## **Number Classifications**





## NUMBERS DEFINITIONS & EXAMPLES

#### PRIME NUMBER

A natural number ONLY divisible by itself or 1. 1 is not prime. 2 is the only even prime number. e.g. 7, 23, 37

#### COMPOSITE NUMBER

A natural number that has a positive divisor other than 1 and itself. e.g. 6, 9, 38

#### MIXED NUMBER

A mixed number is the sum of a fraction and a whole number.

e.g. 
$$3\frac{4}{5}$$
  $2\frac{3}{7}$ 

## RECIPROCAL

"A fraction with the numerator and denominator reversed"

## IDENTITY ELEMENTS

Additive Identity: 0 "Any number + 0 = the same number" Multiplicative Identity: 1 "Any number x 1 = the same number"

## PERFECT SQUARES

Any number that is the square of a rational number. (i.e. a "rational number times itself creates a perfect square")

e.g. 
$$1, 4, 9, \frac{9}{16}, \frac{100}{49}$$



Practice Classifying Numbers.....

Place a check in any box that defines the number:

|                | natural | whole | integer | rational | irrational | real | imaginary |
|----------------|---------|-------|---------|----------|------------|------|-----------|
| 11             |         |       |         |          |            |      |           |
| <i>√</i> 3     |         |       |         |          |            |      |           |
| <b>−7</b>      |         |       |         |          |            |      |           |
| 5 2            |         |       |         |          |            |      |           |
| 0              |         |       |         |          |            |      |           |
| √-9            |         |       |         |          |            |      |           |
| 71             |         |       |         |          |            |      |           |
| <u>-8</u><br>4 |         |       |         |          |            |      |           |

What points (x, y) satisfy the equation x + y = 10, where x and y are natural numbers.

Answer always, sometimes, or never:

- 1) An integer is rational.
- 2) A whole number is natural.
- 3) A rational number is an integer.
- 4) An irrational number is a real number.
- 5) n and -n are both natural numbers.
- 6)  $\sqrt{x}$  is a real number.
- 7) a repeating decimal is a rational number.

|            | natural | whole | integer | rational | irrational | real | imaginary |
|------------|---------|-------|---------|----------|------------|------|-----------|
| 11         | X       | X     | X       | X        |            | X    |           |
| <i>√</i> 3 |         |       |         |          | X          | X    |           |
| <b>−7</b>  |         |       | X       | X        |            | X    |           |
| 5 2        |         |       |         | X        |            | X    |           |
| 0          |         | X     | X       | X        |            | X    |           |
| √-9        |         |       |         |          |            |      | X         |
| 7          |         |       |         |          | X          | X    |           |
| <u>-8</u>  |         |       | X       | X        |            | X    |           |

-2

3i

What points (x, y) satisfy the equation x + y = 10, where x and y are natural numbers.

natural numbers include:  $1, 2, 3, 4, \dots$  (1, 9) (6, 4)

(2, 8) (7, 3)

(3, 7) (8, 2)

(4, 6) (9, 1)

Answer always, sometimes, or never: (5, 5)

1) An integer is rational. Always.... (all integers are rational, because any integer can be expressed as n/1)

2) A whole number is natural. Sometimes... 0 is whole, but NOT natural...

3) A rational number is an integer. Sometimes... 5 is rational integer... 1/2 is rational non-integer...

4) An irrational number is a real number. Always... (imaginary numbers are not rational nor irrational)

5) n and -n are both natural numbers. Never... If n = 1, then -n = -1... natural numbers are positive..

6)  $\sqrt{x}$  is a real number. Sometimes... If x < 0, then it is not...

7) a repeating decimal is a rational number. Always... Any repeating decimal can be expressed as a fraction -- ratio of 2 integers..

## Vinculum (Bar) and "Repeating Decimals"

Vinculum: A horizontal bar drawn over multiple quantities to indicate they are grouped together.

Examples include: radicals

 $\overline{AB}$ line segments (joining points A & B)

0.77676 repeating decimals

Repeating Decimals: A decimal number that eventually becomes periodic (i.e. "the end repeats indefinitely")

Examples: 
$$\frac{1}{3} = 0.333333... = 0.\overline{3}$$

$$\frac{22}{7} = 3.142857142857... = 3.\overline{142857}$$

 $12.0340353535... = 12.0340\overline{35}$ 

Converting Fractions to Decimals: Divide the numerator by the denominator

Examples:

$$\begin{array}{r}
42 \\
9 \overline{\smash)42} \\
-36 \\
60 \\
-54 \\
\hline
etc....
\end{array}$$
4.66

Converting 'Repeating Decimals' to Fractions: Using algebra

Examples:

$$.\overline{7}$$
 let  $n = .7\overline{7}$  then,  $10n = 7.7\overline{7}$ 

$$\begin{array}{ccc} 10n & 7.77 \\ -\underline{n} & -.77 \\ 9n & 7.0 \end{array} \qquad \begin{array}{c} \text{substitution reveals} \\ \text{that } 9n = 7 \end{array} \qquad n = \frac{7}{9}$$

substitution reveals that 
$$9n = 7$$

$$n = \frac{7}{9}$$

$$\begin{array}{ccc}
 100m & 18.18 \\
 - \underline{m} & -\underline{.18} \\
 \hline
 99m & 18
\end{array}$$

$$m = \frac{18}{99}$$

 $11.\overline{18} = 11\frac{18}{99}$ 

234.0017676

Separate the number into parts:

$$234 + .001 + .000\overline{76}$$

234 + 
$$.001 = \frac{1}{1000}$$
 + let  $p = .00076\overline{76}$   
=  $\frac{99}{99000}$  10000p =  $.76\overline{76}$   
10000p =  $.76\overline{76}$ 

let 
$$p = .00076\overline{76}$$

$$=\frac{99}{99000}$$

$$1000p = .7676$$
  
 $100000p = 76.\overline{76}$ 

$$p = \frac{76}{9900}$$

(repeats indefinitely)

Combine the Fractions: 
$$234 + \frac{99}{99000} + \frac{76}{99000} = 234 + \frac{175}{99000}$$

$$.000\overline{76} = \frac{76}{99000}$$

## Specifying number sets

## Write the solution set:

1) 
$$5x + 3 = 14$$
  $x \in \{\text{real numbers}\}\$ 

2) 
$$3x + 7 = 20$$
  $x \in \{\text{integers}\}\$ 

3) 
$$|3x + 4| > 10$$
  $x \in \{\text{natural numbers}\}$ 

4) 
$$|4x + 3| = 9$$
  $x \in \{\text{positive numbers}\}$ 

5) 
$$-5 < x + 2 \le 7$$
  $x \in \{\text{whole numbers}\}\$ 

6) 
$$x^2 = 64$$
  $x \in \{\text{real numbers}\}\$ 

## SOLUTIONS

1) 
$$5x + 3 = 14$$
  $x \in \{\text{real numbers}\}\$ 

$$5x = 11$$
 {11/5}  $x = 11/5$ 

2) 
$$3x + 7 = 20$$
  $x \in \{\text{integers}\}\$ 

$$3x = 13$$
But, 13/3 is not an integer!
 $x = 13/3$ 

3) 
$$|3x + 4| > 10$$
  $x \in \{\text{natural numbers}\}$ 

$$3x + 4 > 10$$
 or  $3x + 4 < -10$ 

$$3x > 6$$
  $3x < -14$   $\{3, 4, 5, ...\}$   $x > 2$   $x < -14/3$ 

Since natural numbers <u>are positive</u> integers, the solution is 3, 4, 5, 6, ...

4) 
$$|4x + 3| = 9$$
  $x \in \{\text{positive numbers}\}$ 

$$4x + 3 = 9$$
 or  $4x + 3 = -9$ 

$$4x = 6$$
  $4x = -12$   $\{3/2\}$ 

$$x = 3/2$$
  $x = -3$ 

5) 
$$-5 < x + 2 \le 7$$
  $x \in \{\text{whole numbers}\}$ 

$$-5 \le x + 2$$
 and  $x + 2 \le 7$  {0, 1, 2, 3, 4, 5}

 $\{-8, 8\}$ 

$$-7 \le x$$
 and  $x \le 5$ 

and, x must be a whole number!

$$\{3, 4, 5, ...\}$$
 6)  $x^2 = 64$   $x \in \{\text{real numbers}\}$ 

(square root both sides)

$$x = 8$$
 or -8



# Quick Quiz (with solutions)

## Nine Number Questions

- 1) List the 5 smallest prime numbers.
- 2) Is the product of two prime numbers ever prime?
- 3) {perfect squares < 100} ∩ {odd numbers}</p>
- 4) How many rational numbers are between 2 and 9?
- 5) List the 4 integers closest to 1 on the number line.
- 6) Are natural numbers a subset of integers?
- 7) What is the product of a number and its reciprocal?
- 8) Give 3 examples of irrational numbers.
- 9) Express .2929 as a fraction.

## Nine Number Questions

## ANSWERS

1) List the 5 smallest prime numbers.

2) Is the product of two prime numbers ever prime?

No.. The product of 2 primes will always produce a number which has a factor other than itself and one.

3) {perfect squares < 100} ∩ {odd numbers}

$$\{1, 4, 9, 16, 25, 36, 49, 64, 81\}$$
  $\Omega$   $\{1, 3, 5, 7, 9, ...\} = \{1, 9, 25, 49, 81\}$ 

4) How many rational numbers are between 2 and 9?

notice: 2.001 2.00001 2.1001 are examples.. There are an infinite number of rational numbers!

There are countless others..

5) List the 4 integers closest to 1 on the number line.



6) Are natural numbers a subset of integers?

yes, every natural number is an integer..

7) What is the product of a number and its reciprocal?

$$a \cdot \frac{1}{a} = 1$$

8) Give 3 examples of irrational numbers.

$$\sqrt{2}$$
 e pi

9) Express .2929 as a fraction.

Let 
$$n = .29\overline{29}$$

Then, let 
$$100n = 29.29\overline{29}$$

$$100n - n = 99n$$

Substitution: 
$$29.29\overline{29} - .29\overline{29} = 29$$

So, 
$$99n = 29$$

$$n = \frac{29}{99}$$

## Quick review of Number Classes

| Natural Numbers  | "Count to 10 and Beyond"                         | 1, 2, 3, 4, 5,                                                                               | N            |
|------------------|--------------------------------------------------|----------------------------------------------------------------------------------------------|--------------|
| Whole Numbers    | "Add a zero to the Naturals"                     | 0, 1, 2, 3, 4, 5,                                                                            | W            |
| Integers         | "Add the opposites to the Wholes"5, -            | 4, -3, -2, -1, 0, 1, 2, 3, 4, 5,                                                             | Z            |
| Rational Numbers | "Use the Integers to make Fractions"65,          | -1/3,, 0, , 1/2, 3, 5.6,                                                                     | $\mathbb{Q}$ |
| Real Numbers     | "Add the rest of the numbers on the number line" | $-\sqrt{3}$ ,1, , 2, e, 8/3,                                                                 | R            |
| Complex Numbers  | "Add a perpendicular line to the number line"    | a + bi                                                                                       | C            |
|                  |                                                  | where a is any real number,<br>and, b is any real number except 0<br>and, $i$ is $\sqrt{-1}$ | J            |

$$\mathbb{R} - \mathbb{Q} = \mathbb{P}$$

Reals + Rationals = Irrationals



## NUMBER PUZZLES

I. Each capital letter represents a unique digit.
Using logic, can you match each letter with the number it represents?

A B C D E F G H

Here are the properties:

- a)  $A \times D = A$
- b) B, C, and G are prime numbers
- c) B, F, and D are even numbers
- d)  $G \le E$
- e) H has 3 factors
- f) F = 3B
- g)  $G \times D = 20$
- h) C + A = E

II. If A, B, and C are unique digits,

and

what are A, B, and C?

| III. | Place | the | following | categories | inside | the | rectangles |
|------|-------|-----|-----------|------------|--------|-----|------------|
|      |       |     |           |            |        |     |            |

Then, arrange the numbers inside the squares....

| Nine | Cates | ≥ories |
|------|-------|--------|

Odd Even Factors of 60 Greater than 20 Less than 20

Perfect Squares Prime Multiples of 3 Multiples of 5

## Twenty Numbers:

2, 4, 5, 7, 9, 11, 12, 15, 16, 18, 20, 21, 23, 24, 25, 30, 35, 36, 45, 60

| Categories |  | Numb | pers |  |
|------------|--|------|------|--|
|            |  |      |      |  |
|            |  |      |      |  |
|            |  |      |      |  |
|            |  |      |      |  |
|            |  |      |      |  |
|            |  |      |      |  |
|            |  |      |      |  |
|            |  |      |      |  |
|            |  |      |      |  |
|            |  |      |      |  |

Categories

IV. What are the 3 prime factors of 2294?

## SOLUTIONS

E

8

F

G

Η

D

I. Each capital letter represents a unique digit. Using logic, can you match each letter with the number it represents?

Here are the properties:

- a)  $A \times D = A$
- b) B, C, and G are prime numbers
- c) B, F, and D are even numbers
- d)  $G \le E$
- e) H has 3 factors
- f) F = 3B
- g)  $G \times D = 20$
- h) C + A = E

a) if  $A \times D = A$ , then A is either 0 or 1

В

2

C

b) B, C, and G are 2, 3, 5, 7

A

- c) since B is even, B must be 2...
- f) F = 3B, so F = 6
- g) since  $G \times D = 20$ , G and D must be 4 and 5...

since D is even ---> D is 4 and G is 5

h) since C + A = E, A cannot be 0...

So, A = 1

C+1=EC cannot be 3 (because 4 is already equal to D) C must be 7... and, E is 8...

e) H has 3 factors (possible answers: 4 or 9) H is 9 it's factors are 1, 3, 9

II. If A, B, and C are unique digits,

and

what are A, B, and C?

A must be 1 or 2...

Then, B is 9, A is 1, and C is 8

## III. Place the following categories inside the rectangles...

Then, arrange the numbers inside the squares....

#### Nine Categories:

Odd Even Factors of 60 Greater than 20 Less than 20

Perfect Squares Prime Multiples of 3 Multiples of 5

## Twenty Numbers:

2, 4, 5, 7, 9, 11, 12, 15, 16, 18, 20, 21, 23, 24, 25, 30, 35, 36, 45, 60

## SOLUTIONS

| _      |     |    |     |    |
|--------|-----|----|-----|----|
| ( )    | 216 | 20 | ori | AC |
| $\sim$ | au  | -5 | OH  |    |

## Numbers

| odd           | 9  | 7  |
|---------------|----|----|
| factors of 60 | 4  | 5  |
| even          | 36 | 2  |
| > 20          | 25 | 23 |
| < 20          | 16 | 11 |

| Numbers |    |    |    |  |  |  |
|---------|----|----|----|--|--|--|
| 9       | 7  | 21 | 45 |  |  |  |
| 4       | 5  | 60 | 20 |  |  |  |
| 36      | 2  | 12 | 30 |  |  |  |
| 25      | 23 | 24 | 35 |  |  |  |
| 16      | 11 | 18 | 15 |  |  |  |

| perfect<br>square | prime | mult 3 | mult 5 |
|-------------------|-------|--------|--------|
|-------------------|-------|--------|--------|

Categories

## IV. What are the 3 prime factors of 2294?

Since 2294 is even, we know 2 is one of the prime factors...

2294 divided by 2 equals 1147...

A quick check can eliminate 3, because it leaves a remainder... Since 1147 ends in 7, we can eliminate 5... And, dividing by 7, 11, or 13 leaves a remainder...

So, the remaining possibities are between 17 and 67...

Try combinations that multiply to 1147 --- i.e. end in 7....

31, 41, 61 with 17, 37, 47, 67....

Trial and error leads to 31 x 37  $\,$ 

37

Thanks for visiting. (Hope it helped!)

If you have questions, suggestions, or requests, let us know.

## Cheers



Also, stores, comics and content at Pinterest, TES, and TeachersPayTeachers

And, Mathplane Express for mobile at Mathplane.ORG