

Geometry Mid-Term Review Questions

Geometry Mid-Term Exam Review Questions

Reflection and Rotation

A) Reflection and Rotation: determine the new coordinates:

1) Reflect over the x-axis:

C' =

2) Reflect over the y-axis:

C' =

3) Shift up 3 units, left 4 units:

4) Rotate clockwise 90° :

5) Rotate counter-clockwise 90 $^{\circ}$:

$$B' =$$

$$C' =$$

6) Reflect over the origin: (rotate 180°)

**Challenge:

7) Reflect over y = 4:

B) Angle Word Problems

- 1) An angle is 14 degrees more than its complement. What is the measure of the angle?
- 2) The supplement of an angle is 9 more than four times its complement. What are the supplement, complement, and angle measures?
- C) Write the equations of the lines:
 - 1) parallel to y = 3 and passing through (-5, 6)
 - 2) perpendicular to the x-axis and passing through (1, 12)
 - 3) perpendicular to x = 5 and passing through (-2, 7)

D) Linear Equations

- 1) Plot the coordinates (2, 6) (5, -3) on the plane.
- 2) What is the slope of a line passing through these two points?

- 3) Write the equation of this line in
 - a) Point slope form:
 - b) Slope intercept form:
 - c) Standard form:
- E) Triangles: Always, Sometimes, or Never?
 - 1) An equilateral triangle is obtuse.
 - 2) A right triangle is isosceles.
 - 3) The sum of the interior angles of an obtuse triangle is 180° .
- F) Triangle Characteristics

If A = 6 and B = 13, what are the <u>possible</u> lengths of side C?

- G) Polygons: Find variables a and b:
 - 1) Given: Degree measures of exterior angles

2) Given: Degree measures of interior angles

H) Triangles and concurrency

Draw the following:

1) 3 medians

2) 3 perpendicular bisectors

3) 3 altitudes

Match each of the following geometry terms with the appropriate triangle points:

Incenter Centroid Orthocenter Circumcenter

- A)
- B)
- C)
- D)

SOLUTIONS-→

Reflection and Rotation

A) Reflection and Rotation: determine the new coordinates:

1) Reflect over the x-axis:

$$A' = (1, -3)$$
 $B' = (-4, 0)$ $C' = (5, 5)$

2) Reflect over the y-axis:

$$A' = (-1, 3)$$
 $B' = (4, 0)$ $C' = (-5, -5)$

3) Shift up 3 units, left 4 units:

$$A' = (-3, 6)$$
 $B' = (-8, 3)$ $C' = (1, -2)$

4) Rotate clockwise 90°:

$$A' = (3, -1)$$
 $B' = (0, 4)$ $C' = (-5, -5)$

5) Rotate counter-clockwise 90°:

$$A' = (-3, 1)$$
 $B' = (0, -4)$ $C' = (5, 5)$

6) Reflect over the origin: (rotate 180°)

$$A' = (-1, -3)$$
 $B' = (4, 0)$ $C' = (-5, 5)$

SOLUTIONS

**Challenge:

7) Reflect over y = 4:

$$A' = (1, 5)$$
 $B' = (-4, 8)$ $C' = (5, 13)$

B) Angle Word Problems

1) An angle is 14 degrees more than its complement. What is the measure of the angle?

the complement is 38

$$x = 52$$
 degrees

$$x - 14$$
 = the complement
 $x + (x - 14) = 90$

2) The supplement of an angle is 9 more than four times its complement. What are the supplement, complement, and angle measures?

$$x =$$
 "an angle"
(180 - x) = "the supplement"
(90 - x) = "its complement"

$$(180 - x) - 9 = 4 \cdot (90 - x)$$

"nine more" "4 times"
$$3x = 189$$

$$171 - x = 360 - 4x$$
$$3x = 189$$

$$x = 63$$

C) Write the equations of the lines:

1) parallel to y = 3 and passing through (-5, 6)

(1, 12)

steps a)

graph
$$y = 3$$
 (0, 3), (1, 3), (2, 3) etc..

d) describe the line...

2) perpendicular to the x-axis and passing through (1, 12)

3) perpendicular to x = 5 and passing through (-2, 7)

D) Linear Equations

- 1) Plot the coordinates (2, 6) (5, -3) on the plane.
- 2) What is the slope of a line passing through these two points?

$$m = \frac{y_1 - y_2}{x_1 - x_2} = \frac{6 - (-3)}{2 + 5} = \boxed{-3}$$

- 3) Write the equation of this line in
 - a) Point slope form: $y + y_1 = m(x + x_1)$

using (2, 6)

$$y - 6 = +3(x - 2)$$

b) Slope intercept form:

$$y = mx + b$$

method 1: rewrite point slope form

(2, 6)

(5, -3)

c) Standard form:

method 2: plug in numbers

$$y = -3x + 0$$

 $y = -3x + 12$

standard form: ax + by = c

rearrange other forms: 3x + y = 12

since slope m = -3 \implies y = -3x + b

then, to find the slope intercept (b), plug in one of the points....

using
$$(2, 6)$$

 $6 = -3(2) + b$
 $b = 12$

- E) Triangles: Always, Sometimes, or Never?
 - 1) An equilateral triangle is obtuse. NEVER

2) A right triangle is isosceles.

SOMETIMES (if it is a 45-45-90, then it is right)

3) The sum of the interior angles of an obtuse triangle is 180° .

ALWAYS

Sum of interior angles of ALL triangles is 180°

F) Triangle Characteristics

If A = 6 and B = 13, what are the possible lengths of side C?

C is the largest side: ("the sum")

$$13 + 6 = 19$$

("the difference"

$$13 - 6 = 7$$

Note: If C were equal to 7 or 19, then we would have a line segment..

Case 1: C is largest side

$$A = 6$$
 $B = 13$

13 < C < 19

$$A = 6$$
$$B = C = 13$$

Case 2: isosceles

If C < 7, then

Case 3: B is the largest side

A and C won't touch!

$$A = 6$$
 $B = 13$
 $7 < C < 13$

If C > 19, then A and B won't touch!

G) Polygons: Find variables a and b:

1) Given: Degree measures of exterior angles

exterior angles must add up to 360 b+b+(b+5)+40+52+80=360 3b+177=360 3b=183 b=61

2) Given: Degree measures of interior angles

H) Triangles and concurrency

Draw the following:

1) 3 medians

(vertex to midpoint of opposite side)

2) 3 perpendicular bisectors

(extend from midpoint of each side)

3) 3 altitudes

(perpendicular line segment from __vertex to opposite side)

Match each of the following geometry terms with the appropriate triangle points:

Incenter Centroid Orthocenter Circumcenter

- A) Centroid
- B) Orthocenter
- C) Circumcenter
- D) Incenter, Centroid, Orthocenter, or Circumcenter

Intersection of 3 altitudes

intersection of medians
AND angle bisectors (and
altitudes/perp. bisectors)

