Algebra: Introduction to Polynomials

Definition, Notes, Examples, and Quizzes (w/Solutions)

Defining Polynomial Expressions

What is a 'polynomial'?

A sum/difference of terms that have variables raised to positive integers and coefficients that are real or complex.

Examples: $x^3 + 3x^2 - 2x + 7$ yes $3xy^2 + 6$ yes $.445z^3 - 3i$ yes $\frac{3}{x^2}$ no $\frac{3}{x^2} = 3x^{-2}$ (Variables must have exponents with positive integers.)

Classifying Polynomial Expressions

There are 2 ways to describe polynomials:

1) The number of monomials ('number of non-zero terms')

# of terms	Classification	Examples		
1	Monomial	xy ² 7 -2z ³		
2	Binomial	$3x + 4$ $-9y^7 - y^2$ $xyz + x^2z^3$		
3	Trinomial	$7 + xyz - 3i$ $x^2 - xy + 3y^4$		
Any	Polynomial	$4x x + 3y + 7z - 23xy^2$		

Comment: When counting terms, consider "like terms" $3x+2y^2+4y^2 \ \ \text{is a binomial (because there is} \ \ 3x \ \ \text{and} \ \ \ 6y^2)$

2) The largest degree of any one term

Degree	Classification	Examples
0	Constant	3 -5 4/5
1	Linear	y + 6 3x .23z - 12
2	Quadratic	$x^2 + 2x - 7$ $6 + y^2$ $x^2 + y^2 - 6y$
3	Cubic	$x^3 + 1$ $2 + 3y - 4y^2 + y^3$ $xy^2 + x + 3$
4	Quartic	$x^4 + x^2y + 4y + 1$
5	Quintic	$x^2y^3 + 7x - 3$

Comments: $= xy^2$ has degree 3 and $= x^2y^3$ has degree 5

— The order of the terms does not matter.

There are polynomials with larger degrees that are not listed above.
 EX: 'octic' 'nonic' 'decic'

Defining/Classifying Polynomials

Examples:

	Number	Degree	Expression
$x^2 + 6x + 5$	3	2	Quadratic Trinomial
$x^3y^5 - 3y + 7x$	3	8	Octic Trinomial
y —2	2	1	Linear Binomial
$z + 2z^2 - 7z^3$	3	3	Cubic Trinomial
$x^2 + 3x + 8 - x$	3	2	Quadratic Trinomial
(note: you must comb "like terms")	ine		

Quick Quiz:

Define any polynomials in the following expressions:

1)
$$x + 3y - 2$$

2)
$$2 + 3x - 4x^2$$

3)
$$\frac{1}{y^3}$$

4)
$$12y + 3/4$$

5)
$$z^3 + 1$$

6)
$$3x^2y^5 + 2xy + 8$$

7)
$$x^2y + \sqrt{7}$$

8)
$$4^2 r^3 s^2$$

9)
$$x^2 + xy - 10x + 3$$

10)
$$x^2 / \sqrt{x+2}$$

**Challenge: (Using Examples)

Show that multiplying 2 linear binomials can produce a quadratic trinomial.

Then, show that multiplying 2 linear binomials can produce a quadratic binomial.

Quick Quiz:

Define the following Expressions:	Number of monomials	Highest Degree	Definition
1) $x + 3y - 2$	3	1	Linear Trinomial
2) $2 + 3x - 4x^2$	3	2	Quadratic Trinomial
3) $\frac{1}{y^3}$	0	0	
4) $12y + 3/4$	2	1	Linear Binomial
5) $z^3 + 1$	2	3	Cubic Binomial
6) $3x^2y^5 + 2xy + 8$	3	7	Trinomial of degree 7
7) $x^2y + \sqrt{7}$	2	3	cubic binomial
8) $4^2 r^3 s^2$	1	5	5th degree monomial
9) $x^2 + xy - 10x + 3$	4	2	quadratic polynomial
10) $x^2 \sqrt{x+2}$	0	0	
**Challenge: (Using Examples)			

**Challenge: (Using Examples)

Show that multiplying 2 linear binomials can

produce a quadratic trinomial. Then, show that multiplying 2 linear binomials can produce a quadratic binomial.

$$(X + 5)(X + 3) = X^2 + 8X + 15$$
 Quadratic Trinomial
$$(X + 7)(X - 7) = X^2 - 49$$
 Quadratic Binomial

also,

$$(X + 5)(Y + 3) = XY + 3X + 5Y + 15$$
 Quadratic with 4 terms

Working with Polynomials

Adding/Subtracting Polynomials: Collect/Combine "Like Terms" (adding or subtracting the coefficients)

Example:
$$(3x^4 + 5x^2 + 5) + (4x^4 + 9x^2 + 11x - 3)$$

$$(3x^4 + 5x^2 + 5) + (4x^4 + 9x^2 + 11x - 3)$$

$$7x^4$$
There is no x^3 term
$$(5x^2 + 5) + (9x^2 + 11x - 3)$$

$$14x^2$$

$$(+5) + (+11x - 3)$$

$$11x$$

$$7x^4 + 14x^2 + 11x + 2$$

$$(+5) + (-3)$$

Example:
$$(2t^3 - 4t^2 + 12t - 5) - (1 - 3t + 2t^2 + t^3)$$

***Remember to combine "Like" terms

and, distribute the negative throughout the entire polynomial

$$(2t^{3} - 4t^{2} + 12t - 5) - (1 - 3t + 2t^{2} + t^{3})$$

$$2t^{3} - t^{3} = t^{3}$$

$$(-4t^{2} + 12t - 5) - (1 - 3t + 2t^{2} +)$$

$$-4t^{2} - 2t^{2} = -6t^{2}$$

$$(+12t - 5) - (1 - 3t +)$$

$$12t - (-3t) = 15t$$

$$(-5) - (1)$$

$$-5 - 1 = -6$$

"Distribute" -- Multiply each term in the polynomial

Working with Polynomials

Example: $5x(3x + 2x^2 - 1)$

$$5x \cdot 3x = 15x^2$$

$$5x \cdot 2x^2 = 10x^3$$

$$5x \cdot (-1) = -5x$$

(then, write in descending order)

$$10x^3 + 15x^2 - 5x$$

Example:
$$-2xy(x^3 + 2y^2 + 4y - 1)$$

$$-2xy \cdot x^3 = -2x^4 y$$

$$-2xy \cdot 2y^2 = -4xy^3$$

$$-2xy \cdot 4y = -8xy^2$$

$$-2xy \cdot (-1) = 2xy$$

(multiply carefully, then combine all the terms....)

$$-2x^4y - 4xy^3 - 8xy^2 + 2xy$$

Taking out the Greatest Common Factor (GCF)

A useful way to simplify a polynomial is to take out the GCF:

Example: $9x^5 + 12x^3 + 6x$

The greatest common factor of 9, 12, and 6 is 3 and the greatest common factor of x^5 , x^3 , and x is x

The GCF of the polynomial is 3x

**So divide each term by 3x

Example:
$$4a^{3} bc - 10ab^{4} + 20ac^{2}$$

The greatest common factor of 4, 10, and 20 is 2 and the greatest common factor of a^3 , a, and a is a then.. the GCF of b, b^4 and no b is 1 the GCF of c, no c, and c^2 is 1

The GCF of the polynomial is 2a

(divide each term by 2a)

$$4a^{3} bc - 10ab^{4} + 20ac^{2}$$

$$\begin{vmatrix} & & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & \\ & & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & \\ & & \\ & \\ & & \\ & & \\ & \\ & & \\ & \\ & & \\ & & \\ & & \\ & & \\ &$$

Practice Quiz (and Solutions)-→

Introduction to Polynomials Quiz

I. Addition/Subtraction: Simplify the following

a)
$$(2x^2 - 4x + 6) + (x^2 + 13x - 5)$$
 b) $(2x + 5 - 7x^2) + (x^2 - 11x + 3)$ c) $(x^2 - 3x + 6) - (2x^2 + 6x - 5)$

b)
$$(2x + 5 - 7x^2) + (x^2 - 11x + 3)$$

c)
$$(x^2 - 3x + 6) - (2x^2 + 6x - 5)$$

d)
$$(3ab^2 + 2a^2b - b^3) + (5a^2 + 6ab^2 + 2b^3)$$

e)
$$3(x + y) + 2c(x + y) + d(x + y)$$

II. Multiplication: Expand the following

a)
$$(x + 3)(x + 7)$$

b)
$$(x + 4)^2$$

c)
$$(x-11)(x+4)$$

d)
$$(x + 2y)(3x - y)$$

e)
$$-(x-3)(x+8)$$

f)
$$(x + 5)(x^2 + 7x - 1)$$

g)
$$(x+9)(x-9)$$

h)
$$(x + 1)(x + 2)(x + 3)$$

i)
$$(x^2-2)(x^3+6x+14)$$

III. Classifying Polynomials: Determine which are polynomials; then, identify the type, degree, and lead coefficients

a)
$$3x + 3$$

b)
$$5 + 4x - 5x^3$$

c)
$$4^{Y} + 1$$

d)
$$z^3 + z^2 + z + \frac{1}{Z}$$

e)
$$4c^3d + 3cd^2 + d^3$$

f)
$$9x^{3}y^{3}$$

IV. Simplify and Classify: Solve and identify each polynomial (type and degree)

a)
$$(2x+3)^2 + (3x^2+6)$$

b)
$$(2a^2 + b)(2b + a)$$

c)
$$-3(6-2s^2+5s^3)$$

- a) Classify the following $3x^2y^A + 42x$
- b) If f(x) is a polynomial, describe the domains of A and B $f(x) = 5x^{A-7} 2x^{(B/2)}$
- c) What is the area of each shaded region? (Write an expression in simplified form)

2) Write equations to describe the shaded areas..

3) Find x

Shaded area is 273

ANSWERS-→

I. Addition/Subtraction: Simplify the following

a)
$$(2x^2 - 4x + 6) + (x^2 + 13x - 5)$$

$$3x^2 + 9x + 1$$

a)
$$(2x^2 - 4x + 6) + (x^2 + 13x - 5)$$
 b) $(2x + 5 - 7x^2) + (x^2 - 11x + 3)$ c) $(x^2 - 3x + 6) - (2x^2 + 6x - 5)$

$$-6x^2 - 9x + 8$$

c)
$$(x^2 - 3x + 6) - (2x^2 + 6x - 5)$$

distribute -1

$$x^2 - 3x + 6 + (-2x^2 - 6x + 5)$$

$$-x^2 - 9x + 11$$

d)
$$(3ab^2 + 2a^2b - b^3) + (5a^2 + 6ab^2 + 2b^3)$$

$$9ab^2 + 2a^2b + 5a^2 + b^3$$

e)
$$3(x + y) + 2c(x + y) + d(x + y)$$

same term

$$(3 + 2c + d)(x + y)$$

II. Multiplication: Expand the following

a)
$$(x + 3)(x + 7)$$

FOIL (First, Outer, Inner, Last)

$$x^2 + 7x + 3x + 21$$

$$x^2 + 10x + 21$$

d)
$$(x + 2y)(3x - y)$$

$$3x^2 - xy + 6xy - 2y^2$$

$$3x^2 + 5xy - 2y^2$$

g)
$$(x+9)(x-9)$$

$$x^2 - 9x + 9x - 81$$

$$x^2 - 81$$

('difference of squares')

b)
$$(x + 4)^2$$

$$(x + 4)(x + 4)$$

$$x^2 + 8x + 16$$

e)
$$-(x-3)(x+8)$$

$$-1 \cdot (x^2 + 5x - 24)$$

$$-x^2 - 5x + 24$$

h)
$$(x + 1)(x + 2)(x + 3)$$

$$(x^{2} + 3x + 2) \cdot (x + 3)$$

$$x^{3} + 3x^{2} + 2x$$

$$+ 3x^{2} + 9x + 6$$

$$x^{3} + 6x^{2} + 11x + 6$$

c)
$$(x-11)(x+4)$$

$$x^2 + 4x - 11x - 44$$

$$x^2 - 7x - 44$$

f)
$$(x + 5)(x^2 + 7x - 1)$$

$$\begin{array}{r} x^3 + 7x^2 - x \\
+ 5x^2 + 35x - 5 \\
\hline
 x^3 + 12x^2 + 34x - 5
\end{array}$$

i)
$$(x^2-2)(x^3+6x+14)$$

$$x^5 + 6x^3 + 14x^2$$

$$+$$
 $-2x^3$ $-12x-28$

$$x^5 + 4x^3 + 14x^2 - 12x - 28$$

III. Classifying Polynomials: Determine which are polynomials; then, identify the type, degree, and lead coefficients

Solutions

a)
$$3x + 3$$
 binomial (2 terms); degree 1 (linear); lead coefficient: 3

b)
$$5 + 4x - 5x^3$$
 trinomial (3 terms); degree 3 (cubic); lead coefficient: -5 $-5x^3 + 4x + 5$

d)
$$z^3 + z^2 + z + \frac{1}{Z}$$
 NOT a polynomial -- All exponents must be whole numbers z^{-1}

e)
$$4c^3 d + 3cd^2 + d^3$$
 trinomial (3 terms); degree 4; lead coefficient: 4

f)
$$9x^3y^3$$
 monomial (1 term); degree 6 ; lead coefficient: 9

IV. Simplify and Classify: Solve and identify each polynomial (type and degree)

a)
$$(2x+3)^2 + (3x^2+6)$$
 $4x^2 + 6x + 6x + 9 + 3x^2 + 6$ $7x^2 + 12x + 15$

Quadratic Trinomial

b)
$$(2a^2 + b)(2b + a)$$
 $4a^2b + 2a^3 + 2b^2 + ba$

Four-term polynomial of degree 3

c)
$$-3(6-2s^2+5s^3)$$
 $-18+6s^2-15s^3$ $-15s^3+6s^2-18$

Cubic Trinomial

- a) Classify the following $3x^2y^A + 42x$
 - If A is a whole number, then this is a binomial with degree A + 2

If A is not a whole number, then this is not a polynomial!

- b) If f(x) is a polynomial, describe the domains of A and B $f(x) = 5x^{A-7} 2x^{(B/2)}$
 - $A \ge 7$ where A is a whole number
 - B = 0 or any positive even number
- c) What is the area of each shaded region? (Write an expression in simplified form)

$$(x+6)(x+6) - (x-3)(x-3)$$

 $x^2 + 12x + 36 - (x^2 - 6x + 9)$
 $18x + 27$

$$\frac{1}{2}(x+5)(2x+3) - (x+2)(x)$$

$$\frac{1}{2}(2x^2 + 3x + 10x + 15) - (x^2 + 2x)$$

$$x^2 + \frac{13}{2}x + \frac{15}{2} - x^2 - 2x$$

$$\frac{9}{2}x + \frac{15}{2}$$

x = 7, so the dimensions are 6 and 12

First, multiply/expand the binomals...

$$(x-1)(x+5) = 72$$

$$x^2 + 4x - 5 = 72$$

collect like terms on the left...

$$x^2 + 4x - 77 = 0$$

Then, factor and solve... (x + 11)(x - 7) = 0

3x + 1

2x

3x + 1

x can be -11 or 7...

since sides cannot be negative, we'll exclude -11..

2) Write equations to describe the shaded areas..

$$(y-2)(y+4) = y^2 + 2y - 8$$

 $2x(x) = 2x^2$

$$y^2 + 2y - 8 - 2x^2$$

area of square:

$$(3x+1)^2 = 9x^2 + 6x + 1$$

area of triangle:

$$\frac{1}{2}(x+4)(2x) = \frac{1}{2}(2x^2+8x)$$

shaded area:

$$9x^2 + 6x + 1 - (x^2 + 4x)$$

$$8x^2 + 2x + 1$$

3) Find x

Shaded area is 273

Area of big rectangle: $(2x - 2)(3x + 7) = 6x^2 + 8x - 14$

 $= 2x^2 + 5x$ Area of small rectangle: (x)(2x - 5)

> $4x^{2} + 13x + 14 = 273$ Shaded area:

$$4x^{2} + 13x - 287 = 0$$

$$(4x + 41)(x - 7) = 0$$

$$x = 7$$
 or $-4x/4$

large rectangle: $12 \times 28 = 336$ small rectangle: $7 \times 9 = 63$

Thanks for visiting. (Hope it helped!)

If you have questions, suggestions, or requests, let us know.

Good luck!

Also, our stores at TeachersPayTeachers and TES

And, Mathplane *Express* for mobile at Mathplane.ORG

Challenge Question:

If
$$(x + y)^2 = 80$$
 and $-xy = 2$, what is $x^2 + y^2$?

The answer is.....

If
$$(x + y)^2 = 80$$
 and $-xy = 2$ then what is $x^2 + y^2$?

SOLUTION:

$$x^{2} + 2xy + y^{2} = 80$$

 $xy = -2$
 $x^{2} + 2(-2) + y^{2} = 80$
 $x^{2} + y^{2} = 84$