Probability Introduction

Notes, Examples, and Practice Exercise (with Solutions)

Topics include independent events, mutually exclusive, conditional probability, tree diagram, Venn diagram, and more...

Basic Definition:

$$
\begin{aligned}
& \mathrm{n}: \quad \mathrm{p}(\mathrm{~A})=\frac{\# \text { of ways A can happen }}{\text { total possible outcomes }} \\
& \text { probability of an event is } \frac{\text { 'successes' }}{\text { 'possibilities' }}
\end{aligned}
$$

EXAMPLES

$$
\mathrm{p}(\text { coin lands heads })=\frac{1}{2} \text { or } .5
$$

$$
\mathrm{p}(\text { roll a } 5 \mathrm{w} / 2 \text { dice })=\frac{4}{36}=\frac{1}{9} \text { or } .111
$$

4 potential successes: $1|4 \quad 2| 3 \quad 3|2 \quad 4| 1$ 36 possibilities
The Range of Probability Values

0	. 5	1	
_H	$+$		0 is impossible .5 is a $50 / 50$ chance 1 is certainty
roll a 5	coin		
with two dice	lands heads		

Mutually Exclusive
"If A happens, then B cannot simultaneously happen"

If the events are mutually exclusive, then

$$
\mathrm{P}(\mathrm{~A} \text { or } \mathrm{B})=\mathrm{p}(\mathrm{~A})+\mathrm{p}(\mathrm{~B})
$$

-- flipping a coin and getting heads or tails? mutually exclusive
-- drawing a card and getting a queen or a king? mutually exclusive
-- drawing a card and getting a queen or a red card? NOT mutually exclusive (queen of hearts or queen of diamonds)

$$
\left.\left.\left.\begin{array}{l}
\mathrm{p}(\text { rolling a } 5 \text { or } 8 \mathrm{w} / 2 \text { dice })=p(\text { rolling a } 5)+\mathrm{p}(\text { rolling an } 8) \\
= \\
=\frac{4}{36}+\frac{5}{36}=\frac{1}{4} \\
\\
\text { (includes } 1|4 \quad 2| 3 \\
2 \mid 6 \\
3 \mid 5
\end{array} 4 \right\rvert\, 4 \begin{array}{ccc}
6 \mid 3 & 6 \mid 2
\end{array}\right) \text { and }\right\}
$$

If the events are NOT mutually exclusive, then

$$
\begin{aligned}
& \qquad \begin{aligned}
& \mathrm{P}(\mathrm{~A} \text { or } \mathrm{B})=\mathrm{p}(\mathrm{~A})+\mathrm{p}(\mathrm{~B})-\mathrm{P}(\mathrm{AB}) \quad \mathrm{p}(\text { drawing a king or a spade })=\mathrm{p}(\text { king })+\mathrm{p}(\mathrm{spade})-\mathrm{p}(\text { king \& spade) } \\
& \text { (subtracting } \mathrm{AB} \text { eliminates "double counting") }=\frac{4 \text { kings }}{52 \text { cards }}+\frac{13 \text { spades }}{52 \text { cards }}-\frac{1 \text { king of spades }}{52 \text { cards }} \\
&=\frac{16}{52} \quad \text { (includes } 13 \text { spades, king of hearts, } \\
& \text { king of diamonds, and king of clubs) }
\end{aligned}
\end{aligned}
$$

If you're unsure if the events are mutually exclusive and you want to avoid double counting, use the 2 nd formula...

$$
\begin{aligned}
p(\text { drawing a picture card or a four }) & =p(\text { picture })+p(\text { four })-p(\text { picture/four }) \\
& =\frac{12}{52}+\frac{4}{52}-\frac{0}{52} \approx \text { (no card consists of a four AND a picture) } \\
& =4 / 13 \quad \text { (includes all } 4 \mathrm{~s}, \text { jacks, queens, and kings) }
\end{aligned}
$$

The probability of several events happening will be between 0 and 1 .
Complement: "Probability of NOT...."
Also, add all possible (mutually exclusive) events: the outcome is 1 .

Consider a bag of 10 marbles:	1 black	$\mathrm{p}($ drawing green $)=0$	
	2 red	$\mathrm{p}($ drawing black $)=1 / 10$	Since $p($ black $)+p($ red $)+p($ blue $)+p($ yellow $)=1$,
	2 blue	p (drawing red) $=2 / 10$	then the probability of NOT drawing a black marble is
	5 yellow	p (drawing blue) $=2 / 10$	
		$\begin{gathered} \mathrm{p}(\text { drawing yellow })=5 / 10 \\ \text { total probability }=1 \end{gathered}$	$1-\mathrm{p}($ drawing black $)=9 / 10$

Dependent vs. Independent Events (conditional probability)
"If 2 events affect each other, then they are dependent"
(more specifically, if event A affects event B, then the probability
of B is dependent on the outcome of A)
"If events' outcomes don't affect each other, then they are independent."

$$
\begin{aligned}
& - \text { - flipping a coin } 3 \text { times? } \\
& \text { Independent } \\
& - \text { drawing } 2 \text { cards from a deck (without replacement)? } \\
& \text { Dependent } \\
& - \text { drawing } 2 \text { cards (with replacement)? } \\
& \text { Independent }
\end{aligned}
$$

If the events are independent, then
$p(A$ and $B)=p(A) p(B)$

$$
\mathrm{p} \text { (flipping a coin } 3 \text { times \& getting } 3 \text { heads })=
$$

$$
\mathrm{p}(\text { heads }) * \mathrm{p}(\text { heads }) * \mathrm{p}(\text { heads })=
$$

$$
1 / 2 \times 1 / 2 \times 1 / 2=1 / 8
$$

'replacement' vs. 'without replacement' replacement assumes you return the sample to its original set. EX: If you draw a card and put it back in the deck (replacement)

If 2 events are dependent, (i.e. B is dependent on the outcome of A), then

$$
\mathrm{p}(\mathrm{~A} \text { and } \mathrm{B})=\mathrm{p}(\mathrm{~A}) \mathrm{p}(\mathrm{~B} \mid \mathrm{A})
$$

"probability of A times the probability of B, GIVEN A has happened"
p (drawing 2 spades $)=\mathrm{p}(1$ st card is a spade) $\mathrm{x} \mathrm{p}(2 \mathrm{nd}$ card is also a spade $)$

$$
\frac{13}{52} \quad \mathrm{x} \quad \frac{12}{51}=\frac{156}{2652}=.059 \quad \text { "Dependent Events" }
$$

The chance of drawing a king is $4 / 52 \mathrm{p}$ (king) $=4 / 52$
But, what if you knew that the card chosen was a picture?
Now, what are the chances it's a king?
p (the picture card that you drew is a king) $=p$ (king|it's a picture card)
"Conditional Probability"

$$
=\frac{4}{12} \quad \begin{aligned}
& \text { (possible kings) } \\
& \text { (\# of picture cards) }
\end{aligned}
$$

Notice the difference between replacing a card (independent events)
and not replacing a card (dependent events; 2nd draw depends on outcome of the 1st draw)
"Replacement"
$\mathrm{p}($ drawing 2 sevens w/o replacement $)=13 / 52 \times 12 / 51$
$p($ drawing 2 sevens with replacement $)=13 / 52 \times 13 / 52$
vs.
"Without Replacement"

Each fraction is $\frac{\text { 'possible successful outcomes' }}{\text { 'total possible outcomes' }}$

Factorials: Counting Arrangements
Definition of Factorial: The product of an integer and all smaller positive integers.

$$
5!=5 \times 4 \times 3 \times 2 \times 1=120
$$

$$
x!=x(x-1)(x-2) \ldots 2 \times 1
$$

Factorials are often used to 'count arrangements'
How many ways can you arrange 5 chairs?

In the first spot, you can choose from 5 chairs.,
Then, in the second spot, you can choose from the 4 chairs not chosen..
Then, in the 3rd spot, you can choose from the 3 chairs remaining... Etc...

$$
5!=120 \text { possible ways }
$$

Probability Tree Diagram

Example: 60% of the math school is male, and 40% of the school is female. If 45% of the boys play sports, and 38% of girls play sports, use a probability tree diagram to answer the following:

1) What is the probability of picking a boy who does not play sports?

Follow the branches:
$P($ boy $)=.60$
$\mathrm{P}($ not playing sports \mid boy $)=.55$
$\mathrm{P}($ boy and non-sports $)=\mathrm{P}($ boy $) \times \mathrm{P}($ not sports \mid boy $)$

$$
=.60 \times .55=.33
$$

2) What percentage of students play sports?

| $\%$ of students
 who play sports | $=$boys who
 play sports |
| ---: | :--- |$+$| girls who |
| :--- |
| play sports |

3) What percentage of athletes are girls?

$$
\begin{aligned}
\begin{array}{l}
\text { percentage of } \\
\text { athletes who } \\
\text { are girls }
\end{array} & =\frac{\text { girl athletes }}{\text { total athletes }} \\
& =\frac{.152}{.422} \\
& =.36
\end{aligned}
$$

Venn Diagram Application

1) In a survey of 200 students, 115 like math, 80 like english, 25 like neither.
A) What is the probability that a selected student likes both english and math?
B) What is the probability that a selected student likes either math or engish?

An effective method of solving is to use a Venn Diagram:

Math only $=115$
English only $=80$
Math AND English 20
Neither $=25$
A) $\mathrm{P}($ both M and E$)=\frac{20}{200}=10 \%$
B) $\mathrm{P}($ either M or E$)=\frac{175}{200}=\frac{7}{8}=87.5 \%$
or, $1-\frac{25}{200}$
2) At the local high school, 20% of the students are athletes that play a sport.

Of the athletes, 25% play football, 10% play ONLY basketball, and 5% play football and basketball.
(The rest of the athletes play other sports.)
A) What percent of athletes play sports other than football or basketball?
B) If I pick a random student, what is the probability that he plays basketball?

To simplify, let's assume the high school has 200 students

Then, let's break up the athletes

8 football only
4 basketball only 2 football/basketball
A) Therefore, 40 athletes -14 basketball/football $=26$ 26 out of 40 play a different sport!

$$
\frac{26}{40}=65 \%
$$

Assuming 200 students:

In the diagram, there are 200 students. And, 6 play basketball (4 play only basketball; 2 play basketball and football)
B) $\mathrm{P}($ student plays basketball $)=\frac{6}{200}=3 \%$

There are 52 cards in a standard deck. There are 4 suits --- 13 clubs.. and, there are 3 face cards per suit (12 total) Jack, Queen, King
the answer is NOT $\frac{13}{52} \cdot \frac{12}{51}$ because these are not completely independent events....

SOLUTION
CASE 1: First card is non-face club

$$
\frac{10}{52} \cdot \frac{12}{51}=\frac{120}{2652}
$$

CASE 2: First card is face club

$$
\text { Together, there are } \frac{153}{2652}=\frac{3}{52}
$$

$$
\frac{3}{52} \cdot \frac{11}{51}=\frac{33}{2652}
$$

This can be illustrated with a probability tree diagram:

Two poor souls try their luck at this game of (no) chance...

LanceAF \#61 (12-1-12)
www.mathplane.com

What are the odds of success? Slim to none!

```
Conditional Probability Quick Quiz
```

I. The following questions refer to a drawn card from a standard 52 card deck.

```
    \(P(7\) of spades \()=\)
    \(\mathrm{P}(7\) of spades \(\mid\) spade \()=\)
    \(\mathrm{P}(7\) of spades \(\mid\) seven \()=\)
    \(\mathrm{P}(7\) of spades|black card \()=\)
    Are "Kings" and "diamonds" independent?
```

 Are "Kings" and "face cards" independent?
 II.

	Freshmen	Sophomores	Juniors	Seniors	Totals
Algebra	52	32	16	0	100
Geometry	28	44	20	6	98
Trigonometry	17	20	59	20	116
Calculus	3	11	19	53	86
Totals	100	107	114	79	400

What is the probability that a randomly chosen student is a senior?

What is the probability that a random junior is taking calculus?

What is the probability that a senior is taking geometry?

What is the probability that a geometry student is a senior?
$\mathrm{P}($ Calculus $)=$
$\mathrm{P}($ freshmen or sophomore $)=$
$\mathrm{P}($ geometry and trigonometry $)=$
$\mathrm{P}($ senior|algebra $)=$
$\mathrm{P}($ freshman|trigonometry $)=$
$\mathrm{P}($ trigonometry \mid freshman $)=$
III. More questions
A) 4 cards are dealt randomly:

Find the probability that all cards are the same color?
Find the probability that all cards are the same suit?
B) 5 black eggs and 8 white eggs are in a basket.

3 of each color have a prize in them.
What is the probability that the egg you pulled is white if you found a prize?
What is the probability that the egg you pulled has a prize if it white?
C) A bag contains 3 red and 2 blue marbles. Two contestants, A and B , alternate drawing from the bag.

If A draws first, what is the probability of drawing a blue marble first? Note: there is no replacement...
D) A gambling parlor has a pair of "fair" dice where the probability of rolling a ' 6 ' with each die is $1 / 6 \ldots$
And, the parlor has a pair of "weighted" dice where the probability of rolling a ' 6 ' with each die is $1 / 4 \ldots$

Suppose you pick up a pair of dice and roll double sixes (12).. What is the probability that you selected the "weighted" dice?

Letter Key:

1) Number of ways to roll "doubles" with 2 dice.
2) Chance of drawing a club, diamond, or heart (from a deck of 52 cards).
3) Chances that the red face card drawn is a diamond.
4) If the odds of success are 7:3, how many successes would you expect in 30 independent trials?
5) Probability of an impossible event?
6) $p\left(\right.$ 'event $\left.A^{\prime}\right)+p\left(\right.$ not 'event $\left.A^{\prime}\right)=$
7) If the probability of X is 30%, the probability of Y is 100%, and X and Y are independent, what is the probability of X and Y occurring?
8) If it rains 60% of the time in February, what are the chances it doesn't rain on Valentine's day?
9) Probability of randomly selecting a white square:
10) FREE ENTRY

11) Outcomes M, N, and O are mutually exclusive. If $p(M)=.3 \quad p(N)=.6 \quad p(O)=.1$, what is the $p(M$ or $N)$?
12) A bag contains 3 green blocks, 5 red blocks, and 2 blue blocks.

Each time you draw, you put the block back. If you draw a green one three times in a row, what is the probability the next draw is green?
13) Odds of a coin landing heads 3 times in a row.
14) A bag has 4 marbles: 3 yellow and 1 blue. What are the chances of reaching in the bad and pulling 2 yellow marbles out?
15) FREE ENTRY
16) Total number of different blackjack hands that can possibly be dealt.

\qquad

$265 \square$ \qquad

SOLUTIONS- \rightarrow

SOLUTIONS

I. The following questions refer to a drawn card from a standard 52 card deck.

$\mathrm{P}(7$ of spades $)=\quad \frac{1}{52}$	$\begin{aligned} & \text { (7 of spades) } \\ & \text { (total cards) } \end{aligned}$	
$\mathrm{P}(7$ of spades \mid spade $)=$	$\frac{1}{13}$	(the 7 of spades) (13 total spades)
$\mathrm{P}(7$ of spades \mid seven $)=$	$\frac{1}{4}$	$\begin{aligned} & \text { (the } 7 \text { of spades) } \\ & (4 \text { total } 7 \mathrm{~s}) \end{aligned}$
$\mathrm{P}(7$ of spades \mid black card $)=$	$\frac{1}{26}$	$\begin{aligned} & \text { (7 of spades) } \\ & \text { (\# of black cards) } \end{aligned}$

$\mathrm{P}(7$ of spades \mid seven $)=$ "Probability that the card I'm holding is the 7 of spades, given that you are told it's a seven"

A side note: $P(7$ of spades \mid red card $)=0$
"the probability that a red card is the 7 of spades is 0 : impossible."

$$
\begin{array}{ll}
\text { Are "Kings" and "diamonds" independent? } & \begin{array}{l}
\mathrm{P}(\mathrm{~K})=4 / 52=1 / 13 \\
\mathrm{P}(\mathrm{~K} \mid \mathrm{D})=1 / 13
\end{array} \quad \text { Yes }
\end{array}
$$

What is the probability the card I'm holding is a king? 4/52.. Now, what if I told you the card is a diamond? The probability it is a king remains $1 / 13$.

Definition of independent: $\mathrm{P}(\mathrm{B} \mid \mathrm{A})=\mathrm{P}(\mathrm{B})$, then A and B are independent...

$$
\begin{array}{ll}
\text { Are "Kings" and "face cards" independent? } & \mathrm{P}(\mathrm{~K})=1 / 13 \\
\mathrm{P}(\mathrm{~K} \mid \mathrm{FC})=4 / 12=1 / 3
\end{array}
$$

What is the probability that the card I'm holding is a king? $1 / 13$.. But, what if I revealed that the card I'm holding is a face card? Now, the probability it is a king is $4 / 12 \ldots$
II.

	Freshmen	Sophomores	Juniors	Seniors	Totals
Algebra	52	32	16	0	100
Geometry	28	44	20	6	98
Trigonometry	17	20	59	20	116
Calculus	3	11	19	53	86
Totals	100	107	114	79	400

What is the probability that a randomly chosen student is a senio
What is the probability that a random junior is taking calculus?

What is the probability that a senior is taking geometry?

What is the probability that a geometry student is a senior?
$P($ Calculus $)=\frac{86}{400} \quad P($ senior|algebra $)=0$

$$
\begin{array}{ll}
P(\text { freshmen or sophomore })=\frac{207}{400} & P(\text { freshman } \mid \text { trigonometry })=\frac{17}{116} \\
P(\text { geometry and trigonometry })=0 & P(\text { trigonometry } \mid \text { freshman })=\frac{17}{100}
\end{array}
$$

$$
\mathrm{P}(\text { Geometry } \mid \text { Senior })=\frac{6}{79}
$$

$$
\frac{79}{400} \begin{aligned}
& \text { (seniors) } \\
& \text { (total students) }
\end{aligned}
$$

$$
\mathrm{P}(\text { Calculus } \mid \text { Junior })=\frac{19}{114}
$$

"If I select a junior, what is the probability that he/she is taking calculus?"

$$
P(\text { Senior } \mid \text { Geometry })=\frac{6}{98} \quad \text { or } \quad \frac{6}{98} \text { Senior Geometry students }
$$

"If I already know the student is in trigonometry, what is the probability he/she is a freshman?"
"If I already know the student is a freshman, what is the probability he/she is in trigonometry?"
III. More questions
A) 4 cards are dealt randomly:

Find the probability that all cards are the same color?
Find the probability that all cards are the same suit?
1st 2nd 3rd 4th
card card card card

$$
\frac{52}{52} \cdot \frac{25}{51} \cdot \frac{24}{50} \cdot \frac{23}{49}=11 \% \text { (approx) }
$$

$$
\frac{52}{52} \cdot \frac{12}{51} \cdot \frac{11}{50} \cdot \frac{10}{49}=5.7 \% \text { (approx) }
$$

Conditional Probability Quick Quiz

SOLUTIONS
B) 5 black eggs and 8 white eggs are in a basket. 3 of each color have a prize in them.

What is the probability that the egg you pulled is white if you found a prize?
What is the probability that the egg you pulled has a prize if it white?
Consider only the eggs with prizes in them:
3 black and 3 white. Therefore,
$\mathrm{P}($ white \mid prize $)=\frac{3 \text { white }}{6 \text { total }}=50 \%$

Consider only white eggs:
8 white. 3 with prize. 5 without.
$\mathrm{P}($ prize \mid white $)=\frac{3}{8}$
C) A bag contains 3 red and 2 blue marbles.

Two contestants, A and B , alternate drawing from the bag.
If A draws first, what is the probability of drawing a blue marble first? Note: there is no replacement...
A wins on the first draw: $\quad 2 / 5 \quad 40 \%$
B wins on the next draw: $3 / 5 \cdot 2 / 4=30 \%$
P (A draws red and B draws blue)
A wins on the third draw: $3 / 5 \cdot 2 / 4 \cdot 2 / 3=20 \%$
$\mathrm{P}(\mathrm{A}$ draws red, then B draws red, then A draws blue)
B wins on the fourth draw: 10% because it is the only other outcome...
Red, Red, Red... There are only blue marbles remaining...
$3 / 5 \cdot 2 / 4 \cdot 1 / 3 \cdot 2 / 2=.10$
D) A gambling parlor has a pair of "fair" dice where the probability of rolling a ' 6 ' with each die is $1 / 6 \ldots$

And, the parlor has a pair of "weighted" dice where the probability of rolling a ' 6 ' with each die is $1 / 4 \ldots$
Suppose you pick up a pair of dice and roll double sixes (12)..
What is the probability that you selected the "weighted" dice?
Without any information, the $\mathrm{P}($ selecting the weighted dice $)=1 / 2$
However, we now have the knowledge of having rolled double sixes (a more likely outcome with weighted dice)
Using a probability tree diagram, we can illustrate the possibilities...
$\begin{aligned} & \mathrm{P}\left(\text { weighted dice|rolled a 12) }=\frac{\text { weighted } 12 ' \mathrm{~s}}{\text { total } 12 ' \mathrm{~s}}=\frac{1 / 32}{1 / 32+1 / 72}=\right. \\ & \frac{9 / 288}{9 / 288+4 / 288}= \\ & 9 / 13\end{aligned}$

Answer the questions below. Then, convert the numbers to letters to reveal the solution.

SOLUTIONS

1) Number of ways to roll "doubles" with 2 dice.

$$
\begin{aligned}
& \text { six possible ways: } \\
& 1|12| 23|34| 45 \mid 5 \\
& \frac{\text { \# of successes }}{\# \text { of possibilities }}=\frac{39}{52}=3 / 4 \text { or } .75
\end{aligned}
$$

$\frac{7}{10}=\frac{\mathrm{x}}{30}$
$\mathrm{x}=21$

Letter Key:

$$
\begin{array}{cccccccccc}
0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\
\mathrm{~A} & \mathrm{~B} & \mathrm{E} & \mathrm{I} & \mathrm{~L} & \mathrm{O} & \mathrm{P} & \mathrm{R} & \mathrm{~S} & \mathrm{Y}
\end{array}
$$

2) Chance of drawing a club, diamond, or heart (from a deck of 52 cards).
3) Chances that the red face card drawn is a diamond.

Since we know it is a RED card, it can either be hearts or diamonds. Therefore, the chances are 50/50..
4) If the odds of success are $7: 3$, how many successes would you expect in 30 independent trials?

If the odds are $7: 3$, this implies that for
5) Probability of an impossible event? every 10 trials, 7 would be successful.

If it's impossible, then the chance of success is zero.
6) $p\left(\right.$ 'event $\left.A^{\prime}\right)+p\left(\right.$ not 'event $\left.A^{\prime}\right)=1 \quad E X: p(A)=.40$ then, $p($ not $A)$ would be .60

$$
\text { (all possibilities will always be } 1 \text {) }
$$

7) If the probability of X is 30%, the probability of Y is 100%, and X and Y are independent, what is the probability of X and Y occurring?
(since independent)
$\mathrm{p}(\mathrm{X}$ and Y$)=\mathrm{p}(\mathrm{X}) \mathrm{p}(\mathrm{Y})$
$=.30 \times 1.00=.3$

8) If it rains 60% of the time in February, what are the chances
p (not raining in Feb) $=1-\mathrm{p}$ (rain)
$.40=1-.60$

9) Probability of randomly selecting a white square:
10) FREE ENTRY

$\frac{3 \text { white }}{9 \text { total }}=\frac{1}{3}$

11) Outcomes M, N, and O are mutually exclusive. If $p(M)=.3 \quad p(N)=.6 \quad p(O)=.1$, what is the $p(M$ or $N)$? (since mutually exclusive) $p(M)+p(N)=p(M$ or $N)$
$.3+.6=.9$
12) A bag contains 3 green blocks, 5 red blocks, and 2 blue blocks. Each time you draw, you put the block back. If you draw a green one three times in a row, what is the probability the next draw is green?
13) Odds of a coin landing heads 3 times in a row.

8 possibilities $(2 \times 2 \times 2):$ HHH HHT HTH HTT THH THT TTH TTT
Since you keep putting the blocks back into the bag, each draw is independent! $\mathrm{p}($ green $)=3 / 10$
(1 successful outcome)
14) A bag has 4 marbles: 3 yellow and 1 blue. What are the chances of reaching in the bad and pulling 2 yellow marbles out? (dependent events!)
15) FREE ENTRY

$$
3 / 4 \quad \mathrm{x} \quad 2 / 3=6 / 12=1 / 2
$$

16) Total number of different blackjack hands that can possibly be dealt.

$$
\text { (possible 1st card) } \mathrm{x} \text { (possible 2nd card) }=\text { possibilities }
$$ -

$52 \mathrm{x} \quad 51$ (remaining) $=2652$
www.mathplane.com
"A Sure Thing"? PROBABILITY IS ONE

Find more Hidden Message Puzzles at Mathplane.com...
(Throughout the site and in the 'travel log collection')

One more probability question:
"Seating Assignment"
You and 2 friends receive invitations to the math awards banquet.
Each guest table is round and seats 10 people.
If you and your friends were randomly assigned seats at the same table, what is the probability that you are seated next to both friends?

Solution at the end of the packet...

Thanks for visiting. (Hope it helps!)
If you have questions, suggestions, or requests, let us know.
Cheers

Also, at TeachersPayTeachers and mathplane.ORG

Seating Assignment Question:

You and 2 friends receive invitations to the math awards banquet.
Each guest table is round and seats 10 people.
If you and your friends were randomly assigned seats at the same table, what is the probability that you are seated next to both friends?

Your seat does not matter....
Now, consider the first friend... What is the probability that he/she is seated next to you?
There are 9 seats left... And, there are 2 seats that are next to you. so the probability is $2 / 9$.

Then, consider the second friend... What is the probability that he/she is seated next to you --- assuming the first friend got one of the 2 seats? $1 / 8$

So, the probability that both friends get the two seats next to you is $2 / 9 \times 1 / 8=1 / 36$

$$
{ }_{9} \mathrm{C}_{2}=\frac{9!}{2!7!}=36
$$

