Calculus: Integrals, Area, and Volume

Notes, Examples, Formulas, and Practice Test (with solutions)

Topics include definite integrals, area, "disc method", volume of a solid from rotation, and more.

Mathplane.com

We've learned that the area under a curve can be found by evaluating a definite integral.

Example: Find the area in the region bounded by x = 5

$$y = 0$$
$$y = \sqrt{x - 1}$$

Area under the curve:
$$\int_{0}^{5} \sqrt{x-1} dx - \int_{0}^{5} 0 dx$$

$$\frac{2}{3} (x-1)^{\frac{3}{2}} \Big|_{0}^{5} - 0 = \frac{16}{3}$$

The area was found by taking vertical partitions.

Area =
$$\int_{a}^{b} f(x) dx = \lim_{n \to \infty} \sum_{i=1}^{n} f(x_{i}) \triangle x$$

The area was found by taking horizontal partitions.

Area =
$$\int_{c}^{d} f(y) dy = \lim_{n \to \infty} \sum_{i=1}^{n} f(y_{i}) \triangle y$$

Area = (length)(width)

Volume = (length)(width)(depth) = Area(depth)

Since

Area =
$$\int_{a}^{b} f(x) dx \quad \text{or} \quad \int_{c}^{d} f(y) dy$$

then,

Volume =
$$\int_{a}^{b} A(x) dx$$
 Volume =
$$\int_{c}^{d} A(y) dy$$

where A(x) or A(y) is a cross-section area of a solid

Area: 2-dimensional

"Disc Method"

If we rotate each segment, we get a sequence of circles...

(Circle) Area =
$$\pi$$
 (radius)²

So, the volume of the solid will be the sum of all the circles!

(The radius (length) of each circle is determined by the output of the function)

Volume =
$$\int_{a}^{b} \pi \left(\text{function} \right)^{2} dx$$

And, if you get a "ring",

Volume =
$$\int_{a}^{b} \pi (outer function)^{2} dx - \int_{a}^{b} \pi (inner function)^{2} dx$$

Volume of a cone from rotated line segment

Example: If a portion of the line $y = \frac{1}{2}x$ lying in Quadrant I is rotated around the x-axis, a solid cone is generated.

Find the volume of the cone extending from x = 0 to x = 6.

The length (height) of the cone will extend from 0 to 6

The <u>area</u> from the segments will be from the function $\frac{1}{2}x$

And, the <u>volume</u> of the solid from rotation (revolution) will be from the total area of the segments (radii)

Calculus and Area Rotation

Find the volume of the figure

where the cross-section area is bounded by

$$y = x^2 + 1$$

$$y = x + 3$$

and revolved around the x-axis.

Step 2: Determine the span of the integral

$$y = x^2 + 1$$

$$y = x + 3$$

$$x^2 + 1 = x + 3$$

$$x^2 - x - 2 = 0$$

$$(x-2)(x+1)=0$$
 $x=-1, 2$

The boundaries of the area are [-1, 2]

Step 4: Evaluate the integrals

$$\int_{-1}^{2} \int \int (x+3)^{2} dx - \int_{-1}^{2} \int \int (x^{2}+1)^{2} dx$$

$$39 \uparrow \uparrow - \frac{234}{15} \uparrow \uparrow =$$

$$39 \Upsilon - \frac{78}{5} \Upsilon$$

$$\frac{117}{5}$$
 $\uparrow \uparrow$

Step 1: Draw a sketch

Step 3: Write the integral(s)

The bounded area will revolve around the x-axis

$$\int_{-1}^{2} \int \int (x+3)^2 dx - \int_{-1}^{2} \int \int (x^2+1)^2 dx$$

Area under the line from -1 to 2

Area under the curve from -1 to 2

NOTE: Volume =
$$\int_{a}^{b} A(x) dx$$

"where r is the function that is being revolved"

Calculus and Volume (of solids from rotation)

A triangle with vertices (1, 0) (2, 1) and (1, 1) is rotated around the *y-axis*.

What is the volume of the solid?

Step 2: Determine the boundaries of the integral

Since the rotation is around the y-axis, the boundaries will be between y = 0 and y = 1

Step 4: Evaluate integrals to find volume

$$\int_{0}^{1} \operatorname{Tr}(y+1)^{2} dy - \int_{0}^{1} \operatorname{Tr}(1)^{2} dy$$

$$\int_{0}^{1} \operatorname{Tr}(y^{2}+2y+1) dy - \int_{0}^{1} \operatorname{Tr} dy$$

$$\operatorname{Tr}\left(\frac{y^{3}}{3} + y^{2} + y \Big|_{0}^{1}\right) - \operatorname{Tr}\left(y \Big|_{0}^{1}\right)$$

$$2\frac{1}{3}\operatorname{Tr} - \operatorname{Tr} = \boxed{\frac{4}{3}\operatorname{Tr}}$$

Step 1: Draw a sketch

Step 3: Write the integrals

The line connecting
$$(1, 0)$$
 and $(2, 1)$ is $y = x - 1$ or, $x = y + 1$

And, the line connecting (1, 0) and (1, 1) is x = 1

$$\int_{0}^{1} \gamma \gamma (y+1)^{2} dy - \int_{0}^{1} \gamma \gamma (1)^{2} dy$$

NOTE: Volume =
$$\int_{a}^{b} A(y) dy$$
a ("integral of Area")
$$\int r^{2}$$
 "where r is the function that is being rotated"

$$y^2 = 4x$$

- a) rotated around the x-axis
- b) rotated around the y-axis
- c) rotated around x = 4
- a) Since the region is rotated around the x-axis, we'll use 'vertical partitions'.

The left boundary will be x = 0

and the right boundary will be x = 4

The upper boundary will be $y^2 = 4x$

$$\downarrow y = 2\sqrt{x}$$

The 2-dimensional area of the region would be the integral

area from curve to x-axis area from line to x-axis area of enclosed region Volume and Area from Integration

But, the <u>volume</u> adds another dimension... Each segment in the area is rotated to form a disc (circle) (and, the segments are the radii of all the discs in the solid!)

$$\int_{0}^{4} \widetilde{\Pi(2N_{X})^{2}} dx - \int_{0}^{4} \widetilde{\Pi(x)^{2}} dx$$

 $\iiint_{0}^{4} 4x - x^{2} dx$

Area of circle = (radius)

Volume =
$$\int_{a}^{b} \pi \left(\text{function} \right)^{2} dx$$
('sum of vertical discs')

b) Since this is rotated around the <u>y-axis</u>, we'll use 'horizontal partitions' The lower boundary will be y = 0. And, the upper boundary will be y = 4.

The right boundary ('outer radius') will be x = y $y^2 = 4$ And, the left boundary ('inner radius') will be $x = \frac{y^2}{4}$

Volume =
$$\int_{c}^{d} A(y) dy$$

where A(y) is a cross-section area of a solid

volume of line revolved around y-axis (forms a cone) volume of curve revolved around y-axis (forms a 'funnel')

$$\iint_{0}^{4} y^{2} dy - \iint_{0}^{4} \frac{y^{4}}{16} dy$$
volume of outer volume of inner part (cone) volume of inner part (funnel)

c) In this case, the region is rotated around x = 4 (instead of an axis) We'll use 'horizontal partitions' (dy) from y = 0 to y = 4The volume integrals are:

$$V = \int_{0}^{4} \iint (4 - \frac{y^{2}}{4})^{2} dy - \int_{0}^{4} \iint (4 - y)^{2} dy$$

Observe where the area functions came from: (the difference is the bounded region!)

The shaded area is
$$\int_{0}^{4} 4 - \frac{y^2}{4} dy$$

The shaded area is
$$\int_{0}^{4} 4 - y \, dy$$

Volume =
$$\int_{c}^{d} \pi \left(\text{function} \right)^{2} dy$$

$$\text{(sum of the horizontal discs)}$$

$$\iint_{0}^{4} \frac{y^{4}}{16} - 3y^{2} + 8y \, dy$$

$$\iiint_{0}^{4} \left(\frac{y^{5}}{80} - y^{3} + 4y^{2}\right)^{4} = \left(12.8 + 64 + 64\right) \iiint_{0}^{4} = \left(12.8 + 64 + 64\right) = \left(12.8 + 64 + 64\right)$$

Example: The area R is between the y-axis, $x=5,\,y=10,$ and y=7. Find the volume of the solid obtained by revolving R around the x-axis.

WRONG

$$\int_{0}^{5} \int \left(10-7\right)^{2} dx$$

Each partition has a radius of 3...

Volume = 45 ∏

CORRECT

$$\int_{0}^{5} | (10)^{2} dx - \int_{0}^{5} | (7)^{2} dx$$

Each partition has radius 10....

Each inner partition has radius 7....

Each partition of the area revolved around the x-axis creates a ring with a hollow center..

Volume =
$$500 \text{ TT} - 245 \text{ TT}$$

= 255 TT

Practice Test -→

1) Find the volume of the solid formed by revolving the region bounded by

$$y = x^2$$
 and $y = 4x - x^2$

- a) about the x-axis
- b) about the line y = 6

2) Given the area bounded by $y = \sqrt{x}$

$$y = 2$$

$$x = 0$$

Find the volume of the solid from rotation

- a) about the x-axis
- b) about the y-axis
- c) around y = 2

3) The left half of the ellipse $9x^2 + 25y^2 = 225$ is revolved around the y-axis to form a spheroid. Find its volume.

4) Find the volume of the solid formed by the region bounded by

$$y = -x^2 + 3x + 18$$
$$x + y = 13$$

and revolved around the x-axis

$$y = x^2 + 1$$
 and $y = x + 3$

is revolved around the line y= 5

6) The region R is bordered by the y-axis, y=4, and the function $y=x^2$. Determine the volume of the solid generated by rotating the region R around the line y=-1.

7) Find the volume of the solid with a region bounded by

$$y = x^{2} + 1$$

 $y = -x^{2} + 2x + 5$

and, revolved around the x-axis

$$x = 0$$
$$x = 3$$

8)	The region R is bounded by the x-axis, y-axis, and $x + 2y = 4$ Find the volume of the solid whose base is R, and
	a) the cross sections are isosceles right triangles perpendicular to the y-axis
	b) the cross sections are isosceles right triangles perpendicular to the x-axis
	 c) the cross sections are semicircles whose diameters lie on the region R perpendicular to the y-axis

Volume of Solids Practice Test: Cross Sections

ANSWERS -→

1) Find the volume of the solid formed by revolving the region bounded by

$$y = x^2$$
 and $y = 4x - x^2$

- a) about the x-axis
- b) about the line y = 6

a) The graph shows the 2 parabolas intersecting at x = 0 and x = 2

(algebraically)
$$x^2 = 4x - x^2$$

 $2x^2 - 4x = 0$ $x = 0, 2$
 $2x(x - 2) = 0$

Since the rotation is about the x-axis,

the *outer* (radius) boundary will be $4x - x^2$ the *inner* (radius) boundary of the solid will be x^2

$$\int \prod (4x-x^2)^2 dx - \int \prod (x^2)^2 dx$$

And, the intersections indicate the ends of definite integral

$$\int_{0}^{2} \pi (4x - x^{2})^{2} dx - \int_{0}^{2} \pi (x^{2})^{2} dx$$

$$\pi \int_{0}^{2} 16x^{2} - 8x^{3} + x^{4} dx - \pi \int_{0}^{2} x^{4} dx$$

$$\pi \left(\frac{16x^{3}}{3} - 2x^{4} \Big|_{0}^{2} \right) = \boxed{10 \frac{2}{3} \pi}$$

b) Since the rotation is about the line y = 6, the *outer* (radius) boundary will be $x^2 + 2$ the *inner* (radius) boundary of the solid will be $(4x - x^2) + 2$

$$\int_{0}^{2} \pi (x^{2} + 2)^{2} dx - \int_{0}^{2} \pi (-x^{2} + 4x + 2)^{2} dx$$

$$\pi \int_{0}^{2} x^{4} + 4x^{2} + 4 dx - \pi \int_{0}^{2} x^{4} - 8x^{3} + 12x^{2} + 16x + 4 dx$$

$$\pi \int_{0}^{2} 8x^{3} - 8x^{2} - 16x dx = \pi 2x^{4} - \frac{8}{3}x^{3} - 8x^{2} \Big|_{0}^{2} = \boxed{\frac{64}{3}\pi}$$

2) Given the area bounded by $y = \sqrt{x}$

$$y = 2$$

$$x = 0$$

Find the volume of the solid from rotation

- a) about the x-axis
- b) about the y-axis
- c) around y = 2
- a) Since the rotation (revolution) is about the x-axis, the outer radius will be y = 2, and the inner radius will be $y = \sqrt{x}$

Then, the endpoints (or limits of integration) will be 0 and 4

$$\int_{0}^{4} \left(2\right)^{2} dx - \int_{0}^{4} \left(\sqrt{x}\right)^{2} dx$$

$$\left[4x\right]_{0}^{4} - \left[\frac{x^{2}}{2}\right]_{0}^{4}$$

$$16 - 8 - 8 - 8$$

b) Since the revolution (rotation) is about the y-axis, we need to rewrite the expression:

$$y = \sqrt{x} \quad \longrightarrow \quad x = y^2$$

Then, the endpoints (limits of integration) will be 0 and 2

ten, the endpoints (limits of integration and 2

$$\int_{0}^{2} |y^{2}|^{2} dy$$

$$\left|\int_{0}^{2} y^{4} dy$$

$$\left|\int_{0}^{2} \frac{y^{5}}{5}\right|_{0}^{2} = \boxed{\frac{32}{5}} |$$

c) Since the rotation is around y = 2, the radius will come from the area between y = 2 and $y = \sqrt[h]{x}$

$$\int_{0}^{4} \sqrt{(2-\sqrt{x})^{2}} dx$$

$$\prod \int_{0}^{4} 4-4\sqrt{x} + x dx$$

$$16 - \frac{4x^{3/2}}{3/2} + \frac{x^2}{2} \Big]_0^4$$

$$16 - \frac{64}{3} + 8 = \frac{8}{3}$$

**The volume of solid would be the same if we *shift the area down 2* units and *rotate it around the x-axis*!

$$\int_{0}^{4} \sqrt{(\sqrt{x}-2)^2} dx$$

$$\int_{0}^{4} x - 4\sqrt{x} + 4 dx$$

3) The left half of the ellipse $9x^2+25y^2=225$ is revolved around the y-axis to form a spheroid. Find its volume.

SOLUTIONS

First, let's graph the ellipse:

$$\frac{x^2}{25} + \frac{y^2}{9} = 1$$

We can see the left half extends up/down from 3 to -3 and the left half from -5 to 0...

Since the half ellipse is revolved around the y-axis,

Since the left half is symmetric over the x-axis, we'll find the volume for the top half (and then double it)

"Disc method"

$$\frac{x^2}{25} + \frac{y^2}{9} = 1$$

$$x^2 = 25 - \frac{25y^2}{9}$$
 $x = \sqrt{25 - \frac{25y^2}{9}}$

$$x = \sqrt{25 - \frac{25y^2}{9}}$$

$$\int_{0}^{3} \gamma \Gamma(25 - \frac{25y^{2}}{9}) dy$$

$$Volume = \int \int \int f(y)^2 dy$$

Therefore, the full spheroid (top half and bottom half) is 100 TT

4) Find the volume of the solid formed by the region bounded by

$$y = -x^2 + 3x + 18$$
$$x + y = 13$$

and revolved around the x-axis

When we graph the equations, we observe an upside down parabola that is intersected by a line.

The boundary (from left to right) are the points of intersection.

$$\begin{cases} y = -x^2 + 3x + 18 \\ y = -x + 13 \end{cases}$$
 substitution
$$-x + 13 = -x^2 + 3x + 18$$
 collect terms
$$x^2 - 4x - 5 = 0$$
 factor
$$(x - 5)(x + 1) = 0$$
 solve
$$x = -1 \text{ and } x = 5$$

The outer radius will be from the parabola The inner radius will be from the line

$$\int_{-1}^{5} -x^2 + 3x + 18 \ dx - \int_{-1}^{5} -x + 13 \ dx$$

area below the parabola

area below the line

$$\int_{-1}^{5} \uparrow \uparrow (-x^2 + 3x + 18)^2 dx - \int_{-1}^{5} \uparrow \uparrow (-x + 13)^2 dx$$
discs from the parabola
discs from the line

$$\uparrow \left(\frac{x^{5}}{5} - \frac{3x^{4}}{2} - \frac{28x^{3}}{3} + 67x^{2} + 155x \right) - 1$$

$$\uparrow \left(625 - 937.5 - 1166 \frac{2}{3} + 1675 + 775 - \left(\frac{-1}{5} - \frac{3}{2} - \frac{-28}{3} + 67 - 155 \right) \right)$$

$$970.83 - (-80.36) = \boxed{1051.2 \uparrow \uparrow}$$

SOLUTIONS

$$y = x^2 + 1$$
 and $y = x + 3$

$$x^2 + 1 = x +$$

is revolved around the line y= 5

$$x^2 - x - 2 = 0$$
 $x = -1, 2$

$$(x+1)(x-2)=0$$

The equations intersect at (-1, 2) and (2, 5) --- the boundaries of the integral

$$\int_{-1}^{2} \uparrow \uparrow \uparrow (5 - (x^2 + 1))^2 dx - \int_{-1}^{2} \uparrow \uparrow \uparrow (5 - (x + 3))^2 dx$$
outer radius
inner radius

(middle cut out to create washer)

$$\alpha = \text{Tr}\left(\frac{x^5}{5} - 3x^3 + 2x^2 + 12x\right)^2 = \text{Tr}\left(\frac{72}{5} - (-\frac{36}{5})\right) = \boxed{\frac{108}{5}}$$

6) The region R is bordered by the y-axis, y = 4, and the function $y = x^2$. Determine the volume of the solid generated by rotating the region R around the line y = -1.

Step 1: Sketch the graph...

Step 2: Identify the radius of the entire disc/washer (the 'outer').. R

$$y = 4 - y = -1$$
 5

Identify the radius of the entire middle of the washer (the 'inner')... r

$$y = x^2 - y = -1$$
 $x^2 - (-1)$

Step 3: Determine the boundary of the integral...

The region R extends from x = 0 to x = 2

(the intersection of y = 4and $y = x^2$)

$$\int_{0}^{2} R + r dx$$

Step 4: Apply the formula for a circle, and write the integral...

$$\int_{0}^{2} \int \int (5)^{2} dx - \int_{0}^{2} \int \int (x^{2} + 1)^{2} dx$$

Step 5: Solve...

$$25x \text{ TF} \bigg|_{0}^{2} - \text{TF} \int_{0}^{2} x^{4} + 2x^{2} + 1 dx$$

$$25x \text{ Tr} \begin{vmatrix} 2 & - & \text{Tr} \left(\frac{x^5}{5} + \frac{2x^3}{3} + x \right) \end{vmatrix}^2$$

$$\frac{544 \text{ 1}}{15} \qquad \frac{750 \text{ 1}}{15} \qquad -\text{ 1} \left(\frac{96}{15} + \frac{80}{15} + \frac{30}{15} \right) \qquad 50 \text{ 1} \qquad -\text{ 1} \left(\frac{32}{5} + \frac{16}{3} + 2 \right)$$

Find the volume of the solid with a region bounded by

$$y = x^2 + 1$$

 $y = -x^2 + 2x + 5$
 $x = 0$ and, revolved around the x-axis

Step 1: Sketch the graph and identify the boundaries

Since the functions 'cross over', it'll be helpful to divide the region into 2 parts...

Where do the functions cross? Find the intersection...

$$x^{2} + 1 = -x^{2} + 2x + 5$$

$$2x^{2} - 2x - 4 = 0$$

$$2(x - 2)(x + 1) = 0$$
Intersections occur at (-1, 2) and (2, 5)

We'll evaluate the 'left' region from 0 to 2... And, the 'right' region from 2 to 3....

Step 2: Determine the integrals

SOLUTIONS

$$\int_{-\infty}^{2} \left(-x^{2} + 2x + 5 \right)^{2} - \left(-x^{2} + 1 \right)^{2} dx + \int_{-\infty}^{3} \left(-x^{2} + 1 \right)^{2} - \left(-x^{2} + 2x + 5 \right)^{2} dx$$

left region: since downward parabola is above the upward facing parabola, it goes first...

+
$$\int_{2}^{3} \int \left(x^{2} + 1\right)^{2} - \int \left(-x^{2} + 2x + 5\right)^{2} dx$$

right region: since upward parabola is above the downward facing parabola, it goes first in the integral..

(otherwise, value would be negative)

Step 3: Evaluate definite integrals (using fund. theorem of calculus)

a) the cross sections are isosceles right triangles perpendicular to the y-axis

Since we're using horizontal partitions, x = 4 +

Area $\triangle = \frac{1}{2} bh$

Isosceles, so base and height are the same

Area =
$$\frac{1}{2}$$
(base)²

b) the cross sections are isosceles right triangles perpendicular to the x-axis

$$y = \frac{4 - x}{2}$$

$$\int_{0}^{4^{\circ}} \frac{1}{2} \left(\frac{4-x}{2} \right)^{2} dx$$

$$\frac{1}{8} \int_{0}^{4} 16 + 8x + x^{2} dx$$

$$\frac{1}{8} \left(16x - 4x^2 + \frac{x^3}{3} \right) = \frac{1}{8} (64 + 64 + 64/3) = \frac{8}{3}$$

c) the cross sections are semicircles whose diameters lie on the region R
perpendicular to the y-axis

Since the diameters are perpendicular to the y-axis,

we'll use horizontal partitions
$$x = 4 - 2y$$

$$\int_{0}^{2} \frac{1}{8} \cdot \text{TT (diameter)}^{2}$$

$$\int_{0}^{2} \frac{1}{8} \cdot \prod \left(4 - 2y\right)^{2} dy$$

$$\frac{1}{8} \cdot \text{TT} \left(16y - 8y^2 + \frac{4y^3}{3} \right)^2 = \frac{1}{8} \cdot \text{TT} \quad (32 - 32 + 32/3) = \boxed{\frac{4}{3} \cdot \text{TT}}$$

$$\frac{1}{2} \text{ (radius)}^2 = \text{Area of circle}$$

$$\frac{1}{2} \text{ (radius)}^2 = \text{Area of semicircle}$$

$$\frac{1}{2} \text{ (} \frac{1}{2} \text{ diameter)}^2 = \text{Area of semicircle}$$

$$\frac{1}{8} \text{ (} \text{ (diameter)}^2 = \text{Area of semicircle}$$

Thanks for visiting. (Hope it helped!)

If you have questions, suggestions, or requests, let us know.

Also, mathplane *express* for mobile and tablets at mathplane.org And, TES, TeachersPayTeachers, and Pinterest

Other cross sections to explore \rightarrow

Example: The area of a region is bounded by $y = e^{X}$, x-axis, y-axis, and x = 1

- a) Find the area of the region
- b) Find the volume of the solid when the region is rotated around the x-axis
- c) Find the volume of the solid where the cross sections perpendicular to the x-axis are squares
- d) Find the volume of the solid where the cross sections perpendicular to the x-axis are semicircles

a) Find the area of the region

Step 1: Determine the span of the integral..

The boundaries go from x = 0 to x = 1

Step 2: Determine the function to evaluate The upper boundary is $y = e^X$ and the lower boundary is y = 0

$$\int_{0}^{1} e^{X} - 0 dx$$

$$e^{X}\Big|_{0}^{1} = e^{1} - e^{0} = e - 1 \text{ or } 1.72$$

b) Find the volume of the solid when the region is rotated around the x-axis

area of a circle:
$$1$$
 (radius)²

(the radius is the length of the function)

$$\int_{0}^{1} \frac{1}{1+(e^{x})^{2}} dx$$
radius
of each partition

$$\int_{0}^{1} dx = \int_{0}^{1} e^{2x} dx$$

$$= \frac{1}{2} \int_{0}^{1} e^{2x} dx = \frac{1}{2} \int_{0}^{1} e^{2x} dx$$

$$= \frac{1}{2} \int_{0}^{1} e^{2x} dx = \frac{1}{2} \int_{0}^{1} e^{2x} dx = \frac{1}{2} \int_{0}^{1} e^{2x} dx$$

$$= \frac{1}{2} \int_{0}^{1} \left(e^{2} - e^{0} \right) = \frac{1}{2} \int_{0}^{1} \left(e^{2} - e^{0} \right)$$
approx. 10.03

c) cross sections perpendicular to the x-axis are squares

d) cross sections perpendicular to the x-axis are semicircles

(the side is the length of the function)

side of each partition

Example: Find the volume of the solid from the region bounded

 $y = 8 - x^2$ and $y = x^2$

a) whose partitions are squares that are perpendicular to the x-axis

b) whose partitions are squares that are perpendicular to the y-axis

Step 1: Sketch diagram The equations are intersecting parabolas (one opening upward and one opening downward)

Step 2: Determine integral boundaries

The graph illustrates the intersections at x = -2 and x = 2

To verify algebraically, set equations equal to each other:

$$8 - x^{2} = x^{2}$$

$$8 = 2x^{2}$$

$$4 = x^{2}$$

$$x = -2 \text{ and } 2$$

$$dx$$

$$-2$$

Step 3: Identify the partitions -- write the equation to be integrated

Each partition will be a square whose sides have length $(8 - x^2) - (x^2)$

upper lower bound bound

Step 1: Sketch diagram

$$y = x^2 \longrightarrow x = \pm \sqrt{y}$$
 $y = 8 - x^2 \longrightarrow x = \pm \sqrt{8 - y}$

Step 2: Determine integral boundaries

Since we are using horizontal partitions, the integral will include the upper and lower boundaries!

The graph shows boundaries at y = 8 and y = 0 and intersections at y = 4

To verify algebraically, find the vertex of each equation... Then, find the intersection:

$$\sqrt{y} = \sqrt{8 - y}$$

$$y = 8 - y$$

$$y = 4$$

Step 3: Identify the partitions and write the definite integral

lower half

Area of a square = $\left(\frac{4}{2}\left(2\sqrt{y}\right)^2 dy + \int_{4}^{8} \left(2\sqrt{8-y}\right)^2 dy$

Since the parabolas are <u>even functions</u> that are symmetrical over y-axis, we'll find the length of the positive side and <u>double it</u>

upper half

Note the volume is less when the squares use lengths from horizontal partitions (rather than lengths from vertical partitions!)

Diagram with one square partition at x = -1

Step 4: Solve $\int_{-2}^{2} \left((8 - 2x^2)^3 \right)^2 dx$ $= \int_{-2}^{2} \left((8 - 2x^2)^3 \right)^2 dx = \int_{-2}^{2} 64 - 32x^2 + 4x^4 dx$ $= 64x - \frac{32x^3}{3} + \frac{4x^5}{5} \Big|_{-2}^{2} = \frac{1024}{15} - \left(-\frac{1024}{15} \right)$ $= \frac{2048}{15} \text{ or } 136.53$

Diagram of one square partition at y = 4

Step 4: Solve

$$\int_{0}^{4} 4y \ dy + \int_{4}^{8} 32 - 4y \ dy$$

$$2y^{2} \begin{vmatrix} 4 \\ +32y-2y^{2} \end{vmatrix}^{8} = 32 - 0 + 128 - 96$$

