Exponents and Exponential Equations (Honors)

Practice Exercises (with Solutions)

Topics include exponential models, factoring, exponent rules, solving exponential equations, graphs, and more.

Mathplane.com

since the end behavior approaches y = -5,

The exponential equation has a vertical shift down 5

$$y = ab^{X} - 5$$

(0, 3) is a point in the curve...

substitute the point into the equation...

$$-3 = ab^{0} + 5$$
$$a = 2$$

so far, the model is:

$$y = 2(b)^{X} + 5$$

then, substitute a second point into the equation...

(-1, 1) is a point in the curve...

$$1 = 2 (b)^{-1} - 5$$

 $3 = b^{-1}$
 $b = 1/3$

$$y = 2(1/3)^{X} + 5$$

$$y = ab^X$$

the b value is 3, because the function's growth factor is 3...

To find the 'a' value,

$$y = a(3)^{X}$$

pick a point, such as (3, 15)

$$15 = a(3)^3$$

$$a = 15/27$$

$$y = ab^{X}$$
intial growth value factor

$$y = (5/9)(3)^{X}$$

Example: The following exponential graph shows the value of a car as it relates to time.

- a) What is the price of a new car?
- b) What is the depreciation rate?

$$y = ab^{X}$$

$$22000 = ab^{0}$$

$$a = 22000 \implies \text{price of new car}$$

$$y = 22000b^{X}$$

$$6000 = 22000b^{5}$$

$$b = .77 \implies \text{depreciation rate is } 23\%$$

$$y = 22,000(.77)^{X}$$

Practice Exercises-→

Simplifying expressions: exponentials and roots

$$\frac{e^{4x}}{e^{x-5}}$$

4)
$$\frac{3^{3t-1}}{3^{3t+2}}$$

$$\frac{8^{3\sqrt{5}}}{2^{2\sqrt{5}}} =$$

$$6) \frac{3^{7x+2}}{3^{7x-1}} =$$

$$\frac{64^{3x+1}}{4^{2x}} =$$

8)
$$(5x)^{\frac{1}{2}}(3x^{\frac{1}{2}})$$

$$9) \frac{\sqrt[3]{9 \cdot \sqrt[3]{6}}}{\sqrt[6]{2 \cdot \sqrt[6]{2}}}$$

10)
$$\frac{1}{2} - 10^{\frac{1}{2}}$$

11)
$$\sqrt[3]{18} \cdot \sqrt[3]{15}$$

12)
$$\frac{1}{(8r)^{\frac{1}{3}}} (2r^{\frac{1}{2}})$$

Factoring exponentials

1)
$$\frac{-1}{x^2} + 2x^{\frac{1}{2}} + x^{\frac{3}{2}}$$

2)
$$\frac{-3}{x^2}(x+3)^3 + x^{\frac{-1}{2}}(x+3)^2$$

3)
$$x^{-3} - x^{-1} + x^{-1} - x^{-3}$$

Solving Exponential Equations

1)
$$\sqrt{\frac{16^{X+3}}{64^{X}}} = 256$$

2)
$$2^{2x}$$
 $3 \cdot 2^{x+1} + 8 = 0$

$$\frac{3^{X}^{2}}{(3^{X})^{2}} = 27$$

4)
$$2^{X} + 8 \cdot 2^{-X} = 9$$

5)
$$2^{t} + 2^{-t} - \frac{5}{2} = 0$$

6)
$$2^{2x} - 3 \cdot 2^{x+2} + 32 = 0$$

Exponential Function Models

1) What is the equation of a line that passes through (1, 20) and (2, 4)?

What exponential function passes through (1, 20) and (2, 4)?

Optional: Sketch both graphs.

2) Write an exponential equation describing the graph:

3) An exponential equation f(x) includes the coordinates (1, 4) and (6, 7).

What is f(10)?

4)	Find the exponential equation that goes through (0, 24) and (3, 8/9)	Exponential Equations
5)	Find linear and exponential equations with graphs that pass through (1, 50) and (2, 25).	
2)	The month and exponential equations with graphs that pass through (1, 50) and (2, 25).	
6)	Find the exponential equation(s) which include (4, 8) and (6, 32).	
-/	The are experience equation(e) which metade (1, e) and (e, e2).	

SOLUTIONS-→

Simplifying expressions: exponentials and roots

SOLUTIONS

$$\left(3^2\right)^5 \times 4^{10} =$$

$$3^{10} \times 4^{10} =$$

12¹⁰

$$\frac{e^{4x}}{e^{x-5}}$$

$$e^{3x+5}$$

4)
$$3^{3t-1}$$

$$3^{-3} = \frac{1}{27}$$

$$\frac{8^{3\sqrt{5}}}{2^{2\sqrt{5}}} =$$

$$\frac{2^{9\sqrt{5}}}{2^{2\sqrt{5}}} = 2^{7\sqrt{5}}$$

$$6) \frac{3^{7x+2}}{3^{7x-1}} =$$

7)
$$\frac{64^{3x+1}}{4^{2x}} =$$

$$\frac{(4^3)^{3x+1}}{4^{2x}} = \frac{4^{9x+3}}{4^{2x}}$$

$$= 4^{7x+3}$$

8)
$$\frac{1}{(5x)^2} \frac{1}{(3x^2)}$$

$$\begin{array}{c|c}
\frac{1}{5^2} \cdot x^{\frac{1}{2}} \cdot 3 \cdot x^{\frac{1}{2}} \\
\hline
3x\sqrt{5}
\end{array}$$

$$\frac{\sqrt[3]{54}}{\sqrt[6]{4}} = \frac{\sqrt[3]{27 \cdot 2}}{\sqrt[6]{4}} = \frac{\sqrt[3]{27 \cdot 2}}{\sqrt[6]{4}} = \frac{3 \cdot 2^{\frac{1}{3}}}{2^{\frac{1}{3}}} = 3$$

$$\frac{3 \cdot 2^{\frac{1}{3}}}{(2^2)^{\frac{1}{6}}} = \frac{3 \cdot 2^{\frac{1}{3}}}{2^{\frac{1}{3}}} = 3$$

10)
$$\frac{1}{2} - 10^{\frac{1}{2}}$$

$$\sqrt{90} - \sqrt{10} =$$

$$3\sqrt{10} - \sqrt{10} =$$

11)
$$\sqrt[3]{18} \cdot \sqrt[3]{15}$$

$$\sqrt[3]{18 \cdot 15}$$

$$\sqrt[3]{3 \cdot 3 \cdot 2 \cdot 3 \cdot 5}$$

$$3\sqrt[3]{2\cdot 5}$$

12)
$$\frac{1}{(8r)^{\frac{3}{3}}} (2r^{\frac{1}{2}})$$

$$\frac{1}{8^3} \cdot \frac{1}{r^3} \cdot 2 \cdot r^{\frac{1}{2}}$$

$$2 \cdot r^{\frac{1}{3}} \cdot 2 \cdot r^{\frac{1}{2}}$$

$$4 \cdot r^{\frac{1}{3} + \frac{1}{2}}$$

Factoring exponentials

1)
$$\frac{-1}{x^2} + 2x^{\frac{1}{2}} + x^{\frac{3}{2}}$$

$$x^{\frac{-1}{2}} \cdot \left(1 + 2x + x^{2}\right)$$

$$x^{\frac{-1}{2}} \cdot (x+1)(x+1)$$

$$\frac{-1}{x^2} \cdot (x+1)^2$$

2)
$$\frac{-3}{x^2}(x+3)^3 + x^{\frac{-1}{2}}(x+3)^2$$

take out "greatest common factor"

GCF of
$$(x + 3)$$
 terms: $(x + 3)^2$

$$\left(\frac{-3}{x^2}(x+3)^2\right) [(1)(x+3)] + [(x)(1)]$$

$$\left(\frac{-3}{x^2}(x+3)^2\right)[2x+3]$$

3)
$$x^{-3} - x^{-1} + x^{-1} - x^{-3}$$

factor by regrouping

$$x^{-3}(1-x^2) + x(1-x^2)$$

$$(1 - x^2) \cdot (x^{-3} + x)$$

difference of squares

$$(1+x)(1-x) \cdot x^{-3} (1+x^4)$$

$$\frac{1}{x^3}$$
 (1 + x)(1 - x) (1 + x⁴)

Solving Exponential Equations

SOLUTIONS

1)
$$\sqrt{\frac{16^{X+3}}{64^{X}}} = 256$$

Recognize the 'common base' is 4...

$$\sqrt[4]{\frac{(4^2)^{x+3}}{(4^3)^x}} = 4^4$$

$$\sqrt{\frac{4^{2x+6}}{4^{3x}}} = 4^{4} \qquad 4^{-x+6} = 4^{8}$$

$$\sqrt{4^{-x+6}} = 4^{4}$$

$$x = -2$$

$$\frac{3^{2}}{(3^{2})^{2}} = 27$$

Recognize the common base is 3..

Then, simplify the parenthesis...

$$\frac{3^{2}}{3^{2}} = 3^{3}$$

$$3^{(x^2-2x)} = 3^3$$
 Drop the base and solve..

$$x^2 - 2x - 3 = 0$$

$$x^{2} - 2x - 3 = 0$$

$$(x - 3)(x + 1) = 0$$
if $x = -1$, then $\frac{3}{(3^{(-1)})^{2}} = \frac{3}{(1/9)} = 27$

$$x = -1, 3$$
Check solutions:
$$x = 3, \text{ then } \frac{3}{(3^{(-1)})^{2}} = \frac{3}{3^{(-1)}} = 27$$

$$x = -1, 3$$

5)
$$2^t + 2^{-t} - \frac{5}{2} = 0$$

$$2^{-t} \left(2^{2t} + 1 + \frac{5}{2} \cdot 2^{t}\right) = 0$$

Factor out least exponent..

$$2^{-t} = 0$$
 no solution

$$2^{2t} + \frac{5}{2} \cdot 2^t + 1 = 0$$
 Using Substitution, let B = 2^t

$$B^2 + \frac{5}{2}B + 1 = 0$$
 Note: the discriminant of this quadratic is

$$\frac{1}{2}\left(2B^2 - 5B + 2\right) = 0$$

$$\frac{1}{2}(2B+1)(B+2) = 0$$

quadratic is

$$b^2 - 4ac = \frac{9}{4}$$

since this is a perfect square, we can factor it...

$$B = 1/2$$

$$2^{t} = 1/2$$

2)
$$2^{2x}$$
 $3 \cdot 2^{x+1} + 8 = 0$

$$2^{2x} - 3 \cdot 2^{x} \cdot 2^{1} + 8 = 0$$

$$2^{2x} - 6 \cdot 2^{x} + 8 = 0$$

$$A^2 + 6A + 8 = 0$$

$$(A+2)(A-4) = 0$$

$$A = 2, 4$$

$$2^X = 4$$

4)
$$2^{X} + 8 \cdot 2^{-X} = 9$$

$$2^{X} (2^{X} + 8 \cdot 2^{-X} - 9 = 0)$$

$$2^{2X} + 8 \cdot 2^{0} + 9 \cdot 2^{X} = 0$$

$$2^{2X} + 9 \cdot 2^{X} + 8 = 0$$

$$A^2 - 9A + 8 = 0$$

$$(A - 8)(A - 1) = 0$$

$$2^{X} = 8$$

$$2^{X} =$$

Recognize that
$$2^{x+1} = 2^x \cdot 2^1$$

Notice the exponents 2x and x....

Using substitution, let $A = 2^{X}$

$$2^{X} \cdot 2^{X} = 2^{X+X} = 2^{2X}$$

$$x = 1, 2$$

multiply by 2^X to get rid of negative exponent

Using substition, let $2^X = A$

$$x = 3$$
$$x = 0$$

6)
$$2^{2x} - 3 \cdot 2^{x+2} + 32 = 0$$

$$2^{2x} - 3 \cdot 2^{x} \cdot 2^{2} + 32 = 0$$

$$2^{2x} - 12 \cdot 2^{2x} + 32 = 0$$

$$A^2 - 12A + 32 = 0$$

$$(A-4)(A-8) = 0$$

$$A = 4, 8$$

$$2^{X} = 4$$
 x

$$x = 3$$

Exponential Function Models

SOLUTIONS

1) What is the equation of a line that passes through (1, 20) and (2, 4)?

What exponential function passes through (1, 20) and (2, 4)?

Optional: Sketch both graphs.

slope:
$$\frac{20-4}{1-2} = -16$$

point: (1, 20)

$$(y-20) = -16(x-1)$$

or
 $y = -16x + 36$

Note: To check the equations, test the points (1, 20) and (2, 4)

 $y = ab^{X}$

Using substitution:
$$20 = ab^1$$
 $4 = ab^2$ $a = \frac{20}{b}b^2$ $4 = a\left(\frac{1}{5}\right)^2$

2) Write an exponential equation describing the graph:

$$y = ab^{X}$$

substitute first point:

$$3 = ab^0$$

$$3 = a(1)$$

 $y = 3b^X$ substitute second point:

$$1 = 3b^{1}$$

$$b = \frac{1}{3}$$

quick check:

$$(0, 3)$$
: $3 = 3(\frac{1}{3})^0$

$$(1, 1)$$
: $1 = 3(\frac{1}{3})^1$

(6, 7)

An exponential equation f(x) includes the coordinates (1, 4) and (6, 7).

What is f(10)?

$$y = ab^{X}$$

substitute
$$(1, 4)$$
: $4 = ab$

since
$$b = 1.12$$

and
$$a = \frac{4}{b}$$

$$a = 3.57$$
 $f(10) = (3.57)(1.12)^{10}$

= 11.08

(1, 4)

mathplane.com

Using the short-cut, we know that the inital value 'a' = 24 (because the y-intercept is (0, 24))

$$y = 24b^{X}$$
Then, $b = \left(\frac{8/9}{24}\right)^{\frac{1}{3}}$ therefore,
$$y = 24\left(\frac{8/9}{24}\right)^{\frac{X}{3}} = \left[24\left(\frac{1}{27}\right)^{\frac{X}{3}}\right]$$
"b" is the growth factor or,
$$24\left(\frac{1}{3}\right)^{\frac{X}{3}}$$

quick check:

$$(0, 24) 24 = 24 \left(\frac{1}{27}\right)^{\frac{3}{3}}$$

$$(3, 8/9) 8/9 = 24 \left(\frac{1}{27}\right)^{\frac{3}{3}}$$

5) Find linear and exponential equations with graphs that pass through (1, 50) and (2, 25).

Using the exponential function,

$$y = ab^{X}$$

50 = ab then, solve the system with substitution:

$$25 = ab^2$$

 $a = \frac{50}{b}$ (first equation)

so,
$$25 = \frac{50}{b}b^2$$
 (substitute into second equation)

$$25 = 50b$$

$$b = \frac{1}{2}$$

and, then a = 100

$$y = 100(.5)^{X}$$

Using the linear equation y = mx + b,

we need the slope:
$$m = \frac{25 - 50}{2 - 1} = -25$$

and, a point: (1, 50)

(substitute to find b)

$$50 = (-25)(1) + b$$

$$b = 75$$

$$y = -25 x + 75$$

6) Find the exponential equation(s) which include (4, 8) and (6, 32).

Thanks for visiting. (Hope it helps!)

If you have questions, suggestions, or requests, let us know.

Cheers

Find us at Facebook, TeachersPayTeachers, TES, and Pinterest.

Also, Mathplane.ORG for mobile and tablets