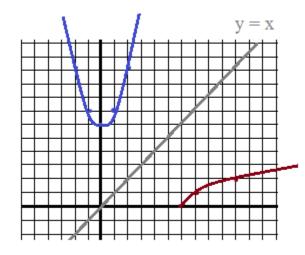
Inverse Functions

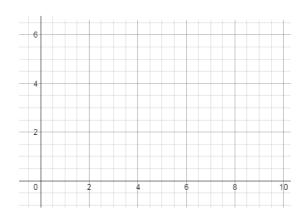
Practice questions (with solutions)



Includes graphing, finding inverses, symmetry, cryptography, and more...

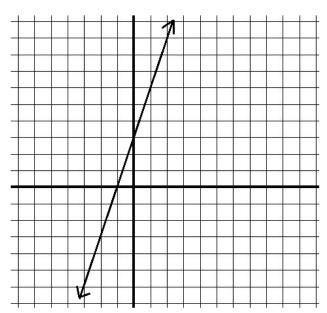
Domain, Range, and Inverse Functions

- 1) For the function $h(x) = \sqrt{3x 4}$
 - a) find the inverse $h^{-1}(x)$
 - b) what is the domain of h(x)? the range of h(x)?
 - c) what is the domain of $h^{-1}(x)$? the range of $h^{-1}(x)$?
 - d) Graph the function h(x), the inverse $h^{-1}(x)$, and the line y = x



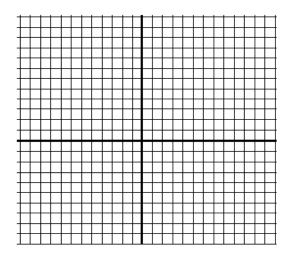
2) Graph the inverse:

Then, verify the results algebraically...



3) $g(x) = \sqrt[3]{(x-1)}$

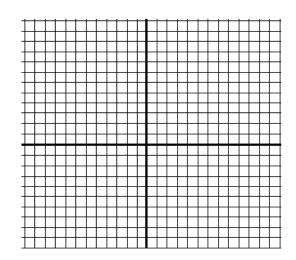
a) Sketch the function g(x)



b) Find the inverse of g(x)

c) What is the domain and range of $g^{-1}(x)$?

d) Graph $\neg(g(x))$



4) If f(x) = 5 - 2x, what is $f^{-1}(3)$?

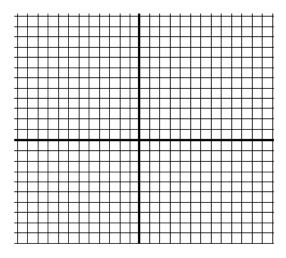
Domain, Range, and Inverse Functions

5)
$$f(x) = x^2 + 6$$

- a) Find the inverse $f^{-1}(x)$
- b) Verify the inverse -- find $f(f^{-1}(x))$ and $f^{-1}(f(x))$

c) What is the domain and range of f(x)? Of $f^{-1}(x)$? Are the "inverses" one-to-one?

d) Graph f(x) and $f^{-1}(x)$



a)

f(x)

 $f^{-1}(x)$

(-∞ ,∞) Domain

[8, 200]

Range

(5, 0)

(+2, 0)

y-intercept

x-intercept

additional point (14, -1)

b)

f(x)

 $f^{-1}(x)$

(+∞ ,∞) Domain

Range

[11, ∞)

x-intercept

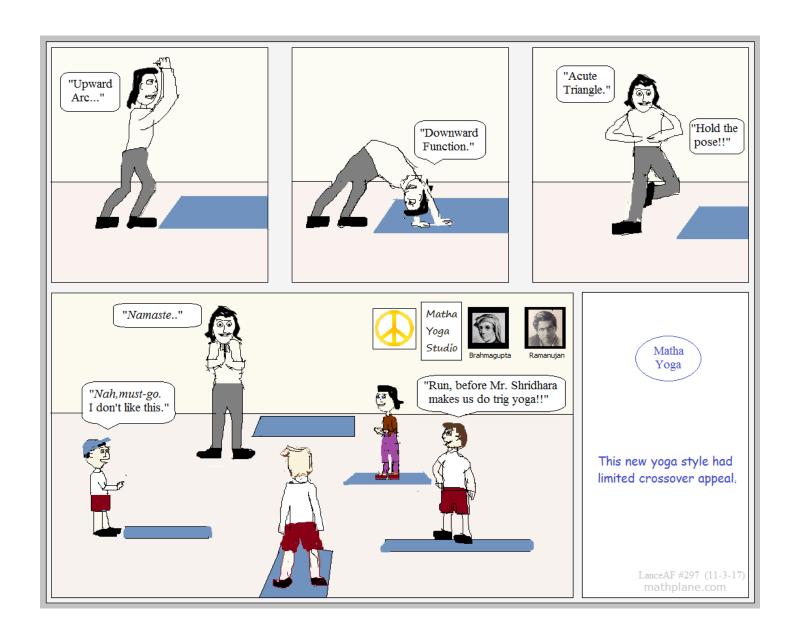
(4, 0)

y-intercept

(0, 7)

additional point (7, 15)

⁷⁾ For the one-to-one function $f(x) = (x-3)^2 + 5$ where $x \le 3$ find $f^{-1}(x)$



SOLUTIONS -→

SOLUTIONS

- 1) For the function $h(x) = \sqrt{3x 4}$
 - a) find the inverse $h^{-1}(x)$

for
$$y = /\sqrt{3x - 4}$$
 switch the x and y... $3y = x^2 + 4$ $y = \frac{x^2 + 4}{3}$ $x^2 = 3y - 4$ then, solve for y... $y = \frac{x^2 + 4}{3}$ $h^{-1}(x) = \frac{x^2 + 4}{3}$

- where $x \ge 0$

("restrict the domain" to make the functions 1 to 1)

b) what is the domain of h(x)? the range of h(x)?

(no negatives under a radical) domain:
$$x \ge \frac{4}{3}$$

range: $h(x) \ge 0$

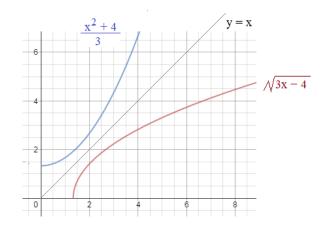
c) what is the domain of $h^{-1}(x)$? the range of $h^{-1}(x)$?

$$h^{-1}(x) = \frac{x^2 + 4}{3}$$
 domain: $h(x) \ge 0$

Notice: the domain of h(x) is the range of $h^{-1}(x)$ and, the range of h(x) is the domain of $h^{-1}(x)$

where $x \ge 0$ range: $x \ge \frac{4}{3}$

d) Graph the function h(x), the inverse $h^{-1}(x)$, and the line y = x



2) Graph the inverse.

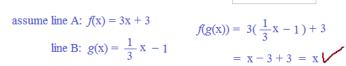
Then, verify the results algebraically...

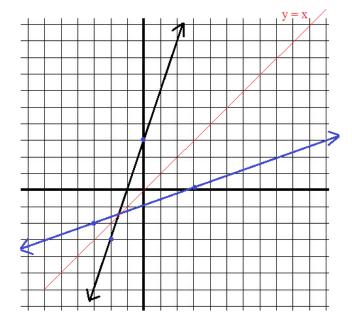
method 1: since it is a line, the inverse will be a line.. therefore, we need just 2 points! ---> pick two points and "flip the coordinates"...

then, draw a line throught the points...

method 2: the equation of the line is y = 3x + 3

find the inverse: x = 3y + 33y = x - 3 $y = \frac{x - 3}{3}$ solve for y $y = \frac{1}{3}x - 1$





3)
$$g(x) = \sqrt[3]{(x-1)}$$

SOLUTIONS

Domain, Range, and Inverse Functions

a) Sketch the function g(x)

note: this is
$$\sqrt[3]{x}$$
 shifted one unit to the right

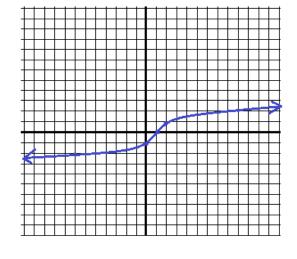
X	g(x)
-26	-3
-7	-2
0	-1
1	0
2	1
9	2
28	3

b) Find the inverse of g(x)

$$y = (x - 1)^{\frac{1}{3}}$$
 write in exponential form; switch x and y
$$x = (y - 1)^{\frac{1}{3}}$$
 solve for y

$$x^3 = y - 1$$
 $y = x^3 + 1$

$$y = x^3 + 1$$



$$g^{-1}(x) = x^3 + 1$$

c) What is the domain and range of $g^{-1}(x)$?

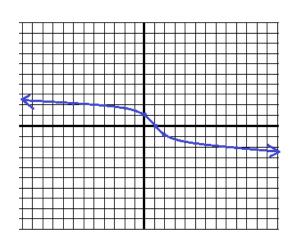
domain and range: all real numbers

d) Graph $\neg(g(x))$

$$-g(x) = -\sqrt[3]{(x-1)}$$

note: graph is 'opposite' image of above graph --- it is *reflected over the x-axis*

X	g(x)	-g(x)
-26	-3	3
-7	-2	2
0	-1	1
1	0	0
2	1	-1
9	2	-2
28	3	-3



4) If f(x) = 5 - 2x, what is $f^{-1}(3)$?

$$5 - 2x = 3$$
 $x = 1$

f(1) = 3 So, the inverse (reverse the coordinate) is (3, 1)

answer: 1

Domain, Range, and Inverse Functions

SOLUTIONS

5)
$$f(x) = x^2 + 6$$

a) Find the inverse $f^{-1}(x)$ $y = x^2 + 6$ (switch the x and y) note: since it is a function, the output is only $+ \sqrt{(\text{and not } -)}$ $y^2 = x - 6$ $y = \sqrt{x - 6}$ $f^{-1}(x) = \sqrt{x - 6}$

b) Verify the inverse -- find $f(f^{-1}(x))$ and $f^{-1}(f(x))$

$$f(\sqrt{x-6}) = (\sqrt{x-6})^{2} + 6 \qquad f^{-1}(x^{2}+6) = \sqrt{(x^{2}+6)-6}$$

$$= (x-6)+6 \qquad = x \qquad = x$$

c) What is the domain and range of f(x)? Of $f^{-1}(x)$? Are the "inverses" one-to-one?

$$f(\mathbf{x}) = \mathbf{x}^2 + 6$$

domain: all real numbers range: $f(x) \ge 6$

since domain of f(x) and range of $f^{-1}(x)$ are different, functions are not 1-to-1

d) Graph f(x) and $f^{-1}(x)$

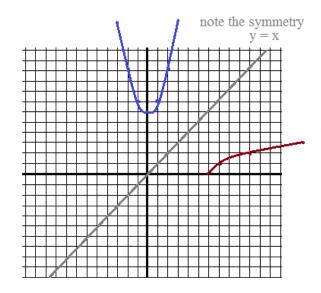
X	<i>f</i> (x)	X	$f^{-1}(\mathbf{x})$
-3 -2 -1 0 1 2 3	15 10 7 6 7 10	15 10 7 6 7 10 15	-3 2 1 0 1 2 3
3	15	22	4

note: the ordered pairs are reversed!

$$f^{-1}(\mathbf{x}) = \sqrt{\mathbf{x} - 6}$$

domain: $x \ge 6$ (if x < 6, then negative under the radical sign)

range: $y = f^{-1}(x) \ge 0$ (the opposites are omitted to preserve the function)



f(x)

 $f^{-1}(x)$

Domain $(+\infty, \infty)$

[8, 200]

Range

[8, 200]

(-∞ , ∞)

x-intercept

(5, 0)

(+2, 0)

y-intercept

Range

(0, -2)

(0, 5)

additional point (14, -1)

(-1, 14)

SOLUTIONS

.

Remember, the domain and range swap places.. (each individual point reflects over y = x)

Domain
$$(+\infty, \infty)$$

$$f^{-1}(x)$$

7) For the one-to-one function
$$f(x) = (x-3)^2 + 5$$
 where $x \le 3$ find $f^{-1}(x)$

domain of
$$f(x)$$
: $(-\infty, 3]$

range of f(x): [5, ∞)

so, the domain of f^{-1} (x): [5, ∞)

the range of f^{-1} (x): $(-\infty, 3]$ must restrict the range to the negative values!

 $x = (y-3)^2 + 5$

$$x - 5 = (y - 3)^2$$

$$\frac{+}{\sqrt{x-5}} = y-3$$

$$y = - \sqrt{x-5}$$

$$y = \sqrt{x-5} + 3$$

mathplane.com

Inverses Application: Cryptography

Suppose we want to send a secret message (using an algebraic function/code)

We could establish a 1-1 function for the translation...

Example: f(x) = 3x + 7 where x is a number representing a letter in the alphabet...

$$A = 1$$

$$B = 2$$

$$C = 3$$

If we want to send the letter A, we would find f(1) = 3(1) + 7 = 10 and send "10"

Then, how would the receiver decode the message?

The receiver would input the number into the inverse function!

Find the inverse:
$$x = 3y + 7$$

$$3y = x - 7$$

$$y = \frac{x - 7}{3}$$
 To decode the message, use $f^{-1}(x) = \frac{x - 7}{3}$
$$f^{-1}(10) = \frac{10 - 7}{3} = 1$$
 "A"

Again, this works effectively (accurately), because it's a 1-1 function...

a) If I want to send the message "help", what number sequence would I send?

h ---> 8
$$f(8) = 31$$

e ---> 5 $f(5) = 22$
1 ---> 12 $f(12) = 43$
p ---> 16 $f(16) = 55$

b) If I received a message with the sequence 46, 10, 67, 31, what would it be?

$$f^{-1}(46) = 13 ---> m$$

$$f^{-1}(10) = 1 ---> a$$

$$f^{-1}(67) = 20 ---> t$$

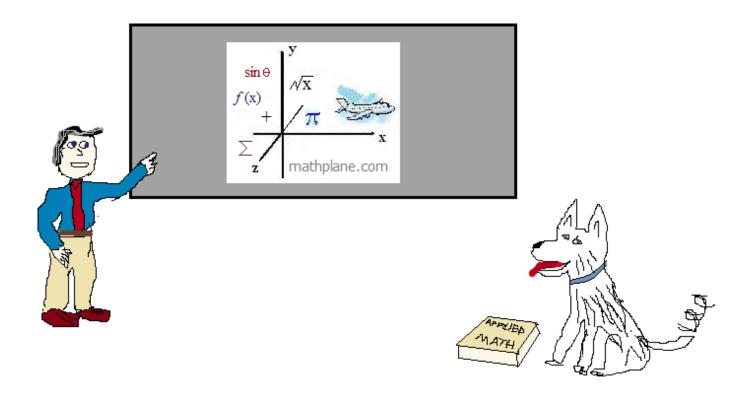
$$f^{-1}(31) = 8 ---> h$$
 $f^{-1}(31) = 8 ---> h$

mathplane.com

Thanks for visiting! (Hope it helps)

If you have questions, suggestions, or requests, let us know.

Cheers



Also, at mathplane.ORG for mobile...

And, find our stores at TeachersPayTeachers and TES.