal!

D) Evaluate...

$$-5^{-2} = (-1)(5)^{-2} = (-1)(\frac{1}{5^2}) = \boxed{\frac{-1}{25}}$$

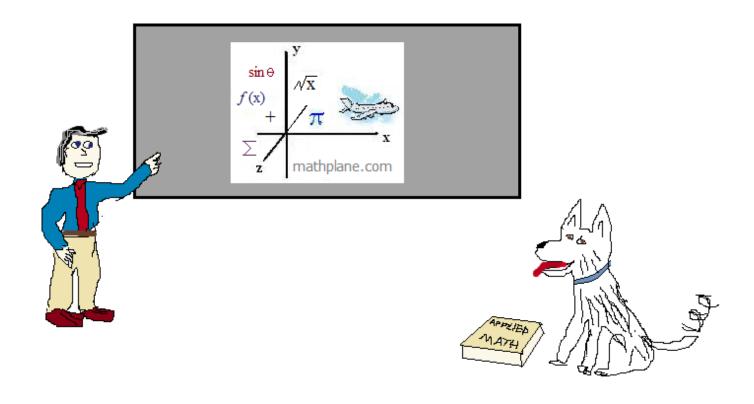
$$(0.6)^{-1} = (3/5)^{-1} = \boxed{5/3}$$

$$\left(\frac{4}{9}\right)^{\frac{2}{3}} \qquad \text{It's not } \frac{8}{27}!! \qquad \left(\left(\frac{4}{9}\right)^2\right)^{\frac{1}{3}} = \sqrt[3]{\frac{16}{81}} = \sqrt[3]{\frac{16}{39 \cdot 9}} \cdot \sqrt[3]{\frac{9}{9}} = \boxed{\frac{\sqrt[3]{16 \cdot 9}}{9}}$$

Thanks for visiting. (Hope it helped!)

If you have questions, suggestions, or requests, let us know.

Cheers



Also, at Mathplane Express for mobile and tablets at Mathplane.ORG

More comics and mathplane stuff at TeachersPayTeachers