Logarithms Practice Test

 (with detailed Solutions)Topics include logarithm laws, graphing, exponential equations, growth and decay models, $1 / 2$ life, and more...

1) Between what 2 consecutive integers are the following:
a) $\log 500$
b) $\log _{5}(.5)$
2) Solve: $2^{5 x+3}=3^{2 x+1}$
3) $\log _{2} x+\log _{4} x+\log _{8} x=11 \quad$ Find x
4) $\left|\log _{4} x\right|=3$
5) $\left(\log _{5} x\right)^{3}-\left(\log _{5} x\right)^{2}-\log _{5} x^{9}+9=0$
6) $\left.\log _{2}\left(\log _{3}\left(\log _{4} x\right)\right)\right)=0$
7) $x^{\sqrt{\log x}}=10^{8}$
8) $f(x)=\log _{6}(3 x)$

$$
g(\mathrm{x})=2 \cdot 6^{5 \mathrm{x}}
$$

```
        find f(g(x))
```

9) $\ln (x)=1+\ln (3 x-4)$
10) $\log (x+1)^{4}=20$
11) $\log _{3} 27^{x-1}$
12) $\log _{\mathrm{x}} \frac{81}{\mathrm{x}^{3}}=-1$
13) $\left(\log _{3} \mathrm{x}\right)\left(\log _{\mathrm{x}} 2 \mathrm{x}\right)\left(\log _{2 \mathrm{x}} \mathrm{y}\right)=\log _{\mathrm{x}} \mathrm{x}^{2}$
14) $\left(\log _{3} \mathrm{x}\right)^{3}+\left(\log _{3} \mathrm{x}\right)^{2}=\log _{3} \mathrm{x}^{17}-15$
15) Solve for t using logarithms with base a
a) $2 a^{t / 3}=11$
b) $4 \mathrm{a}^{2 \mathrm{t}}=\mathrm{B}+5$
c) $\mathrm{M}=\mathrm{Sa}^{\mathrm{ct}}+\mathrm{D}$
16) Use Natural Logarithms to solve for x in terms of y :

$$
\mathrm{y}=\frac{e^{\mathrm{x}}-e^{-\mathrm{x}}}{2}
$$

17) Use Common Logarithms to solve for x in terms of y :

$$
\mathrm{y}=\frac{10^{\mathrm{x}}+10^{-\mathrm{x}}}{2}
$$

1) $y=\log _{4} \frac{x+2}{64}$

Graphing Exponential and Logarithmic Functions
graph the function, labeling any asymptotes and intercepts..

2) $f(x)=-4^{x+2}$
find the inverse $f^{-1}(\mathrm{x})$, and graph both functions
3) $y=-\log _{3}(81 x)$ graph the function

1) Write an exponential equation that goes through $(0,7)$ and $(6,15)$.
2) Write an exponential equation that goes through $(3,10)$ and $(7,32)$.
3) An exponential function of form $f(x)=a b^{x}+c$ has these features: y -intercept is at 5
goes through $(1,7)$
horizontal asymptote at $\mathrm{y}=1$
Identify the function.
4) A used car is worth $\$ 12,000$ today, and $\$ 30005$ years from now. What is the exponential model (of depreciation)?
If I try to sell the car 10 years from now,
what can I hope to get for it?
5) A piece of machinery cost 250,000 dollars... After 5 years, it is worth 220,000 dollars...

What is the rate of depreciation?

1) John has $\$ 2200$ in an account that increases 7% annually...

A brand new sports car costs $\$ 48,000$, but it depreciates by 22% annually...
If John is willing to buy the sports car used, when would he be able to afford it?
2) A bank offers savings accounts that pay 4% interest compounded continously, OR accounts that pay 4.5% simple interest.

If you want to invest the amount for 5 years, which account should you use?
3) Jason opens an investment account with a 6.5% annual interest rate, compounding continuously. If he deposits $\$ 1000$, how much will he have in 9 months?

When will the account have $\$ 2500$?
4) Uranium has a $1 / 2$ life of 2.7×10^{5} years...
a) How long does it take for 10 mg of Uranium to decay to 7 mg ?
b) How much remains after $1,000,000$ years?
3) A population in Algebratown is modeled by $\mathrm{P}=344 e^{\mathrm{kt}}$
where $t=0$ (corresponds to 1990) and P is the population in $1,000 \mathrm{~s}$

In 1975 , the population was $189,000 \ldots$
a) Find k
b) Predict the population in 2030

1) $5 \cdot(.5)^{\mathrm{x}}-4=3 \cdot 2^{-\mathrm{x}}$
2) $5^{\mathrm{x}}+125\left(5^{-\mathrm{x}}\right)=30$
3) Using exponents and/or logarithm properties, can you evaluate $2003{ }^{97}$? Is there more or less than 300 digits?

What is the estimate (in scientific notation)?
4) If it takes 7 years for an investment to double, how long would it take for the investment to triple?
5) A family's financial goal is to have $\$ 20,000$ in an account after 5 years....
a) If the family has $\$ 12,000$, what yield will they need to reach the goal?
b) If rates are 6%, how much must they deposit to reach their goal?
(Assume the family does not add money later...)

SOLUTIONS- -
a) $\log 500$

$$
\log (5)+\log (100)=\log (5)+2
$$

$$
\log _{10}(5)=x
$$

b) $\log _{5}(.5) \quad 5^{x}=\frac{1}{2}$

$$
10^{x}=5
$$

$$
\begin{aligned}
& 10^{0}=1 \\
& 10^{1}=10
\end{aligned} \quad \text { so, } \log (5) \text { is between } 0 \text { and } 1
$$

$\log (500)$ is between 2 and 3

$$
\begin{aligned}
5^{-1} & =1 / 5 \\
5^{0} & =1 \\
5^{1} & =5
\end{aligned}
$$

$$
5^{0}=1 \quad \log _{5}(.5) \text { is between }-1 \text { and } 0
$$

2) Solve: $2^{5 x+3}=3^{2 x+1}$

Method 1: Lift both sides with logs

$$
\begin{aligned}
& \log 2^{5 x+3}=\log 3^{2 x+1} \\
&(5 \mathrm{x}+3) \log 2=(2 \mathrm{x}+1) \log 3 \\
& \frac{(5 \mathrm{x}+3)}{(2 \mathrm{x}+1)}=\frac{\log 3}{\log 2} \\
& \frac{(5 \mathrm{x}+3)}{(2 \mathrm{x}+1)}=\log _{2} 3 \\
& \frac{(5 \mathrm{x}+3)}{(2 \mathrm{x}+1)}=1.585 \\
& 3.17 \mathrm{x}+1.585=5 \mathrm{x}+3 \\
&-1.415=1.83 \mathrm{x} \\
& \mathrm{x}=-.7732 \text { (approx) }
\end{aligned}
$$

Method 2: Split the exponents

$$
\begin{aligned}
& 2^{5 x} \cdot 2^{3}=3^{2 \mathrm{x}} \cdot 3^{1} \\
&\left(2^{5}\right)^{x} \cdot 8\left.=3^{2}\right)^{x} \cdot 3 \\
& 32^{x} \cdot 8=9^{x} \cdot 3 \\
&\left(\frac{32}{9}\right)^{x}= \frac{3}{8} \\
& \log _{(32 / 9)}(.375)=x \\
& x=-.7732 \text { (approx) }
\end{aligned}
$$

3) $\log _{2} x+\log _{4} x+\log _{8} x=11$
$\frac{\log x}{\log 2}+\frac{\log x}{\log 4}+\frac{\log x}{\log 8}=11$
Find x
change of base
$\frac{\log x}{\log 2}+\frac{\log x}{\log \left(2^{2}\right)}+\frac{\log x}{\log \left(2^{3}\right)}=11 \quad$ find common log denominator
$\frac{\log x}{\log 2}+\frac{\log x}{2 \log 2}+\frac{\log x}{3 \log 2}=11$
$\frac{6 \log x}{6 \log 2}+\frac{3 \log x}{6 \log 2}+\frac{2 \log x}{6 \log 2}=11$

$$
\frac{11 \log x}{6 \log 2}=11
$$

$$
\frac{11 \log x}{\log 2^{6}}=11
$$

$$
\frac{11 \log x}{\log (64)}=11
$$

$$
11 \log x=11 \log (64)
$$

$$
\mathrm{x}=64
$$

4) $\left|\log _{4} x\right|=3$
$\log _{4} x=3 \quad$ OR $\quad \log _{4} x=-3$
$x=64$

$$
x=1 / 64
$$

5) $\left(\log _{5} x\right)^{3}-\left(\log _{5} x\right)^{2}-\log _{5} x^{9}+9=0$
$\left(\log _{5} x\right)^{3}-\left(\log _{5} x\right)^{2}-9 \log _{5} x+9=0 \quad$ logarithm power rule

$$
\begin{array}{llcc}
\text { Let } \mathrm{A}=\log _{5} \mathrm{x} & \text { using substitution } & \mathrm{A}=-3,3,1 \\
\mathrm{~A}^{3}-\mathrm{A}^{2}-9 \mathrm{~A}+9=0 & \left(\log _{5} \mathrm{x}\right)=-3 & \left(\log _{5} \mathrm{x}\right)=3 & \left(\log _{5} \mathrm{x}\right)=1 \\
\mathrm{~A}^{2}(\mathrm{~A}-1)-9(\mathrm{~A}-1)=0 & \text { factor by grouping } & \mathrm{x}=1 / 125 & \mathrm{x}=125 \\
\mathrm{x}=5 \\
\hline
\end{array}
$$

$$
(A-1)\left(A^{2}-9\right)=0
$$

6) $\left.\quad \log _{2}\left(\log _{3}\left(\log _{4} \mathrm{x}\right)\right)\right)=0$

$$
\begin{gathered}
\left(\log _{3}\left(\log _{4} x\right)\right)=2^{0} \\
\log _{3}\left(\log _{4} x\right)=1 \\
\log _{4} x=3^{1} \\
x=4^{3}
\end{gathered}
$$

7) $x^{\sqrt{\log x}}=10^{8}$

$$
\begin{gathered}
\sqrt{\overline{\log x}(\log x)}=8 \log 10 \\
(\log x)^{\frac{3}{2}}=8 \\
\log x=4 \\
x=10,000
\end{gathered}
$$

8) $f(x)=\log _{6}(3 \mathrm{x})$

$$
\log _{6}\left(3\left(2 \cdot 6^{5 x}\right)\right.
$$

$g(\mathrm{x})=2 \cdot 6^{5 \mathrm{x}}$
find $f(g(\mathrm{x}))$

$$
\log _{6}\left(6 \cdot 6^{5 x}\right) \quad 5 x+1
$$

$$
\log _{6}\left(6^{5 x+1}\right)
$$

9) $\ln (x)=1+\ln (3 x-4)$

$$
\begin{array}{rlrl}
\ln (\mathrm{x}) & =\ln (\mathrm{e})+\ln (3 \mathrm{x}-4) & & \text { change } 1 \text { to } \ln (\mathrm{e}) \\
\ln (\mathrm{x}) & =\ln (3 \mathrm{xe}-4 \mathrm{e}) & & \text { logarithm product rule } \\
\mathrm{x} & =3 \mathrm{xe}-4 \mathrm{e} & & \text { drop the } \ln ' \mathrm{~s} \\
4 \mathrm{e} & =\mathrm{x}(3 \mathrm{e}-1) & \begin{array}{l}
\text { collect like terms } \\
\text { and factor }
\end{array} \\
\mathrm{x} & =\frac{4 \mathrm{e}}{(3 \mathrm{e}-1)} & &
\end{array}
$$

10) $\log (x+1)^{4}=20$

$$
\begin{gathered}
10^{20}=(x+1)^{4} \\
\left(10^{5}\right)^{4}=(x+1)^{4} \\
10^{5}=(x+1) \\
x=99,999
\end{gathered}
$$

11) $\log _{3} 27^{x-1}$
$y=\log _{3} 27^{x-1}$

$$
27^{\mathrm{x}-1}=3^{\mathrm{y}}
$$

$\left(3^{3}\right)^{x-1}=3^{y}$
12) $\log _{\mathrm{x}} \frac{81}{\mathrm{x}^{3}}=-1$
$x^{-1}=\frac{81}{x^{3}}$
$\frac{1}{x}=\frac{81}{x^{3}}$
$x^{3}=81 x$
$x^{3}-81 x=0$

$$
x\left(x^{2}-81\right)=0
$$

13) $\left(\log _{3} x\right)\left(\log _{x} 2 x\right)\left(\log _{2 x} y\right)=\log _{x} x^{2}$

Use Change of Base...

14) $\left(\log _{3} \mathrm{x}\right)^{3}+\left(\log _{3} \mathrm{x}\right)^{2}=\log _{3} \mathrm{x}^{17}-15$
recognize the difference between $\log _{3} x^{17}$ and $\left(\log _{3} x\right)^{17}$ using the power rule, rewrite...
$\left(\log _{3} x\right)^{3}+\left(\log _{3} x\right)^{2}-17 \log _{3} x+15=0$
$A^{3}+A^{2}-17 A+15=0$
Now it's a factoring polynomials question... We'll use the rational root theorem --- ' p 's and ' q 's....
possible rational roots: $1,-1,3,-3,5,-5,15,-15 \ldots$
since $f(1)=0$, we know 1 is a root..
Let $A=\log _{3} x$

$$
\begin{array}{ll}
\log _{3} x=1 \\
\log _{3} x=3 & x=3,27,1 / 243 \\
\log _{3} x=-5
\end{array}
$$

since x cannot be 0 or negative, the only solution is 9

$$
\mathrm{x}=0,-9,9
$$

1 | 1 | 1 | -17 | 15 | |
| :---: | :---: | :---: | :---: | :---: |
| | 1 | 2 | -15 | |
| | 1 | 2 | -15 | 0 |

$$
(A-1)\left(A^{2}+2 A-15\right)=0
$$

$$
(A-1)(A+5)(A-3)=0
$$

$\mathrm{A}=1,3,-5$
a) $2 \mathrm{a}^{\mathrm{t} / 3}=11$
b) $4 \mathrm{a}^{2 \mathrm{t}}=\mathrm{B}+5$
$a^{2 t}=\frac{B+5}{4}$
c) $\mathrm{M}=\mathrm{Sa}^{\mathrm{ct}}+\mathrm{D}$

$$
\frac{\mathrm{M}-\mathrm{D}}{\mathrm{~S}}=\mathrm{a}^{\mathrm{ct}}
$$

$\log _{a}\left(\frac{B+5}{4}\right)=2 t$
$\log _{\mathrm{a}}\left(\frac{\mathrm{M}-\mathrm{D}}{\mathrm{S}}\right)=\mathrm{ct}$

$$
\frac{1}{2} \log _{\mathrm{a}}\left(\frac{\mathrm{~B}+5}{4}\right)=\mathrm{t}
$$

$$
\frac{1}{\mathrm{c}} \log _{\mathrm{a}}\left(\frac{\mathrm{M}-\mathrm{D}}{\mathrm{~S}}\right)=\mathrm{t}
$$

16) Use Natural Logarithms to solve for x in terms of y :

$$
\begin{aligned}
& \mathrm{y}=\frac{e^{\mathrm{x}}-e^{-\mathrm{x}}}{2} \\
& 2 y=e^{x}-e^{-x} \\
& e^{x}\left(e^{x}-e^{-x}-2 y=0\right) \\
& e^{2 \mathrm{x}}-2 \mathrm{y} e^{\mathrm{x}}-1=0 \\
& A^{2}-2 y A-1=0 \\
& A=\frac{2 y \pm \sqrt{4 y^{2}+4}}{2} \\
& A=y \pm \sqrt{y^{2}+1} \\
& e^{x}=y \pm \sqrt{y^{2}+1} \\
& \text { since } \mathrm{y}<\sqrt{\mathrm{y}^{2}+1} \text { and } \\
& \ln \left(y \pm \sqrt{y^{2}+1}\right)=x \\
& \text { In cannot be negative.... } \\
& \ln \left(y+\sqrt{y^{2}+1}\right)=x \\
& \text { In cannot be negative.... } \\
& x \lll
\end{aligned}
$$

17) Use Common Logarithms to solve for x in terms of y :

$$
\begin{aligned}
& \mathrm{y}=\frac{10^{\mathrm{x}}+10^{-\mathrm{x}}}{2} \\
& 2 y=10^{x}+10^{-x} \\
& 10^{x}\left(2 y=10^{x}+10^{-x}\right) \\
& 10^{2 \mathrm{x}}-2 \mathrm{y} 10^{\mathrm{x}}+1=0 \\
& A^{2}-2 y A+1=0 \\
& \mathrm{a}=1 \quad \mathrm{~b}=-2 \mathrm{y} \quad \mathrm{c}=1 \\
& A=\frac{2 y \pm \sqrt{4 y^{2}-4}}{2} \\
& A=y \pm \sqrt{y^{2}-1} \\
& 10^{x}=y \pm \sqrt{y^{2}-1} \\
& \log \left(y \pm \sqrt{y^{2}-1}\right)=x \\
& \text { Since we're solving for } \\
& x \text { in terms of } y \text {, we are } \\
& \text { essentially finding the inverse. } \\
& \text { Therefore, the domain and } \\
& \text { ranges switch... } \\
& \text { **Since range of above } \\
& \text { is } y \geq 1 \\
& \text { the domain of this equation } \\
& \text { is } y \geq 1
\end{aligned}
$$

1) $y=\log _{4} \frac{x+2}{64}$

SOLUTIONS
Graphing Exponential and Logarithmic Functions
graph the function, labeling any asymptotes and intercepts...
$y=\log _{4}(x+2)-\log _{4}(64)$
$y=\log _{4}(x+2)-3$
vertical asymptote: $x=-2$
$\begin{array}{ll}\text { y-intercept } & \text { x-intercept } \\ (\text { occurs when } x=0) & (\text { occurs when } y=0)\end{array}$
$y=\log _{4} \frac{(0)+2}{64} \quad 0=\log _{4} \frac{x+2}{64}$
$4^{y}=\frac{1}{32} \quad 4^{0}=\frac{x+2}{64}$
$2^{2 \mathrm{y}}=2^{-5}$
$(0,-5 / 2)$
$\mathrm{x}=62$
$(62,0)$

2) $f(x)=-4^{x+2}$
find the inverse $f^{-1}(\mathrm{x})$, and graph both functions

$$
\begin{aligned}
& x=-4^{y+2} \quad \text { switch } x \text { and } y \\
& -x=4^{y+2} \quad \text { change the negative root } \\
& \log _{4}(-x)=y+2 \quad \text { switch to log form } \\
& y=\log _{4}(-x)-2 \\
& f^{-1}(x)=\log _{4}(-x)-2
\end{aligned}
$$

3) $y=-\log _{3}(81 x)$

graph the function

$$
\begin{aligned}
& y=-\left[\log _{3}(81)+\log _{3}(x)\right] \\
& y=-4-\log _{3}(x)
\end{aligned}
$$

$$
\text { vertical asymptote: } \mathrm{x}=0
$$

Or, using original equation....

\[

\]

1) Write an exponential equation that goes through $(0,7)$ and $(6,15)$.
$\begin{array}{rrr}y=a b^{x} & 7=a b^{0} & y=7 b^{x} \\ 6 & y=7 / \sqrt{\frac{15}{7}}^{x}\end{array}$
$\begin{array}{ll}\mathrm{a}=7 & 15=7 \mathrm{~b}^{6} \\ \mathrm{~b}^{6}=\frac{15}{7}\end{array}$

$$
\mathrm{y}=7\left(\frac{15}{7}\right)^{\frac{\mathrm{x}}{6}}
$$

SOLUTIONS
or approx. $y=7(1.13544)^{x}$

$$
\mathrm{b}=/ \sqrt[6]{\frac{15}{7}}
$$

2) Write an exponential equation that goes through $(3,10)$ and $(7,32)$.

$$
\begin{array}{ll}
10=a b^{3} & 32=a b^{7} \\
a=10 b^{-3} & a=32 b^{-7}
\end{array}
$$

$$
\mathrm{b}^{4}=\frac{32}{10} \quad \mathrm{~b}=1.34 \quad 32=\mathrm{a}(1.34)^{7} \quad \mathrm{a}=4.13 \quad \mathrm{y}=4.13(1.34)^{\mathrm{x}}
$$

3) An exponential function of form $f(\mathrm{x})=\mathrm{ab}{ }^{\mathrm{x}}+\mathrm{c}$
has these features: y -intercept is at 5
goes through $(1,7)$
horizontal asymptote at $\mathrm{y}=1$
Identify the function.
there is no horizontal shift...
since horizontal asymptote is $\mathrm{y}=1$,
there is a vertical shift of $1 \ldots$
ordinarily the intercept would be at $(0,2)$ (up 1 unit..)
But, instead it is at $(0,5)$
(up 4 units!)

$$
y=4(b)^{x}+1
$$

$$
\text { plug in }(1,7) \ldots
$$

4) A used car is worth $\$ 12,000$ today, and $\$ 30005$ years from now.

What is the exponential model (of depreciation)?
If I try to sell the car 10 years from now, what can I hope to get for it?

$$
y=12,000\left(\frac{3000}{12000}\right)^{\frac{x}{5}} \quad y=12,000\left(\sqrt{5}_{.25}\right)^{x}
$$

$$
\mathrm{y}=12,000\left(\frac{3000}{12000}\right)^{\frac{10}{5}}=750 \text { dollars }
$$

5) A piece of machinery cost 250,000 dollars... After 5 years, it is worth 220,000 dollars...

What is the rate of depreciation?

$$
\begin{aligned}
& 220,000=250,000(1+\mathrm{r})^{5} \\
& \sqrt[5]{\frac{22}{25}}=1+\mathrm{r} \\
& .974757=1+\mathrm{r} \\
& \mathrm{r}=-.02524 \text { or approx. } 2.5 \%
\end{aligned}
$$

1) John has $\$ 2200$ in an account that increases 7% annually...

A brand new sports car costs $\$ 48,000$, but it depreciates by 22% annually...
If John is willing to buy the sports car used, when would he be able to afford it?

Exponential Model of John's account...
7\% growth
$t=$ time in years
initial value: $\$ 2200$
$\mathrm{A}_{\mathrm{J}}=2200(1.07)^{\mathrm{t}}$

When are the values equal?

$$
\begin{gathered}
2200(1.07)^{\mathrm{t}}=48000(.78)^{\mathrm{t}} \\
(1.07)^{\mathrm{t}}=21.8182(.78)^{\mathrm{t}} \\
(1.37179)^{\mathrm{t}}=21.8182
\end{gathered}
$$

$$
\log _{(1.37179)} 21.8182=\mathrm{t} \quad \frac{\log (21.8182)}{\log (1.37179)}=\mathrm{t}
$$

$$
\mathrm{t}=9.752 \text { (approximately) }
$$

John would have to wait almost 10 years before he could buy that car!
2) A bank offers savings accounts that pay 4% interest compounded continously, OR accounts that pay 4.5% simple interest.

If you want to invest the amount for 5 years, which account should you use?
4% compounded continuously: $10000 e^{.04(5)}=12,214$
4.5% simple interest.... $10000(.045)=450$
5 years of interest $=450 \times 5=2250$
total: 12,250
The simple interest is slightly better...

What time frame are the accounts equal?

$$
10000 e^{.04(\mathrm{t})}=10000+\mathrm{t}(450) \quad 5.77 \text { years (or, } 0 \text { years!) }
$$

After 5.77 years, the compounding interest path is better..

3) Jason opens an investment account with a 6.5% annual interest rate, compounding continuously If he deposits $\$ 1000$, how much will he have in 9 months?

When will the account have $\$ 2500$?
since it is "compounding continuously",

$$
\begin{aligned}
& \mathrm{A}=\mathrm{P} e^{\mathrm{rt}} \\
& \mathrm{r}=.065 \quad \text { (NOT .65) } \\
& \mathrm{t}=9 / 12=.75 \quad \text { (NOT 9) } \\
& \mathrm{P}=1000
\end{aligned}
$$

$$
\begin{aligned}
& 2500=1000 e^{.065(\mathrm{t})} \\
& 2.5=e^{.065(\mathrm{t})} \\
& \ln (2.5)=.065(\mathrm{t}) \\
& \mathrm{t}=14.09 \text { years (approximately) }
\end{aligned}
$$

4) Uranium has a $1 / 2$ life of 2.7×10^{5} years...
a) How long does it take for 10 mg of Uranium to decay to 7 mg ?
b) How much remains after $1,000,000$ years?

Approach 1: $\quad A=10\left(\frac{1}{2}\right)^{\frac{t}{270,000}}$
this is a quick method...
However, it doesn't show the rate of decay...

Approach 2: $\mathrm{A}=\mathrm{P} e^{\mathrm{rt}}$
this is a 2-step process: a) find the rate of decay r
b) find the time t

$$
\begin{aligned}
& 5=10 e^{\mathrm{r}(270,000)} \\
& \frac{1}{2}=e^{270,000 \mathrm{r}}
\end{aligned}
$$

$$
\ln (1 / 2)=270,000 \mathrm{r}
$$

$$
\mathrm{r}=\frac{\ln (.5)}{270,000} \quad \text { (approx. -.000003) }
$$

$$
7=10 e^{\left(\frac{\ln (.5)}{270,000}\right) t}
$$

$$
\ln (.7)=\frac{\ln (.5)}{270,000} \mathrm{t} \quad \text { or } \ln (.7)=-.000003 \mathrm{t}
$$

approx.
$\mathrm{t}=138,935$ years

$$
\mathrm{A}=10 e^{\left(\frac{\ln (.5)}{270,000}\right) 1,000,000} \quad \mathrm{~A}=.767492 \text { (approx.) }
$$

3) A population in Algebratown is modeled by $\mathrm{P}=344 e^{\mathrm{kt}}$
where $t=0$ (corresponds to 1990) and P is the population in $1,000 \mathrm{~s}$

In 1975 , the population was $189,000 \ldots$
a) Find k
b) Predict the population in 2030

To find k, we use the info that is given...

$$
\begin{aligned}
& 1975---->t=-15 \\
& 189,000---->P=189
\end{aligned}
$$

$$
189=344 e^{\mathrm{k}(-15)}
$$

$$
\ln \left(\frac{189}{344}\right)=-15 \mathrm{k}
$$

$$
\begin{aligned}
& \mathrm{k}=.039926 \\
& \text { (almost } 4 \% \text { growth) }
\end{aligned}
$$

$$
\begin{aligned}
& \text { quick check: } \\
& \frac{72}{4}=18 \text { years to double } \\
& 1990344,000 \\
& 2008 \\
& 2026 \\
& 2030
\end{aligned}
$$

Population in 2030, corresponds to $t=40$
$\mathrm{P}=344 e^{(.039926)(40)}$
$\mathrm{P}=1698.83$----> approx. $1,698,830$

1) $5 \cdot(.5)^{\mathrm{x}}-4=3 \cdot 2^{-\mathrm{x}}$

$$
5\left(\frac{1}{2}\right)^{\mathrm{x}}-4=3 \frac{1}{2^{\mathrm{x}}}
$$

SOLUTIONS

$$
\begin{array}{ll}
2\left(\frac{1}{2}\right)^{\mathrm{x}}=4 & \mathrm{x}=-1 \\
\left(\frac{1}{2}\right)^{\mathrm{x}}=2 &
\end{array}
$$

2) $5^{\mathrm{x}}+125\left(5^{-\mathrm{x}}\right)=30$

$$
\begin{array}{cc}
\text { method 1: Substitute } \mathrm{A}=5^{\mathrm{x}} & \text { Method 2: multiply by } 5^{\mathrm{x}} \\
\mathrm{~A}+125\left(\frac{1}{\mathrm{~A}}\right)=30 & 5^{\mathrm{x}}\left(5^{\mathrm{x}}+125\left(5^{-\mathrm{x}}\right)=30\right. \\
\mathrm{A}^{2}+125=30 \mathrm{~A} & 5^{2 \mathrm{x}}+125=30\left(5^{\mathrm{x}}\right) \\
(\mathrm{A}-5)(\mathrm{A}-25)=0 & 5^{2 \mathrm{x}}-30\left(5^{\mathrm{x}}\right)+125= \\
\mathrm{A}=5 \text { or } 25 & \left(5^{\mathrm{x}}-5\right)\left(5^{\mathrm{x}}-25\right)=0 \\
& \mathrm{x}=1,2
\end{array}
$$

3) Using exponents and/or logarithm properties, can you evaluate 20033^{97} ?

$$
\text { Is there more or less than } 300 \text { digits? } \quad x=2003^{97} \quad \log x=\log 2003^{97}
$$

What is the estimate (in scientific notation)?

$$
\mathrm{x}=10^{320} \cdot 10^{.263} \begin{aligned}
& \text { There are more than } 300 \text { digits... } \\
& 1.8323 \times 10^{320}
\end{aligned}
$$

$$
\begin{gathered}
\mathrm{x}=2003^{97} \mathrm{log}=\log 2003^{97} \\
\log x=97 \log 2003 \\
\log x=97 \cdot(3.3017) \\
\log x=320.263 \\
\log _{10} x=320.263 \\
x=10^{320.263}
\end{gathered}
$$

$$
\mathrm{x}=10^{320} \cdot 10^{.263}
$$

4) If it takes 7 years for an investment to double, how long would it take for the investment to triple?

Then, to find how long it triples....

$$
\begin{aligned}
& \mathrm{A}=\mathrm{P} e^{\mathrm{rt}} \quad \text { First find the growth rate }(\mathrm{r}) \ldots \\
& 200=100 e^{7 \mathrm{r}} \\
& \ln (2)=7 \mathrm{r} \\
& \mathrm{r}=\ln (2) / 7 \\
& \mathrm{r}=.099 \text { approx. }
\end{aligned}
$$

$$
\begin{aligned}
& 300=100 e^{.099 \mathrm{t}} \\
& 3=e^{.099 \mathrm{t}} \\
& \ln (3)=.099 \mathrm{t} \\
& \mathrm{t}=11.1 \text { years (approximately) }
\end{aligned}
$$

5) A family's financial goal is to have $\$ 20,000$ in an account after 5 years....
a) If the family has $\$ 12,000$, what yield will they need to reach the goal?
b) If rates are 6%, how much must they deposit to reach their goal?
(Assume the family does not add money later...)

$$
20000=12000 e^{\mathrm{r}(5)}
$$

$$
\frac{5}{3}=e^{5 \mathrm{r}}
$$

$$
\begin{aligned}
& 20000=\mathrm{P} e^{.06(5)} \\
& 20000=\mathrm{P} e^{.3}
\end{aligned}
$$

$$
\ln (1.667)=5 \mathrm{r}
$$

$$
P=\$ 14,816.4 \text { or more }
$$

$$
\mathrm{r}=.1022
$$

$$
\begin{aligned}
& \text { the yield must be at least } \\
& 10.2 \%
\end{aligned}
$$

Thanks for visiting. (Hope it helps!)

If you have questions, suggestions, or requests, let us know. Cheers

Also, Mathplane Express for mobile and tablets at Mathplane.ORG Or, visit the mathplane stores at TES and TeachersPayTeachers

