Calculus: Limits and Asymptotes

Notes, examples, & practice quiz (with solutions)

Topics include definitions, greatest integer function, strategies, infinity, slant asymptote, squeeze theorem, and more.

Definition of a Limit

If f(x) gets arbitrarily close to a single number L as x approaches c, then we write

$$\lim_{x \to c} f(x) = L$$

and say that "the limit of f(x), as x approaches c, is L."

Also, in order for the limit to exist, the values of f must tend to the same number L from the left or the right.

$$\lim_{x\to c^{-}} f(x) = L$$

$$\lim_{x\to c^+} f(x) = L$$

("left-hand limit of f(x)" or "limit from the left")

("right-hand limit of f(x)" or "limit from the right")

Illustrations and Examples:

Note -- from the definition:

1) The limit is unique if it exists.

(limit from the left = limit from the right) 2) The limit does not depend on the actual

value of f(x) at c. Instead, it is determined by values of f(x) when x is near c

$$f(x) = \frac{x^3 - 1}{x - 1}$$

$$f(1) = \frac{0}{0}$$
 undefined

 $\lim_{x \to 1} f(x) = 3$

when
$$x = 1$$

$$g(1) = 0$$

$$g(x) = 3$$

$$h(1) = 1 + 1 + 1 = 3$$

$$\lim_{x \to 1} h(x) = 3$$

Note: The values at 1 are all different, but the limits are all the same,

the values of the functions as x gets near 1, approach 3.

$$\lim_{x \to 1.5} [x] = 1$$

$$\lim_{x \to -2.3} [x] = -3$$

 $\lim [x] \neq 2$ $x \rightarrow 2$

why is it not equal

Note: For the 'greatest integer function', the limit exists for all values of x that are NOT integers!

$$\lim_{x \to 2^+} [x] = 2$$

If you look at the graph, you can see when approaching 2 FROM THE RIGHT, the values are 2...

$$\lim_{x \to 2^{-}} [x] = 1$$

But, when approaching 2 FROM THE LEFT, the values are 1..

Since the limits are different, the limit does not exist at 2!!

Example:
$$(x^2 - 9)$$

Find the limit as x approaches -3

(algebraically)

$${\textstyle \stackrel{\wedge}{\Pi}}$$

$$\frac{(x+3)(x-3)}{(x+3)(x-1)}$$

(graphically)

at
$$x = -3$$

3/2

****The limit of a function is the value that you approach from the left and from the right...

Important: you never reach the actual value... the limit is where you're approaching!!

For example, when the limit of a function is 2, you approach 2 (or, "get infinitely close to" 2)

on the number line, you travel -2, -1, 0, 1, 1.5, 1.8, 1.9, 1.99, 1.999, 1.99999.... You never reach 2, because there is always a point in between!

Example:

$$f(x) = \begin{cases} \frac{-x^3 + 4x}{x} & \text{if } x = 0 \\ 2 & \text{if } x = 0 \end{cases}$$

$$f(0) = 2$$

But, the limit as x approaches 0 is 4...

Notice, the limit as you approach x = 0, is 4.... (i.e. as you get infinitely close to

(i.e. as you get infinitely close to x = 0, the value gets closer and closer to 4...)

However, at the exact point x = 0, the output is 2!

Finding Limits: Examples

1) "Plug in the Number" (Direct Substitution)

$$\lim_{x \to 3} x^2 + 3x - 1 = \lim_{x \to 3} x^2 + \lim_{x \to 3} 3x - \lim_{x \to 3} 1$$

$$= 9 + 9 - 1 = 17$$

$$\lim_{x \to 0} 1 + x\cos(2x) = \lim_{x \to 0} 1 + \lim_{x \to 0} x \cdot \lim_{x \to 0} \cos(2x)$$

$$\lim_{x \to 8} \quad \frac{x}{x - 8} = \frac{8}{0} \quad \text{undefined (or, does not exist)}$$

2) "Eliminate the Problem"

$$\lim_{x \to 2} \frac{(x^2 - 4)}{(x - 2)} = \frac{0}{0}$$
 However, we can factor the numerator.
$$\lim_{x \to 2} \frac{(x + 2)(x - 2)}{(x - 2)}$$

then, cancel the denominator...
$$\lim_{x\to 2} \frac{(x+2)(x-2)}{(x-2)}$$

then, solve...
$$\lim_{x \to 2} x + 2 = \boxed{4}$$

$$\lim_{x \to 2} \frac{x^3 - 8}{x^2 - 4}$$

Again, at x=2, there is a 0 in the denominator...

 $\lim_{x \to 2} \frac{(x-2)(x^2+2x+4)}{(x+2)(x-2)}$

So, we factor (with difference of squares and difference of cubes)

 $\lim_{x \to 2} \frac{(x-2)(x^2+2x+4)}{(x+2)(x-2)}$

$$\frac{(2)^2 + 2(2) + 4}{(2) + 2} = \frac{12}{4} = \boxed{3}$$

3) "Extrapolate the Limit"

$$\lim_{x \to \infty} 1 + \frac{2}{x^3} = 1$$

00	approaches	10	4	2	1	1/2	X
s 1	approaches	1.002	1.031	1.25	3	17	f(x)

$$\lim_{x \to \infty} \frac{2^{-x}}{2^x} = 0$$

As X increases, the numerator is getting smaller and the denominator is getting larger.

Therefore, the function is decreasing toward 0.

"End Behavior of Polynomial"

For polynomials whose (largest) degree ≥ 1

if leading coefficient is positive, then it becomes infinite as x does..

if leading coefficient is negative, then it becomes negatively infinite as x increases to ∞

$$\lim x^2 - 23x + 2 = \infty$$

$$\lim_{x \to \infty} 8x - 5x^2 = -\infty$$

$$\lim_{x \to \infty} .00004x - 10^5 = \infty$$

4) "Utilizing the Conjugate"

Finding Limits: Examples

$$\lim_{h\to 0} \ \frac{\sqrt{1+h} \ -1}{h} \qquad \text{"plug in the number"} \ \frac{\sqrt{1+0} \ -1}{0} \ = \ \frac{0}{0} \ \ \text{(cannot determine yet)}$$

$$\lim_{h\to 0} \frac{(\sqrt{1+h}-1)}{h} = \frac{\sqrt{1+h}^2 - 1^2}{h(\sqrt{1+h}+1)} = \frac{\sqrt{1+h}^2 - 1^2}{h(\sqrt{1+h}+1)} = \lim_{h\to 0} \frac{**Important observation: we multiplied the numerator terms, but did not combine the denominator terms}$$

$$= \frac{h}{h(\sqrt{1+h}+1)} = \lim_{h\to 0} \frac{1}{\sqrt{1+h}+1} = Iry again... \boxed{\frac{1}{2}}$$

5) "Expand or Rewrite"

$$\lim_{h\to 0} \frac{\left(h+2\right)^3-8}{h} \quad \text{"substitute the 0"} \quad \frac{\left(0+2\right)^3-8}{0} = \frac{0}{0} \quad \text{(cannot determine yet)}$$

Expand the numerator:

$$\lim_{x \to -4} \quad \frac{\frac{1}{4} + \frac{1}{x}}{4 + x} \quad = \quad \lim_{x \to -4} \quad \frac{\frac{x}{4x} + \frac{4}{4x}}{\frac{4 + x}{4x}} \quad = \quad \lim_{x \to -4} \quad \frac{\frac{x + 4}{4x}}{\frac{4 + x}{x + 4}} \quad = \quad \lim_{x \to -4} \quad \frac{1}{4x} \quad = \quad \frac{-1}{16}$$

Example: Using 2 methods, find $\lim_{x \to 9} \frac{\sqrt{x} - 3}{x - 9}$

method 1: multiply by the conjugate

$$\lim_{x \to 9} \frac{\sqrt{x} - 3}{x - 9} \frac{(\sqrt{x} + 3)}{(\sqrt{x} + 3)} =$$

$$\lim_{x\to 9} \frac{x-9}{x-9 (\sqrt{x}+3)} =$$

$$\lim_{x \to 9} \frac{1}{(\sqrt{x} + 3)} = \boxed{\frac{1}{6}} \quad \underline{\qquad}$$

method 2: extrapolate / use a chart

x	8	8.5	8.9	9	9.1	9.5	10	
f(x)	.171	.169	.167		.166	.164	.162	
7								

 $\lim_{n \to \infty} 1 - \cos x$ $x \rightarrow 0$ sinx

substitute x = 0, $\frac{1 - \cos(0)}{\sin(0)} = \frac{0}{0}$ indeterminate...

Finding Limits: Examples

(Use conjugate)

$$\frac{1-\cos x}{\sin x} \cdot \frac{(1+\cos x)}{(1+\cos x)} =$$

$$\frac{1-\cos^2 x}{\sin x(1+\cos x)} =$$

(Trig Identity)

$$\frac{\sin^2 x}{\sin x(1 + \cos x)} = \frac{\sin x}{(1 + \cos x)}$$

substitute
$$x = 0$$

$$\frac{\sin(0)}{(1+\cos(0))} = \frac{0}{2} = 0$$

Example:

$$\lim_{x \to 0} \frac{\frac{x-1}{5x-3} - \frac{1}{3}}{x}$$

 $\lim_{x \to 0} \frac{\frac{x-1}{5x-3} - \frac{1}{3}}{\frac{1}{3}}$ substitute x = 0, and the result is $\frac{0}{0}$ indeterminate...

(Combine numerator terms and simplify)

$$\frac{\frac{3(x-1)}{3(5x-3)} - \frac{(5x-3)(1)}{(5x-3)(3)}}{x} = \frac{\frac{3x-3 - (5x-3)}{(5x-3)(3)}}{x} = \frac{\frac{-2x}{15x-9}}{x}$$

$$\frac{3x-3-(5x-3)}{(5x-3)(3)} = -$$

$$= \frac{-2}{15x - 9} = \boxed{\frac{2}{9}}$$

Example:

$$\lim_{x \to 2^{-}} \frac{x^{2}(x-2)(x+3)}{|x-2|}$$

limit as x approaches 2 from the left side...

at x = 2, the equation is 0/0

-20 from the left!

(20 from the right)..

X	1	1.5	1.9	1.95	2.05	2.1	2.5	3
f(x)	-4	-10.1	-17.7	-18.8	21.2	22.5	34.4	54

Example:

$$\lim_{x \to 4} \frac{\frac{3}{x+2} - \frac{1}{x-2}}{\frac{1}{x-2}}$$

$$\lim_{x \to 4} \frac{\frac{3}{x+2} - \frac{1}{x-2}}{\frac{x-4}{x-2}} \qquad \frac{3(x-2) - (x+2)}{(x-2)(x+2)} = \frac{\frac{3x-8-x}{(x-2)(x+2)}}{\frac{x-4}{x-2}}$$

$$\frac{2(x-4)}{(x-2)(x+2)} \cdot \frac{1}{x-4} = \frac{2}{(x-2)(x+2)}$$

$$\lim_{x \to 4} \frac{2}{(x-2)(x+2)} = 1/6$$

Using a graph to determine the limit: The absolute value example

$$h(\mathbf{x}) = \frac{\mathbf{x} - 3}{|\mathbf{x} - 3|}$$

Find
$$\lim_{x \to 3} h(x)$$

Step 1: Use direct substitution

$$\lim_{x \to 3} \frac{x-3}{|x-3|} = \frac{(3)+3}{|(3)+3|} = \frac{0}{0}$$
 Inconclusive!

Step 2: Try to factor or use conjugates

These techniques will not work in this problem...

Step 3: Make tables of values and graph

from the left		appro from t	
X	h(x)	X	h(x)
2	-1	4	1
2.5	-1	3.5	1
2.8	-1	3.2	1
2.9	-1	3.1	1
2.99	-1	3.01	1

Conclusion:

$$\lim_{x \to 3^{-}} h(x) = -1$$

$$\lim_{x \to 3^+} h(x) = 1$$

$$\lim_{x \to 3} h(x) = \text{Does Not Exist (DNE)}$$

(limit from the left and limit from the right differ)

Brief Summary: If $f(x) \le g(x) \le h(x)$ and $\lim_{x \to a} f(x) = \lim_{x \to a} h(x) = L$, then $\lim_{x \to a} g(x) = L$

Example: $\lim_{x\to 0} x^2 \cos(\frac{1}{x})$

Try direct substitution: $(0)^2 \cos(\frac{1}{0})$?????

But, we know $-1 \le \cos(x) \le 1$ (range of a cosine function)

So,
$$-1 \le \cos(\frac{1}{x}) \le 1$$

multiply each term by x²

$$-x^2 \leq x^2 cos(\frac{1}{x}) \leq x^2$$

then, find the limit of the lower and upper terms.....

find
$$\lim_{x \to 5} f(x)$$

"limit below"
$$\lim_{x \to 5} 4x + 11 = 9$$

therefore, using the 'squeeze theorem',

"limit above"
$$\lim_{x \to 5} x^2 - 5x + 1$$

the "limit in the middle" $\lim_{x \to 5} f(x) = 9$

Example:

Verify
$$\lim_{x\to 0} \sqrt{x^3 + x^2} \left(\sin \frac{1}{x} \right) = 0$$

Using substitution, we run into a problem:
$$\sqrt[4]{0^3 + 0^2} \left(\sin \frac{1}{0} \right)$$

Since we can't determine $\sin \frac{1}{0}$, we'll utilize the squeeze theorem...

$$\label{eq:we know -1 leq sin leq 1 --- leq leq sin leq 1 leq 1} \text{We know -1} \ \le \ \sin \frac{1}{x} \ \ \le 1$$

and, we know
$$\sqrt{x^3 + x^2} \ge 0$$
 and, -----> $\sqrt{x^3 + x^2} \le 0$

Therefore, putting it all together:
$$\sqrt{x^3 + x^2} \ \left(\sin \frac{\uparrow \uparrow}{x} \right) \ \leq \ \sqrt{x^3 + x^2} \ \left(\sin \frac{\uparrow \uparrow}{x} \right) \ \geq \ - \sqrt{x^3 + x^2}$$

So,
$$-\sqrt{x^3+x^2} \le \sqrt{x^3+x^2} \left(\sin\frac{\uparrow\uparrow}{x}\right) \le \sqrt{x^3+x^2}$$

and, the
$$\lim_{x \to 0} \sqrt{x^3 + x^2} = 0$$
 and, $\lim_{x \to 0} \sqrt{x^3 + x^2} = 0$

So, the limit in the middle must be squeezed to zero!!

Find
$$\lim_{x\to 0} \sqrt[4]{x} \left(1+\sin^2\left(\frac{2\prod}{x}\right)\right)$$
 we know $-1 \le \sin \le 1...$ Therefore, $0 \le \sin^2 \le 1$ and, finally, $1 \le 1+\sin^2 \le 2$

limit is 0

Definition of Limit

$$\lim_{x \to c} f(x) = L$$

means that for each $\xi > 0$, there must be a d > 0 such that

$$|f(x) - L| \le \xi$$
 whenever $0 \le |x - c| \le d$

Comments: When we choose a ξ , there will exist a d that works.

The d is not unique, because any positive number less than d works.

Example: Show that $\lim_{x \to 3} x + 2 = 5$

Let $\xi > 0$. We seek a number f > 0 such that

if
$$0 < |x-3| < d$$
 then $|(x+2)-5| < \xi$

First, let's find the connection...

$$|x-3| = |(x+2)-5|$$

$$|x-3| = |x-3|$$

this suggests that we can set $d = \xi$

Note: as the d value shrinks to 0, there are values of ξ inside the pink area

eventually,
$$\int \int gets \ to \ 0$$
, then ξ goes to 0

this leaves
$$c = 3$$
 and $L = 5$

Example: Show that $\lim_{x \to 2} 3x - 1 = 5$

We need to show for every $\xi > 0$, there exists a d > 0 such that

$$|(3x-1)-5| < \xi$$
 whenever $0 < |x-2| < d$

Since we know that our choice of d is dependent on ξ ,

we must establish the connection between them.

$$|(3x-1)-5| = |3x-6| = 3|x-2| < \xi$$

$$|x-2| < \frac{\xi}{3}$$

 $|x-2| < \frac{\xi}{3}$ we can choose $d < \frac{\xi}{3}$

$$0 < |x-2| < f \le \frac{\xi}{3}$$

Finding the "limit as X approaches infinity"

General Rule: ("The Rational function Theorem")

Determining the limits at of for functions expressed as a ratio of two polynomials:

$$f(x) = a_n x^n + a_{n-1} x^{n-1} + ... + a_0$$

 $g(x) = b_m x^m + b_{m-1} x^{m-1} + ... + b_0$

$$\lim_{X \to \pm \infty} \frac{f(x)}{g(x)} = \begin{bmatrix} \pm \infty & \text{if } n > m & \text{("top heavy")} \\ \\ 0 & \text{if } n < m & \text{("bottom heavy")} \\ \\ \frac{a_n}{b_m} & \text{if } n = m & \text{("lead exponents equal";} \\ \\ look at the lead coefficients)} \end{bmatrix}$$

Steps to find a limit (that approaches infinity)

- 1) (If necessary), expand the equation to reveal the degrees of the polynomials.
- 2) Arrange polynomials with highest degree first.
- 3a) If the numerator has a higher degree, then the limit is ∞
- b) If the denominator has a higher degree, then the limit is 0
- c) If the highest degree of the numerator polynomial is the same as the highest degree of the denominator polynomial, then the limit is

lead coefficient of numerator lead coefficient of denominator

Examples:

$$\lim_{x \to \infty} \frac{x}{x^2 - 1} = \frac{x^1}{x^2 - 1} = 0$$

("bottom heavy")

degree of numerator < degree of denominator

$$\lim_{x \to \infty} \frac{5x^3 + 2}{(2x + 3)^3} = \lim_{x \to \infty} \frac{5x^{3} + 2}{8x^{3} + 36x^2 + 54x + 27} = \frac{5}{8}$$
highest degree of numerator
(3)
highest degree of denominator
(3)

$$\lim_{x \to \infty} \frac{7 + 3x^2 - 5x^4}{10x^3 - 17} = \lim_{x \to \infty} \frac{-5x^4 + 3x^2 + 7}{10x^3 - 17} = -\infty$$

rewrite polynomial degree of numerator $\,>\,$ degree of denominator in descending order (4) (3)

("top heavy")

(*Note: a simple graph showing end behavior confirms the limit is negative infinity, rather than positive infinity)

Comparison/Verification:

$$\lim_{x \to \infty} \frac{4 - x^2}{4x^2 - x - 2} = \lim_{x \to \infty} \frac{-x^2 + 4}{4x^2 - x - 2} = \frac{-1}{4}$$

(use "rational function theorem" above)

$$\lim_{x \to \infty} \frac{4 - x^2}{4x^2 - x - 2} = \lim_{x \to \infty} \frac{4/x^2 - 1}{4 - 1/x - 2/x^2} = \frac{0 - 1}{4 - 0 - 0} = \frac{-1}{4}$$
(rewrite and solve) (multiply throughout by $\frac{1}{x^2}$)

Asymptotes: Definitions and Example

The line y = b is a Horizontal Asymptote of the graph of y = f(x) if

$$\lim_{x \to \infty} f(x) = b \qquad \text{or} \qquad \lim_{x \to -\infty} f(x) = b$$

The line x = a is a Vertical Asymptote of the graph of y = f(x) if one or more of the following occur:

$$\lim_{x \to a^{-}} f(x) = +\infty \qquad \text{or} \qquad \lim_{x \to a^{+}} f(x) = -\infty$$

or

$$\lim_{x \to a^{-}} f(x) = -\infty \qquad \qquad \lim_{x \to a^{+}} f(x) = +\infty$$

	f (x	$(x) = \frac{2x+3}{x-1}$			
-50 -20 -5	f (x) 1.90 1.76 1.17	horizontal asymptote $y = 2$			-
-2 -1 -1/2 0 1/2	0.33 5 -1.3 -3 -8			 	horizontal asymptote: $\lim_{x \to \infty} \frac{2x+3}{x-1} = 2$
1 2 5 10 20 50	undefined 7 3.25 2.55 2.26 2.10		vertica x =	 al asymptote 1	also, $\lim_{x \to -\infty} \frac{2x+3}{x-1} = 2$

vertical asymptote:

$$\lim_{x\to 1^+} \frac{2x+3}{x-1} = \pm_{\infty}$$

$$\lim_{x \to 1^{-}} \frac{2x+3}{x-1} = -\infty$$

Asymptotes are very useful when graphing functions.

Examples:

$$y = \frac{x}{x - 4}$$

Vertical Asymptote: y is undefined at x = 4

Horizontal Asymptote: degree of numerator: 1

degree of denominator: 1

(Since the degrees are equal, look at the coeffients of the lead terms)

therefore y = 1

Since (0,0) is below the horizontal asymptote and to the left of the vertical asymptote, sketch the corresponding end behavior.

Then, select a point on the other side of the vertical asymptote. Examples: (5,5) or (10,5/3)

Since (5, 5) is above the horizontal asymptote and to the right of the vertical asymptote, sketch the corresponding end behavior.

(note: to check solutions, plug in random values)

$$y = \frac{x^2 + 1}{x^2 - 1}$$

Vertical Asymptote:
$$\frac{x^2+1}{x^2-1} = \frac{x^2+1}{(x+1)(x-1)}$$

y is undefined at x = -1 and x = 1

$$\lim_{x \to \infty} \frac{x^2 + 1}{x^2 - 1} = 1$$

therefore y = 1

y-intercept: (0, -1)

x-intercept: none

because there is no x value that

$$\frac{x^2+1}{x^2-1}=0$$

X	-1.1	-1.8	-2	-3	-5	-10
у	221 21	53 28	<u>5</u> 3	<u>5</u>	13 12	101

X	2	3	5	10
у	<u>5</u> 3	<u>5</u>	$\frac{13}{12}$	101 99

Slant Asymptote: If the highest degree of the numerator is one more than the highest degree of the denominator, then there is a slant asymptote

That asymptote is the quotient without the remainder.

Example:

$$f(x) = x^2 - 2x - 3$$

Vertical Asymptote: x = -4

$$= (x-3)(x+1)$$

y-intercept: (0, -3/4) x-intercepts: (3, 0) (-1, 0)

Horizontal Asymptote: None

degree of numerator: 2 degree of denominator: 1

slant asymptote

$$\begin{array}{r}
 x - 6 + \frac{2}{x^2} \\
 x + 4 \overline{\smash)x^2 - 2x - 3} \\
 \underline{x^2 + 4x} \\
 -6x - 3 \\
 \underline{-6x - 24} \\
 \end{array}$$

The slant asymptote is

As x gets larger and larger, the remainder gets closer and closer to zero. And, the function resembles $x-6\ \text{more}$ and more.

Asymptote Note: The limit as x goes to infinity describes end behavior of the function. Although a graph cannot touch the vertical asymptote, it may cross over the horizontal asymptote.

Example:

The horizontal asymptote is y = 2There is no vertical asymptote...

Example: $f(x) = \frac{1}{|x|} - \frac{1}{|x|}$

Find
$$\lim_{x \to 0^+} f(x)$$

$$\lim_{\mathbf{x} \to \mathbf{0}^+} f(\mathbf{x}) \qquad \lim_{\mathbf{x} \to \mathbf{0}^-} f(\mathbf{x}) \qquad \lim_{\mathbf{x} \to \mathbf{0}} f(\mathbf{x})$$

$$\lim_{x \to 0} f(x)$$

Utilizing the graph of the function at the right, we can easily determine the limits!

$$\lim_{x\to 0^+} f(x) = 0$$

$$\lim_{x\to 0^-} f(x) = -\infty$$

$$\lim_{x\to 0} f(x) \quad \text{DNE} \\ \text{does not exist...}$$

Testing the limits of endurance, these math figures will run on and on...

LanceAF #87 5-24-13 www.mathplane.com

PRACTICE QUIZ

Limits Quick Quiz

Part I: Identifying limits and values on a graph

1)
$$f(0) =$$

$$\lim_{x\to 0} =$$

3)
$$\lim_{x \to -4} =$$

4)
$$\lim_{x \to 3} =$$

5)
$$\lim_{x \to -3^{+}} =$$

6)
$$f(4) =$$

Part II: Finding Limits

1)
$$\lim_{x \to 3} \frac{2x-6}{x^2-9}$$

2)
$$\lim_{x \to 4} \frac{x^2 + 6x - 40}{3x + 6}$$
 3) $\lim_{x \to 9} \frac{\sqrt{x} - 3}{x - 9}$

3)
$$\lim_{x \to 9} \frac{\sqrt{x} - 3}{x - 9}$$

4)
$$\lim_{x \to \infty} \frac{3 - 4x^2}{x^2 + 3x + 2}$$
 5) $\lim_{x \to 0} \frac{|x|}{3x} =$

5)
$$\lim_{x \to 0} \frac{|x|}{3x} =$$

6)
$$\lim_{X \to \infty} \frac{235}{3x + 2}$$

7)
$$\lim_{x \to 2^+} \frac{4}{x-2}$$

8)
$$\lim_{x \to 2^{-}} \frac{4}{x-2}$$

9)
$$\lim_{x \to 2} \frac{4}{x-2}$$

10)
$$\lim_{x \to 2} \frac{x^2 - 4}{x^2 - 7x + 10}$$
 11) $\lim_{x \to 0} \frac{x^2 + 3x}{x}$

11)
$$\lim_{x \to 0} \frac{x^2 + 3x}{x}$$

12)
$$\lim_{x \to \infty} \frac{2x^3 + 5x}{-3x^2 + 6}$$

1) Graph $f(x) = \begin{cases} 2x+1 & \text{if } x > 1 \\ 2-x & \text{if } x \le 1 \end{cases}$

Then, identify: f(1) =

$$\lim_{x\to 1^+} f(x) =$$

$$\lim_{x\to 1^-} f(x) =$$

$$\lim_{x\to 1} f(x) =$$

2) Sketch a function with the following properties:

g(0) = 2

$$\lim_{x \to 2^{+}} g(x) = \infty$$

$$\lim_{x \to 2^{-}} g(x) = \infty$$

$$\lim_{x \to 1^{-}} g(x) = -1$$

$$\lim_{x \to +\infty} g(x) = -1$$

3) **Challenge:

f(x)

Answer:

a)
$$\lim_{x \to 2} f(x) =$$

c)
$$\lim_{x \to 2} (f(x) + g(x)) =$$

b)
$$\lim_{x \to 2} g(x) =$$

d)
$$\lim_{x \to 2} (f(x)g(x)) =$$

IV. Miscellaneous Multiple Choice

Limits, Asymptotes, & Continuity

1) As x increases to infinity, the function $f(x) = 2e^{-x}$ gets closer to

- b) 1/2
- c) 2
- d) e
- e) infinity
- 2) A rational function of the form $y = \frac{ax}{x+b}$ has a vertical asymptote at x = 5and a horizonal asymptote at y = -3

Which is a possible function?

- a) $\frac{5x}{x-3}$ b) $\frac{3x}{x+5}$ c) $\frac{-3x}{x-5}$ d) $\frac{-5x}{x+3}$ e) $\frac{-3x}{x+5}$

3) Let p(x) be a cubic polynomial function, where p(3) < 0, p(7) > 0, and p(9) < 0, Which statements are true?

statement I: there are 3 zeros

statement II: a zero exists at x < 3 OR x > 9

statement III: for p(x) = 0, there are 2 solutions between 3 and 9

- a) I
- b) I and II
- c) I and III
- d) II
- e) I, II, and III

4)
$$\lim_{x \to 3} 9 =$$

- a) 3
- b) 9
- c) Does not exist
- d) 0
- e) 27

5) Find the value of k so g(x) is continuous:

$$g(x) = \begin{cases} k+x & x < 10 \\ xk & x \ge 10 \end{cases}$$

- a) 10
- b) 0
- c) 10/9
- d) 1
- e) no solution

6)
$$\lim_{t \to 4} \frac{t^2 - 16}{\frac{1}{4} - \frac{1}{t}}$$

- a) 4

- b) 16 c) 64 d) 128
- e) undefined

7)
$$\lim_{x\to 0} \frac{(x+1)^2-1}{x}$$

- a) -1
- b) 0
- c) 1
- d) 2
- e) Does not exist

8)
$$\lim_{x \to 3} \frac{x}{x^2 - 9}$$

- a) 3
- b) 9
- c) positive infinityd) negative infinity
- e) does not exist

9)
$$\lim_{x \to 3} \frac{1}{(x-3)^2}$$

- a) 3
- b) 9
- c) positive infinityd) negative infinity
- e) does not exist

10)
$$\lim_{x \to 4^+} \frac{x}{x^2 - 16}$$

- a) -16
- b) 0
- c) 4
- d) positive infinity
- e) does not exist

SOLUTIONS-→

Part I: Identifying limits and values on a graph

1)
$$f(0) = 4$$

$$\begin{array}{ccc} 2) & \lim \\ & x \to 0 \end{array} = \begin{array}{ccc} 0 \end{array}$$

3)
$$\lim_{x \to -4} = 2$$

4)
$$\lim_{x \to 3}$$
 = DNE (Does Not Exist, because limit from the left (4) is not the same as limit from the right (-3))

5)
$$\lim_{x \to -3^+} = -\infty$$

6)
$$f(4) = -4$$

7)
$$f(-3) =$$
Undefined

Part II: Finding Limits

1)
$$\lim_{x \to 3} \frac{2x - 6}{x^2 - 9}$$
plug in value: $\frac{2(3) - 6}{(3)^2 - 9} = \frac{0}{0}$

factor and cancel: $\frac{2(x-3)}{(x+3)(x-3)}$ plug in value again: $\frac{2}{((3)+3)} = \boxed{\frac{1}{3}}$

4)
$$\lim_{x \to \infty} \frac{3 - 4x^2}{x^2 + 3x + 2}$$

lead term of numerator: $-4x^2$ (degree: 2) lead term of denominator: x^2 (degree: 2)

Since the degrees are the same, use the coefficients:

$$\frac{-4}{1} = \boxed{-4}$$

7)
$$\lim_{x \to 2^{+}} \frac{4}{x-2}$$

 $\frac{x}{f(x)} = \frac{3}{4} = \frac{2.5}{8} = \frac{2.1}{8} = \frac{2.01}{8} = \frac{2.001}{8} = \frac{2.001}{1000} = \frac{$

As x gets closer to 2, f(x) gets larger and larger

10)
$$\lim_{x \to 2} \frac{x^2 - 4}{x^2 - 7x + 10}$$

$$f(2) = \frac{0}{0}$$

factor the quadratics:

$$\frac{(x+2)(x-2)}{(x-2)(x-5)}$$
 and plug in 2
$$\frac{4}{-3}$$

2)
$$\lim_{x \to 4} \frac{x^2 + 6x - 40}{3x + 6}$$

plug in value: $\frac{(4)^2 + 6(4) - 40}{3(4) + 6}$

$$\frac{0}{18} = \boxed{0}$$

5)
$$\lim_{x \to 0} \frac{|x|}{3x} = DNE$$

$$\lim_{X \to 0^{-}} = \frac{-1}{3}$$
 Since limits are not equal, then
$$\lim_{X \to 0^{+}} = \frac{1}{3}$$
 [limit does not exist]

3)
$$\lim_{x \to 9} \frac{\sqrt{x} - 3}{x - 9} \cdot \frac{\sqrt{x} + 3}{\sqrt{x} + 3}$$
 (multiply by the conjugate)

$$\frac{x - 9}{(x - 9) (\sqrt{x} + 3)} = \frac{1}{(\sqrt{x} + 3)}$$
limit is
$$\frac{1}{6}$$

6)
$$\lim_{X \to \infty} \frac{235}{3x + 2}$$

The degree of the denominator is greater than the degree of the numerator. Since it is "bottom heavy", the limit is 0

(as x gets larger and larger, the function decreases)

8)
$$\lim_{x \to 2^{-}} \frac{4}{x-2}$$

X	1	1.5	1.9	1.99	1.999
f(x)	-4	-8	-40	-400	-4000

-∞

11)
$$\lim_{x \to 0} \frac{x^2 + 3x}{x}$$

$$\lim_{x\to 0} \frac{x(x+3)}{x}$$

$$((0) + 3) = 3$$

9)
$$\lim_{x \to 2} \frac{4}{x-2}$$

Does not exist.

limit from the left is negative ∞ limit from the right is positive ∞ Since they are not equal, limit DNE

12)
$$\lim_{x \to \infty} \frac{2x^3 + 5x}{-3x^2 + 6}$$

Degree of numerator is greater than degree of denominator, so the equation would go to ∞

("top heavy)... Then, since there is a negative sign, equation goes to $\boxed{-\infty}$

(Note: sometimes, a quick sketch of the function can be helpful; or, it's a nice way to check your answers!)

1) Graph
$$f(x) = \begin{cases} 2x+1 & \text{if } x > 1 \\ 2-x & \text{if } x \le 1 \end{cases}$$

Then, identify: f(1) = 1

$$\lim_{x \to 1^+} f(x) = 3$$

$$\lim_{x \to 1^{-}} f(x) = 1$$

 $\lim_{x \to 1} f(x) = DNE$

(Limit from the left and from the right are different, so limit does not exist)

2) Sketch a function with the following properties:

$$g(0) = 2$$
 plot the point $(0, 2)$

$$\lim_{x \to 2^{+}} g(x) = \infty \qquad \text{vertical asymptote}$$
 at 2, and

$$\lim_{x \to 2^{-}} g(x) = \infty \qquad \text{both sides of the asymptote...}$$

$$\lim_{x \to -\infty} g(x) = -1 \qquad \text{horizontal asymptote} \\ \text{at } y = -1$$

$$\lim_{x \to +\infty} g(x) = -1$$

3) **Challenge:

Answer:

a)
$$\lim_{x \to 2} f(x) = DNE$$

$$\lim_{x \to 2} (f(x) + g(x)) = 1$$

b)
$$\lim_{x \to 2} g(x) = DNE$$

$$\lim_{x \to 2} (f(x)g(x)) = 0$$

Note: according to limit theorems: $\lim (f + g) = \lim(f) + \lim(g)$ $\lim(fg) = \lim(f)\lim(g)$ But, that assumes the lim(f) and lim(g) exist.. Since they do not, the theorems cannot be applied!

IV. Miscellaneous Multiple Choice

Limits, Asymptotes, & Continuity

1) As x increases to infinity, the function $f(x) = 2e^{-x}$ gets closer to

SOLUTIONS

a) 0 b) 1/2

rewrite function as $\frac{2}{e^X}$

c) 2

d) e

e) infinity

as x gets infinitely larger, e^{X} goes to infinity...

therefore, $\frac{2}{e^{X}}$ gets smaller and smaller, approaching 0

2) A rational function of the form $y = \frac{ax}{x+b}$

has a vertical asymptote at x = 5and a horizonal asymptote at y = -3

Which is a possible function?

3) Let p(x) be a cubic polynomial function, where p(3) < 0, p(7) > 0, and p(9) < 0, Which statements are true?

statement I: there are 3 zeros

statement II: a zero exists at x < 3 OR x > 9

statement III: for p(x) = 0, there are 2 solutions between 3 and 9

a) I

b) I and II

c) I and III

d) II

e) I, II, and III

polynomial function is continuous...

(possible sketch)

4) $\lim_{y \to 0} g = 0$ $x\rightarrow 3$

b) 9

c) Does not exist

d) 0

e) 27

5) Find the value of k so g(x) is continuous:

 $g(x) = \begin{cases} k+x & x < 10 \\ xk & x \ge 10 \end{cases}$

a) 10 b) 0 c) 10/9

d) 1 e) no solution to be continuous, each part of the piecewise function must meet:

k + x = xk

at x = 10:

10 + k = 10k

10 = 9k

k = 10/9

6)
$$\lim_{t \to 4} \frac{t^2 - 16}{\frac{1}{4} - \frac{1}{t}}$$
 substitute $t = 4$, and the result is $\frac{0}{0}$

- a) 4 b) 16
- c) 64
- e) undefined

$$\lim_{t \to 4} \quad \frac{\frac{(t+4)(t-4)}{t}}{\frac{t}{4t} - \frac{4}{4t}} \quad = \quad \lim_{t \to \infty} t \to \infty$$

Limits, Asymptotes, and Continuity

$$\lim_{t \to 4} \quad \frac{(t+4)(t-4)}{\frac{t}{4t} - \frac{4}{4t}} \quad = \quad \lim_{t \to 4} \quad \frac{(t+4)(t-4)}{\frac{(t-4)}{4t}} \quad = \quad \lim_{t \to 4} \quad (t+4)(4t) \quad = \boxed{128}$$

$$\lim_{x\to 0} \frac{(x+1)^2-1}{x}$$

- a) -1 b) 0

7)

- c) 1 d) 2
- e) Does not exist

8)
$$\lim_{x \to 3} \frac{x}{x^2 - 9}$$

- a) 3
- b) 9
- c) positive infinity
- d) negative infinity
- e) does not exist

Using substitution, we see the result is 0/0 indeterminate

abstitution, we see
$$\limsup_{x \to 0} \frac{x^2 + 2x + 1 - 1}{x}$$

so, we'll try expanding the numerator

$$\lim_{x \to 0} \frac{x^2 + 2x}{x} = \lim_{x \to 0} \frac{x(x+2)}{x} = 2$$

Limit from the left is negative infinity Limit from the right is positive infinity Therefore, limit does not exist (DNE)

if x = 3.1, then numerator is positive and denominator is positive.. if x = 2.9, then numerator is positive and denominator is negative...

Note: These are limits; approaching vertical asymptotes

- a) 3 b) 9
- c) positive infinity
- d) negative infinity
- e) does not exist

Limit approaching 3 from the right is infinity Limit approaching 3 from the left is infinity Therefore, limit is positive infinity

$$\lim_{x \to 3^{-}} \frac{1}{(x-3)^2} \ = \ + \ \infty$$

Limit approaching 4 from the right is infinity. (at 4, the equation is 4/0)

If
$$x = 4.1$$
, then $\frac{4.1}{(4.1)^2 - 16} = 5.06$

If
$$x = 4.01$$
, then $\frac{4.01}{(4.01)^2 - 16} = 50.06$

- a) -16
- b) 0
- d) positive infinity
- e) does not exist

Thanks for visiting. (Hope it helped!)

If you have questions, suggestions, or requests, let us know.

Cheers,

Check out Mathplane.ORG for mobile and tablets...

Also, at TeachersPayTeachers