# Calculus: Series Convergence and Divergence

Notes, Examples, and Practice Questions (with Solutions)



Topics include geometric, power, and p-series, ratio and root tests, sigma notation, taylor and maclaurin series, and more.

Geometric Series

$$\sum_{n=0}^{\infty} ar^n = a + ar + ar^2 + \dots$$

a = initial valuer = common ratio (growth factor)

("exponent increases; base is constant")

TEST:  $|r| \ge 1$  diverges

|r| < 1 converges

Examples:  $\sum_{n=0}^{\infty} 8(\frac{1}{2})^n = 8 + 4 + 2 + ...$ 

If the series converges, then  $\sum_{n=0}^{\infty} ar^n = \frac{a}{1-r}$ 

Since 
$$\frac{1}{2} < 1$$
, it converges

Since 
$$\frac{1}{2} < 1$$
, it converges  $\frac{a}{1-r} = \frac{8}{(1-1/2)} = 16$ 

$$\sum_{n=0}^{\infty} .7(3)^n = .7 + 2.1 + 6.3 + ...$$

p-Series

$$\sum_{p=1}^{\infty} \frac{1}{n^p} = \frac{1}{1^p} + \frac{1}{2^p} + \frac{1}{3^p} + \dots$$

TEST:  $p \le 1$  diverges

("exponent is constant; fraction is increasing")

$$\sum_{n=1}^{\infty} \frac{5}{n^3} = 5 + \frac{5}{8} + \frac{5}{27} + \frac{5}{81} + \dots$$
 converge

Since p = 3, it converges

$$\frac{1}{p-1} < \sum_{p=1}^{\infty} \frac{1}{n^p} < 1 + \frac{1}{p-1}$$

p > 1 converges and,

$$\sum_{n=1}^{\infty} \frac{3}{\sqrt[3]{n}} = 3 + 2.12 + 1.73 + 1.5 + \dots$$
 diverges

Since p = 1/2, it diverges

Harmonic Series ("a special p-series") 
$$\sum_{n=1}^{\infty} \frac{1}{n} = 1 + \frac{1}{2} + \frac{1}{3} + \dots$$

(note: the sequence is converging to 0, but the series is diverging...)

Since p = 1, it diverges

Power Series (centered at a)

$$f(x) = \sum_{n=0}^{\infty} c_n(x-a)^n$$

 $f(x) = \sum_{n=0}^{\infty} c_n(x-a)^n$  where the domain of f is the set of all x for which the power series converges.

TEST:  $|x - a| \le R$  converges

a is a constant

|x-a|>R diverges

x is a variable

|x - a| = R inconclusive

Example:  $\sum_{n=0}^{\infty} \frac{n}{4^n} (x+6)^n$  What is the interval of convergence?

c are the 'coefficients' of each term (constants)

Using the ratio test,

sst,  

$$L = \lim_{n \to \infty} \frac{\frac{n+1}{4^{n+1}} (x+6)^{n+1}}{\frac{n}{4^{n}} (x+6)^{n}}$$

$$= \lim_{n \to \infty} \frac{(n+1)(x+6)^{n+1}}{4^{n+1}} \cdot \frac{4^n}{n (x+6)^n}$$

$$=\lim_{n\to\infty}\frac{(n+1)(x+6)}{(n+1)(x+6)}$$

$$= |x+6| \lim_{n \to \infty} \frac{(n+1)}{4n}$$

$$L = |x+6| \frac{1}{4}$$

If 
$$\frac{1}{4} | x + 6 | < 1$$
 converges

|x + 6| < 4, then series converges

If 
$$\frac{1}{4} | x + 6 | > 1$$
 diverges

|x + 6| > 4, then series diverges

So, the radius of convergence R = 4

and, the interval of convergence is -10 < x < -2

TEST: Sequence Test If  $\lim_{n\to\infty} a_n \neq 0$ , then  $\sum_{n=0}^{\infty}$  DIVERGES

Example: Sequence 3, 6, 9, 12, ... is geometric

$$a_n = 3(2)^{k-1}$$
  $a = 3$   $r = 2$  and, since  $r > 2$ , it diverges...

Therefore, the series 3 + 6 + 9 + 12 + ... is diverging...

TEST: Sequence Test If  $\sum_{n=0}^{\infty}$  converges, then  $\lim_{n\to\infty} a_n = 0$ 

Example: 
$$\sum_{n=0}^{\infty} \frac{1}{2^n} = 1 + \frac{1}{2} + \frac{1}{4} + \frac{1}{8} + \dots = 2$$
 and, 
$$\lim_{n \to \infty} \frac{1}{2^n} = 0$$

NOTE: Converse isn't true... i.e. if  $\lim_{n\to\infty} a_n = 0$  then  $\sum_{n=0}^{\infty}$  converges OR diverges...

Example: Harmonic series...

$$\sum_{n=1}^{\infty} \frac{1}{n} \qquad p=1, \text{ so diverges} \qquad \text{Series } P=1+\frac{1}{2}+\frac{1}{3}+...$$

However, sequence  $1, \frac{1}{2}, \frac{1}{3}$ , ... is obviously going to 0 converges

TEST: Integral Test

If 
$$\sum_{n=1}^{\infty} a_n$$
 converges, then  $\int_{1}^{\infty} f(x) dx$  converges

Example:  $\sum_{n=1}^{\infty} \frac{2n}{n^2 + 1}$   $\lim_{n \to \infty} \frac{2n}{n^2 + 1} = 0$  so, the series may converge OR diverge!

Using the integral test: 
$$\int_{1}^{\infty} \frac{2x}{x^2 + 1} dx = \lim_{b \to \infty} \int_{1}^{b} \frac{2x}{x^2 + 1} dx$$
$$= \lim_{b \to \infty} \ln(x^2 + 1) \Big|_{1}^{b} = \infty - \ln(2) \text{ DIVERGES}$$

$$\text{If} \quad \sum_{n=1}^{\infty} \ \text{$U_n$} \quad \text{converges}, \quad \text{and} \quad a_n^{} \leq \text{$U_n$} \quad \text{then} \quad a_n^{} \quad \text{converges}$$

Example: 
$$\sum_{n=1}^{\infty} \frac{1}{2 + n^3}$$

Example:  $\sum_{n=1}^{\infty} \frac{1}{2+n^3}$  Since the integral test is difficult, we can try the comparison test. We'll choose the p-series  $\sum_{n=1}^{\infty} \frac{1}{n^3}$  because it is similar AND the terms will be greater than the terms in the

In this p-series, p > 3, so it converges...

$$\textstyle\sum_{n=1}^{\infty}\frac{1}{2+\,n^3}\,<\,\sum_{n=1}^{\infty}\frac{1}{n^3}\quad \text{converges}$$

$$\text{If} \quad \sum_{n=1}^{\infty} \ \text{$U_n$} \quad \text{diverges,} \quad \text{and} \quad a_n \, \geq \, \text{$U_n$} \quad \text{then} \quad a_n \quad \text{diverges}$$

Example: 
$$\sum_{n=1}^{\infty} \frac{2}{\sqrt{5n-1}}$$

Example:  $\sum_{n=1}^{\infty} \frac{2}{\sqrt{5n-1}}$  If we use the comparison test, we can choose  $\sum_{n=1}^{\infty} \frac{2}{\sqrt{5n}}$ 

$$\sum_{n=1}^{\infty} \frac{2}{\sqrt{5n}}$$

$$\frac{2}{\sqrt{5}} \ \sum_{n=1}^{\infty} \ \frac{1}{\sqrt{n}} \quad \text{is p-series where } p = 1/2 \quad \text{ so, it diverges}$$

$$\sum_{n=1}^{\infty} \frac{2}{\sqrt{5n-1}} \ > \sum_{n=1}^{\infty} \ \frac{2}{\sqrt{5n}} \quad _{DIVERGES} \qquad \text{(Note: the integral test could verify that this series diverges)}$$

#### TEST: Limit Comparison Test

$$\mbox{ If } \quad \lim_{n \to \infty} \ \frac{a_n}{b_n} \quad \mbox{ is a finite value (and non-zero), then}$$

$$\sum_{n=1}^{\infty} a_n$$
 AND  $\sum_{n=1}^{\infty} b_n$  are either BOTH converging or BOTH diverging

Example: 
$$\sum_{n=1}^{\infty} \frac{1}{2n+1}$$

$$\frac{1}{2n+1} \ \ < \ \frac{1}{n} \quad \text{for all positive n}$$

Comparison test is inconclusive... 
$$\sum_{n=1}^{\infty} \frac{1}{2n+1} <$$
 However, the Limit

Comparison test succeeds!

 $\sum_{n=1}^{\infty} \ \frac{1}{2n+1} \quad < \quad \sum_{n=1}^{\infty} \ \frac{1}{n} \qquad \text{ We know the harmonic series diverges,} \\ \text{so the comparison test doesn't help...}$ 

$$\lim_{n \to \infty} \frac{\frac{1}{2n+1}}{\frac{1}{n}} = \lim_{n \to \infty} \frac{n}{2n+1} = \frac{1}{2}$$

There is a finite value, 1/2, and since  $\frac{1}{n}$  is diverging, then

$$\frac{1}{2n+1}$$
 must be diverging

Series convergence or divergence?

is inconclusive if L = 1

Examples:  $\sum_{n=1}^{\infty} \frac{7^n}{(-3)^{n+1} \cdot n} = \frac{7}{9} + \frac{49}{-54} + \frac{343}{243} + \dots$ 

$$\lim_{n \to \infty} \frac{\frac{7^{n+1}}{(-3)^{n+2} \cdot (n+1)}}{\frac{7^{n}}{(-3)^{n+1}}} = \lim_{n \to \infty} \frac{7^{n+1}}{(-3)^{n+2} \cdot (n+1)} \cdot \frac{(-3)^{n+1} \cdot n}{7^{n}} = \lim_{n \to \infty} \frac{7^{1} \cdot n}{(-3)^{1} \cdot (n+1)} = \lim_{n \to \infty} \frac{7^{1} \cdot n}{(-3)^{1} \cdot (n+1)} = \lim_{n \to \infty} \frac{7^{1} \cdot n}{(-3)^{1} \cdot (n+1)} = \lim_{n \to \infty} \frac{7^{1} \cdot n}{(-3)^{1} \cdot (n+1)} = \lim_{n \to \infty} \frac{7^{1} \cdot n}{(-3)^{1} \cdot (n+1)} = \lim_{n \to \infty} \frac{7^{1} \cdot n}{(-3)^{1} \cdot (n+1)} = \lim_{n \to \infty} \frac{7^{1} \cdot n}{(-3)^{1} \cdot (n+1)} = \lim_{n \to \infty} \frac{7^{1} \cdot n}{(-3)^{1} \cdot (n+1)} = \lim_{n \to \infty} \frac{7^{1} \cdot n}{(-3)^{1} \cdot (n+1)} = \lim_{n \to \infty} \frac{7^{1} \cdot n}{(-3)^{1} \cdot (n+1)} = \lim_{n \to \infty} \frac{7^{1} \cdot n}{(-3)^{1} \cdot (n+1)} = \lim_{n \to \infty} \frac{7^{1} \cdot n}{(-3)^{1} \cdot (n+1)} = \lim_{n \to \infty} \frac{7^{1} \cdot n}{(-3)^{1} \cdot (n+1)} = \lim_{n \to \infty} \frac{7^{1} \cdot n}{(-3)^{1} \cdot (n+1)} = \lim_{n \to \infty} \frac{7^{1} \cdot n}{(-3)^{1} \cdot (n+1)} = \lim_{n \to \infty} \frac{7^{1} \cdot n}{(-3)^{1} \cdot (n+1)} = \lim_{n \to \infty} \frac{7^{1} \cdot n}{(-3)^{1} \cdot (n+1)} = \lim_{n \to \infty} \frac{7^{1} \cdot n}{(-3)^{1} \cdot (n+1)} = \lim_{n \to \infty} \frac{7^{1} \cdot n}{(-3)^{1} \cdot (n+1)} = \lim_{n \to \infty} \frac{7^{1} \cdot n}{(-3)^{1} \cdot (n+1)} = \lim_{n \to \infty} \frac{7^{1} \cdot n}{(-3)^{1} \cdot (n+1)} = \lim_{n \to \infty} \frac{7^{1} \cdot n}{(-3)^{1} \cdot (n+1)} = \lim_{n \to \infty} \frac{7^{1} \cdot n}{(-3)^{1} \cdot (n+1)} = \lim_{n \to \infty} \frac{7^{1} \cdot n}{(-3)^{1} \cdot (n+1)} = \lim_{n \to \infty} \frac{7^{1} \cdot n}{(-3)^{1} \cdot (n+1)} = \lim_{n \to \infty} \frac{7^{1} \cdot n}{(-3)^{1} \cdot (n+1)} = \lim_{n \to \infty} \frac{7^{1} \cdot n}{(-3)^{1} \cdot (n+1)} = \lim_{n \to \infty} \frac{7^{1} \cdot n}{(-3)^{1} \cdot (n+1)} = \lim_{n \to \infty} \frac{7^{1} \cdot n}{(-3)^{1} \cdot (n+1)} = \lim_{n \to \infty} \frac{7^{1} \cdot n}{(-3)^{1} \cdot (n+1)} = \lim_{n \to \infty} \frac{7^{1} \cdot n}{(-3)^{1} \cdot (n+1)} = \lim_{n \to \infty} \frac{7^{1} \cdot n}{(-3)^{1} \cdot (n+1)} = \lim_{n \to \infty} \frac{7^{1} \cdot (n+1)}{(-3)^{1} \cdot (n+1)} = \lim_{n \to \infty} \frac{7^{1} \cdot (n+1)}{(-3)^{1} \cdot (n+1)} = \lim_{n \to \infty} \frac{7^{1} \cdot (n+1)}{(-3)^{1} \cdot (n+1)} = \lim_{n \to \infty} \frac{7^{1} \cdot (n+1)}{(-3)^{1} \cdot (n+1)} = \lim_{n \to \infty} \frac{7^{1} \cdot (n+1)}{(-3)^{1} \cdot (n+1)} = \lim_{n \to \infty} \frac{7^{1} \cdot (n+1)}{(-3)^{1} \cdot (n+1)} = \lim_{n \to \infty} \frac{7^{1} \cdot (n+1)}{(-3)^{1} \cdot (n+1)} = \lim_{n \to \infty} \frac{7^{1} \cdot (n+1)}{(-3)^{1} \cdot (n+1)} = \lim_{n \to \infty} \frac{7^{1} \cdot (n+1)}{(-3)^{1} \cdot (n+1)} = \lim_{n \to \infty} \frac{7^{1} \cdot (n+1)}{(-3)^{1} \cdot (n+1)} = \lim_{n \to \infty} \frac{7^{1} \cdot (n+1)}{(-3)^{1} \cdot (n+1)} = \lim_{n \to \infty} \frac{7$$

 $\left| \frac{7}{-3} \right| \lim_{n \to \infty} \frac{n}{n+1} = \frac{7}{3}$  Since the limit L of the sequence > 1, the series DIVERGES

$$\sum_{n=1}^{\infty} \quad \frac{3^{n}}{n!} \quad = \quad 3 + \frac{9}{2} \, + \, \frac{27}{6} \, + \dots$$

$$\lim_{n \to \infty} \frac{\frac{3}{(n+1)!}}{\frac{3}{n!}} = \lim_{n \to \infty} \frac{3}{(n+1)!} \cdot \frac{n!}{3^n} = \lim_{n \to \infty} \frac{3}{n+1} = 0$$

Since the limit L of the sequence < 1, the series CONVERGES

TEST: Nth Root Test If  $\lim_{n\to\infty} \sqrt[n]{|a_n|} = L$ , then  $\sum_{n=1}^{\infty} a_n$  converges if L < 1

is inconclusive if L = 1

Examples:  $\sum_{n=0}^{\infty} \frac{2^n 3^{2n}}{10^n}$ 

Using the nth root test,  $\lim_{n \to \infty} \sqrt{n} / \frac{2^n 3^{2n}}{10^n} = \lim_{n \to \infty} \frac{2^1 3^2}{10^1} = \frac{18}{10}$  Since L = 9/5 > 1

 $\sum_{n=0}^{\infty} \frac{2^n n^3}{5^n}$ 

$$L = \lim_{n \to \infty} \sqrt{n} \sqrt{\frac{2^{n} n^{3}}{5^{n}}} = \lim_{n \to \infty} \frac{\sqrt{n} \sqrt{2^{n}} \sqrt{n} \sqrt{n^{3}}}{\sqrt{n} \sqrt{5^{n}}} = \lim_{n \to \infty} \frac{2 \cdot n^{\frac{3}{n}}}{5} = \frac{2 \cdot 1}{5} = \frac{2}{5}$$

Since L = 2/5 < 1

the series CONVERGES

$$\text{AND} \qquad 0 < \ a_{n+1} \ < \ a_n \quad \text{ for all } n \geq 1$$

Examples: 
$$\sum_{n=1}^{\infty} \frac{\left(-1\right)^n \; n}{\ln(2n)} \;\; = \;\; \frac{-1}{\ln(2)} \; + \;\; \frac{2}{\ln(4)} \; + \; \frac{-3}{\ln(6)} \; + \; ...$$

Using L'Hopital's Rule  $\lim_{n\to\infty} \frac{n}{\ln(2n)} = \lim_{n\to\infty} \frac{1}{\frac{2}{2n}} = \lim_{n\to\infty} n = \infty$ 

Since the limit  $\neq 0$ , the series DIVERGES

$$\sum_{n=1}^{\infty} \frac{n}{(-3)^{n-1}} = \frac{1}{1} + \frac{2}{-3} + \frac{3}{9} + \frac{4}{-27} + \dots$$

check 
$$0 < a_{n+1} < a_n$$
 
$$0 < \frac{n+1}{3^n} < \frac{n}{(3)^{n-1}}$$
 "cross-multiply"

this is satisfied if  $(n+1)(3)^{n-1} < n3^n$  "divide by (n+1)"

$$(3)^{n-1} < \frac{n3^n}{(n+1)}$$
 "divide by 3<sup>n</sup>"

 $\frac{1}{3} \ < \ \frac{n}{(n+1)} \qquad \begin{array}{l} \text{Since this is satisfied for } n \geq 1, \\ \text{the series CONVERGES} \end{array}$ 

$$f(x) = \cos(2x)$$

$$f(0) = 1$$

$$f'(x) = -2\sin(2x)$$

$$f'(0) = 0$$

$$f''(x) = -4\cos(2x)$$

$$f''(0) = -4$$

$$f'''(x) = 8\sin(2x)$$

$$f'''(0) = 0$$

$$f^{(4)}(\mathbf{x}) = 16\cos(2\mathbf{x})$$

$$f^{(4)}(0) = 16$$



$$f^{(5)}(x) = -32\sin(2x)$$
  $f^{(5)}(0) = 0$ 

$$f^{(6)}(x) = -64\cos(2x)$$
  $f^{(6)}(0) = -64$ 

$$f(x) = \sum_{n=0}^{6} \frac{f^{n}(0)}{n!} (x)^{n}$$
 is the series of the 6th order...

$$= \frac{1}{0!} (x)^{0} + \frac{0}{1!} (x)^{1} + \frac{-4}{2!} (x)^{2} + \frac{0}{3!} (x)^{3} + \frac{16}{4!} (x)^{4} + \frac{0}{5!} (x)^{5} + \frac{-64}{6!} (x)^{6}$$

$$= 1 - 2x^2 + \frac{2}{3}x^4 - \frac{4}{45}(x)^6$$



$$f(x) = \sum_{n=0}^{\infty} \frac{f^{n}(a)}{n!} (x-a)^{n}$$

$$f(x) = \sum_{n=0}^{4} \frac{f^{n}(0)}{n!} (x)^{n}$$
 is the series of the 4th order...

$$= \quad \frac{1}{0!} \left(x\right)^0 \ + \frac{0}{1!} \ \left(x\right)^1 \ + \frac{-4}{2!} \left(x\right)^2 \ + \frac{0}{3!} \left(x\right)^3 \ + \frac{16}{4!} \left(x\right)^4$$

$$= 1 - 2x^2 + \frac{2}{3}x^4$$

Note the similarity of the graphs!



$$f(x) = \sum_{n=0}^{8} \frac{f^{n}(0)}{n!} (x)^{n}$$
 is the series of the 8th order...

$$= 1 - 2x^2 + \frac{2}{3}x^4 - \frac{4}{45}(x)^6 + \frac{256}{81}(x)^8$$

NOTE: This is a MacLaurin Series, a special version of the Taylor Series. It occurs when a = 0

"A Taylor series about x = 0" is a MacLaurin series for f(x)

$$f(x) = (x+1)^{\frac{1}{2}} \qquad f(0) = 1$$

$$f'(x) = \frac{1}{2}(x+1)^{-\frac{1}{2}} \qquad f'(0) = \frac{1}{2}$$

$$f''(x) = -\frac{1}{4}(x+1)^{-\frac{3}{2}} \qquad f''(0) = -\frac{1}{4}$$

$$f'''(x) = \frac{3}{8}(x+1)^{-\frac{5}{2}} \qquad f'''(0) = \frac{3}{8}$$

$$f^{(4)}(x) = -\frac{15}{16}(x+1)^{-\frac{7}{2}} \qquad f^{(4)}(0) = -\frac{15}{16}$$

TAYLOR SERIES

$$f(x) = \sum_{n=0}^{\infty} \frac{f^{n}(a)}{n!} (x-a)^{n}$$

Applying the formula.....

$$f(x) = \sum_{n=0}^{\infty} \frac{f^{n}(0)}{n!} (x)^{n} = \frac{1}{0!} (x-0)^{0} + \frac{\frac{1}{2}}{1!} (x-0)^{1} + \frac{-\frac{1}{4}}{2!} (x-0)^{2} + \frac{\frac{3}{8}}{3!} (x-0)^{3} + \frac{\frac{-15}{16}}{4!} (x-0)^{4} + \dots$$

$$= \begin{bmatrix} 1 & + \frac{1}{2}x & -\frac{1}{8}x^{2} & +\frac{1}{16}x^{3} & -\frac{5}{128}x^{4} \end{bmatrix} \text{ First 5 terms...}$$







Example: 
$$\int \frac{e^{X} - 1}{x} dx$$

$$\int \frac{1}{x} e^{X} dx - \int \frac{1}{x} dx$$
 (split the fraction into two parts)

We know the Taylor Polynomial:

$$e^{X} = 1 + x + \frac{x^{2}}{2} + \frac{x^{3}}{6} + \frac{x^{4}}{24} + \dots \qquad \qquad \frac{1}{x} e^{X} = \frac{1}{x} + 1 + \frac{x}{2} + \frac{x^{2}}{6} + \frac{x^{3}}{24} + \dots$$

$$\left\{ \int \frac{1}{x} e^{X} dx = \ln|x| + x + \frac{x^{2}}{4} + \frac{x^{3}}{18} + \frac{x^{4}}{96} + \dots \right\} \int \frac{1}{x} dx = \ln|x|$$

$$\left\{ \int \frac{1}{x} e^{X} dx - \int \frac{1}{x} dx = x + \frac{x^{2}}{4} + \frac{x^{3}}{18} + \frac{x^{4}}{96} + \frac{x^{5}}{600} + \dots \right\} \int \frac{x}{n=1} \frac{x^{n}}{n(n!)}$$
(Note: the ln|x| cancelled out..)

Example:  $\int_{0}^{1} \sin(x^{4}) dx$  Evaluate the integral (to an accuracy of 5 decimal places)

Written as a trig function, this is a difficult equation to integrate.. However, if converted to a Taylor Polynomial, it's more manageable!

$$Sin(x) = \frac{x}{1!} - \frac{x^3}{3!} + \frac{x^5}{5!} - \dots$$

$$Sin(x^4) = \frac{x^4}{1!} - \frac{x^{12}}{3!} + \frac{x^{20}}{5!} - \dots$$

The longer the polynomial, the closer we get to the true value...

$$\int_{0}^{1} \sin(x^{4}) dx = \frac{x^{5}}{5} - \frac{13}{78} + \frac{x^{21}}{2520} - \frac{x^{9}}{7! \cdot 29}$$
The longer the polynomial, the closer we get to the true value...

(i.e. the remainder gets smaller and smaller...)

$$\int_{0}^{1} \sin(x^{4}) dx = \frac{x^{5}}{5} - \frac{13}{78} + \frac{x^{21}}{2520} - \frac{x^{9}}{7! \cdot 29}$$

$$\int_{0}^{1} \sin(x^{4}) dx = \frac{x^{5}}{5} - \frac{13}{78} + \frac{x^{21}}{2520} - \frac{x^{9}}{7! \cdot 29}$$

$$\int_{0}^{1} \sin(x^{4}) dx = \frac{x^{5}}{5} - \frac{13}{78} + \frac{x^{21}}{2520} - \frac{x^{9}}{7! \cdot 29}$$

$$\int_{0}^{1} \sin(x^{4}) dx = \frac{x^{5}}{5} - \frac{13}{78} + \frac{x^{21}}{2520} - \frac{x^{9}}{7! \cdot 29}$$

$$\int_{0}^{1} \sin(x^{4}) dx = \frac{x^{5}}{5} - \frac{x^{5}}{78} + \frac{x^{21}}{2520} - \frac{x^{9}}{7! \cdot 29}$$

$$\int_{0}^{1} \sin(x^{4}) dx = \frac{x^{5}}{5} - \frac{x^{5}}{78} + \frac{x^{21}}{2520} - \frac{x^{9}}{7! \cdot 29}$$

$$\int_{0}^{1} \sin(x^{4}) dx = \frac{x^{5}}{5} - \frac{x^{5}}{78} + \frac{x^{21}}{2520} - \frac{x^{9}}{7! \cdot 29}$$

$$\int_{0}^{1} \sin(x^{4}) dx = \frac{x^{5}}{5} - \frac{x^{5}}{78} + \frac{x^{21}}{2520} - \frac{x^{9}}{7! \cdot 29}$$

$$\int_{0}^{1} \sin(x^{4}) dx = \frac{x^{5}}{5} - \frac{x^{5}}{78} + \frac{x^{21}}{2520} - \frac{x^{9}}{7! \cdot 29}$$
within 5 decimal places... ('true value': .18756954)

Example: Find  $\frac{1}{\sqrt{10/e}}$  to five decimal places

First, we'll rewrite the expression  $\implies$   $e^{-.1}$ 

Then, apply the Taylor Polynomial and substitute -. 1 for x...

$$e^{-.1} = 1 + (-.1) + \frac{(-.1)^2}{2} + \frac{(-.1)^3}{6} + \frac{(-.1)^4}{24} = \boxed{.9048375}$$

$$e^{X} = 1 + x + \frac{x^{2}}{2} + \frac{x^{3}}{6} + \frac{x^{4}}{24} + \dots$$

('true value': .90483742)



# Practice Exercises -→

1) 
$$\sum_{n=1}^{\infty} \frac{1}{4^{n+1}}$$

$$\begin{array}{cccc}
2) & & \infty & & \sqrt[3]{n} \\
& & & & n & \\
\end{array}$$

3) 
$$\sum_{n=1}^{\infty} \frac{1}{n+1} - \frac{1}{n+3}$$

4) 
$$\sum_{n=1}^{\infty} \frac{n}{3^n}$$

Series Convergence and Divergence

Suggested tests:

- a) p-series
- b) geometric series
- c) comparison
- d) nth root
- e) integral
- f) telescopingg) alternate series
- h) ratio

Determine if the following series converge or diverge (using a suggested method listed at the right)

5) 
$$\sum_{n=0}^{\infty} 8(\frac{-2}{5})^n$$

6) 
$$\sum_{n=1}^{\infty} \frac{n}{(n^2+1)^2}$$

$$7) \qquad \sum_{n=1}^{\infty} \quad \frac{(n+1)!}{8^n}$$

8) 
$$\sum_{n=1}^{\infty} (-1)^n \frac{1}{\sqrt{n}}$$

Series Convergence and Divergence

Suggested tests:

- a) p-series
- b) geometric series
- c) comparison
- d) nth root
- e) integral
- f) telescoping
- g) alternate series
- h) ratio

9) 
$$\sum_{n=1}^{\infty} \frac{2n^2 + 1}{3n^5 + 2n + 1}$$

10) 
$$\frac{1}{200} + \frac{1}{400} + \frac{1}{600} + \dots$$

11) 
$$\frac{1}{201} + \frac{1}{204} + \frac{1}{209} + \frac{1}{216} + \dots$$

12) 
$$\sum_{n=1}^{\infty} \frac{1}{n\sqrt{n}}$$

2) Find the polynomial of order 4 at 0 for  $f(x) = e^{-x}$ Use this to approximate  $e^{(.5)}$ 

3) What is the coefficient of  $(x-2)^3$  in the Taylor Series generated by  $\ln(x)$  @ x=2

5) 
$$1 + \frac{1}{\sqrt[5]{2}} + \frac{1}{\sqrt[5]{3}} + \frac{1}{\sqrt[5]{4}} + \dots$$
 Does the series converge or diverge?

6) 
$$\sum_{n=1}^{\infty} \frac{3}{n(n+3)} + \frac{1}{7^n} =$$

a) 
$$\sum_{n=0}^{\infty} 3\left(\frac{x}{4}\right)^n$$

b) 
$$\sum_{n=0}^{\infty} \frac{n(x+3)^n}{5^n}$$

8) 
$$\sum_{n=1}^{\infty} \frac{2}{n^2 + n} =$$

$$1 - \frac{1}{4} + \frac{1}{16} - \frac{1}{64} + \dots + (-1)^n \frac{1}{4} + \dots$$

Suggested tests:

a) p-series

d) nth root e) integral

f) telescoping g) alternate series

h) ratio

b) geometric series c) comparison

 $\sum_{n=1}^{\infty} \frac{1}{4^{n+1}}$ 

We know  $\frac{1}{4^n}$  is always greater than  $\frac{1}{4^{n+1}}$ 

 $\lim_{n\to\infty} \frac{1}{\sqrt{n}} = 0 \quad \text{so, sequence converges...}$ 

 $\frac{1}{4^n} = \left(\frac{1}{4}\right)^n$  is a geometric series.. since 1/4 < 1, it converges....

since this converges, the series  $\frac{1}{\sqrt{n+1}}$  converges!

$$\sum_{n=1}^{\infty} \frac{1}{4^{n+1}} = \sum_{n=2}^{\infty} \frac{1}{4^n} \qquad \frac{1}{16} + \frac{1}{64} + \dots \qquad \frac{\frac{1}{16}}{1 - \frac{1}{4}} = \boxed{\frac{1}{12}}$$

 $\sum_{n=0}^{\infty} \frac{\sqrt{3/n}}{n}$  Use the p-series test...

$$\frac{\frac{1}{3}}{\frac{n}{n}} = \frac{1}{\frac{2}{3}}$$
 since  $p = \frac{2}{3} < 1$  it diverges

 $\sum_{n=1}^{\infty} \frac{1}{n+1} - \frac{1}{n+3}$  Use telescoping...

By noting the pattern, we

can see this series converges...



4) 
$$\sum_{n=1}^{\infty} \frac{n}{3^n}$$

Use the nth root test...

$$\lim_{n \to \infty} \sqrt{n} \sqrt{\frac{n}{3^n}} = \lim_{n \to \infty} \left( \frac{\frac{1}{n}}{3^n} \right)^n = \lim_{n \to \infty} \frac{\frac{1}{n}}{3} = \frac{1}{3}$$

since the limit  $L = \frac{1}{3} < 1$ , the series converges...

Using the geometric series...

since the 
$$| r | = \frac{2}{5}$$
 which is  $\leq 1$ , the series converges..

$$\frac{8}{1 - (-2/5)} = \boxed{\frac{40}{7}}$$

$$8 - (16/5) + 32/25 - (64/125) + 144/625 \dots$$

Suggested tests:

- a) p-series
- b) geometric series
- c) comparison
- d) nth root
- e) integral
- f) telescoping
- g) alternate series
- h) ratio

6) 
$$\sum_{n=1}^{\infty} \frac{n}{(n^2+1)^2}$$

Using the integral test...

$$\lim_{n\to\infty} \frac{n}{(n^2+1)^2} = 0$$

 $\lim_{n\to\infty} \frac{n}{\binom{n^2+1}^2} = 0$  so, the series can converge OR diverge... to find out, we'll use the integral test...

$$\lim_{b \to \infty} \int_{1}^{b} \frac{x}{(x^2 + 1)^2} dx$$

$$\lim_{b \to \infty} \frac{1}{2} \int_{1}^{b} 2x (x^{2} + 1)^{2} dx$$

Since the improper integral goes to 0, this series converges...

$$\lim_{b \to \infty} \frac{1}{2} (x^2 + 1)^{-1} = \lim_{b \to \infty} \frac{-1}{2 (x^2 + 1)} = 0$$

$$\begin{array}{ccc}
7) & \sum_{n=1}^{\infty} & \frac{(n+1)!}{8^n}
\end{array}$$

Using the ratio test...

$$\lim_{n \to \infty} \frac{a_{n+1}}{a_n} = \lim_{n \to \infty} \frac{\frac{(n+2)!}{8^{n+1}}}{\frac{(n+1)!}{8^n}} = \lim_{n \to \infty} \frac{\frac{(n+2)!}{8^{n+1}}}{\frac{(n+1)!}{8^n}} = \lim_{n \to \infty} \frac{\frac{(n+2)!}{8^{n+1}} \cdot \frac{8^n}{(n+1)!}}{\frac{8^n}{(n+1)!}}$$

Since the limit > 1, this series diverges...

8) 
$$\sum_{n=1}^{\infty} (-1)^n \frac{1}{\sqrt{n}}$$

$$\lim_{n\to\infty} \frac{1}{\sqrt{n}} = 0$$

Is 
$$0 < a_{n+1} < a_n$$

$$\lim_{n \to \infty} \ \frac{1}{\sqrt[]{n}} \ = \ 0 \qquad \qquad \text{Is} \quad 0 \ < \ a_{n+1} \ < \ a_n \quad ? \qquad \qquad 0 \ < \ \frac{1}{\sqrt[]{n+1}} \quad < \ \frac{1}{\sqrt[]{n}}$$

this is true for all  $n \ge 1$ 

Series does converge...

9) 
$$\sum_{n=1}^{\infty} \frac{2n^2 + 1}{3n^5 + 2n + 1}$$

Using the limit comparison test:

SOLUTIONS

Use 
$$\frac{1}{n^3}$$
 (a p-series that converges)

Use 
$$\frac{1}{n^3}$$
 (a p-series that converges)  $\frac{2n^2 - 1}{3n^5 + 2n + 1} = \frac{2n^5 - n^3}{3n^5 + 2n + 1}$   $\lim_{n \to \infty} \frac{2n^5 + n^3}{3n^5 + 2n + 1} = \frac{2}{3}$ 
Since limit exists, the transfer of the series of the se

$$\lim_{n \to \infty} \frac{2n^5 + n^3}{3n^5 + 2n + 1} = \frac{2}{3}$$

Since limit exists, the two sequences either BOTH diverge OR BOTH converge...

Since  $\frac{1}{n^3}$  converges, this series converges...

10) 
$$\frac{1}{200} + \frac{1}{400} + \frac{1}{600} + \dots$$

This series is 
$$\sum_{n=1}^{\infty} \frac{1}{(n)200} \longrightarrow \sum_{n=1}^{\infty} \frac{1}{n} \cdot \frac{1}{200} \longrightarrow \frac{1}{200} \xrightarrow{n=1}^{\infty} \frac{1}{n} \text{ harmonic series (i.e. p-series where } p=1)}$$

11) 
$$\frac{1}{201} + \frac{1}{204} + \frac{1}{209} + \frac{1}{216} + \dots$$

This series is 
$$\sum_{n=1}^{\infty} (\frac{1}{200+n^2})$$

Using Comparison Test: 
$$\sum_{n=1}^{k} \frac{1}{(200+n^2)} < \sum_{n=1}^{k} \frac{1}{n^2}$$

since 
$$\sum_{n=1}^{\infty} \frac{1}{n^2}$$
 converges (p-series), we know the other series must converge as well

12) 
$$\sum_{n=1}^{\infty} \frac{1}{n\sqrt{n}}$$
 Can verify using two tests...

the sequence does converge...

$$\frac{1}{1}$$
  $\frac{1}{2\sqrt{2}}$   $\frac{1}{3\sqrt{3}}$   $\Longrightarrow$  decreasing  $\checkmark$ 

Integral Test

Integral rest p-test 
$$\frac{1}{3/2} = -2 n$$

$$= \frac{-2}{\sqrt{n}} \Big|_{1}^{\infty}$$
since  $3/2 > 1$ 

$$= \frac{-2}{\sqrt{n}} \Big|_{1}$$
series converges...

= 0 + 2series converges...

$$f(x) = \sin(2x)$$

$$f(0) = 0$$

$$f'(x) = 2\cos(2x)$$

$$f'(0) = 2$$

$$f''(x) = -4\sin(2x)$$

$$f''(0) = 0$$

$$f'''(x) = -8\cos(2x)$$

$$f'''(0) = -8$$

$$f^{(4)}(x) = 16\sin(2x)$$

$$f^{(4)}(0) = 0$$

$$f^{(5)}(x) = 32\cos(2x)$$

$$f^{(5)}(0) = 32$$



SOLUTIONS

Since a Maclaurin series is around x = 0,

$$f(x) \longrightarrow \frac{0}{0!} (x)^0 + \frac{2}{1!} (x)^1 + \frac{0}{2!} (x)^2 + \frac{-8}{3!} (x)^3 + \frac{0}{4!} (x)^4 + \frac{32}{5!} (x)^5$$



 $2x - \frac{4}{3}x^3 + \frac{4}{15}x^5$ 

2) Find the polynomial of order 4 at 0 for  $f(x) = e^{-x}$ Use this to approximate  $e^{(.5)}$ 

$$f(x) = e^{-x}$$

$$f(0) = 1$$

$$f'(x) = -e^{-x}$$

$$f'(0) = -1$$

$$f''(x) = e^{-x}$$

$$f''(0) = 1$$

$$f'''(x) = -e^{-x}$$

$$f'''(0) = -1$$

$$f^{4}(x) = e^{-x}$$

$$f^{4}(0) = 1$$

$$e^{-x} = 1 + (-1)\frac{x}{1!} + (1)\frac{x^2}{2!} + (-1)\frac{x^3}{3!} + (1)\frac{x^4}{4!} + \dots$$

$$= 1 - x + \frac{x^2}{2} - \frac{x^3}{6} + \frac{x^4}{24}$$

To approximate  $e^{(.5)}$  we'll let x = -1/2

$$f(-1/2) = e^{.5}$$

$$f(-1/2) = 1 - (-1/2) + \frac{(-1/2)^2}{2} + \frac{(-1/2)^3}{6} + \frac{(-1/2)^4}{24}$$
  $e^{.5} = 1.64872$  (approx)

1.64844

3) What is the coefficient of  $(x-2)^3$  in the Taylor Series generated by  $\ln(x)$  @ x=2

$$f(x) = \ln(x)$$

$$f(2) = \ln(2)$$

$$f'(x) = \frac{1}{x}$$

$$f'(2) = 1/2$$

$$f''(x) = \frac{-1}{x^2}$$
  $f''(2) = -1/4$ 

$$f''(2) = -1/4$$

$$f'''(x) = \frac{2}{x^3}$$
  $f'''(2) = \frac{2}{8}$ 

$$f'''(2) = 2/8$$

$$f(x) = \sum_{n=0}^{\infty} \frac{f^{n}(a)}{n!} (x-a)^{n}$$

$$\ln(2)(x+2)$$
 +  $\frac{1/2}{1!}(x+2)$  +  $\frac{-1/4}{2!}(x-2)^2$  +  $\frac{2/8}{3!}(x-2)^3$ 

coefficient is 1/24

Try the ratio test...

$$\lim_{n \to \infty} \frac{(n+4)!}{3! (n+1)! 3^{n+1}} = \lim_{n \to \infty} \frac{(n+4)!}{3! (n+1)! 3^{n+1}} \bullet \frac{3! n! 3^{n}}{(n+3)!}$$

$$\lim_{n \to \infty} \frac{(n+4)!}{3! (n+1)! 3^{n+1}} \cdot \frac{3! n! 3^n}{(n+3)!}$$

$$\lim_{n \to \infty} \frac{(n+4)!}{3! (n+1)! 3^{n+1}} \bullet \frac{3! n! 3^n}{(n+3)!}$$

$$\lim_{n \to \infty} \frac{(n+4)}{(n+1) \cdot 3} = \frac{1}{3} \lim_{n \to \infty} \frac{(n+4)}{(n+1)} = \frac{1}{3} \cdot 1$$

Since the limit < 1, the series CONVERGES

5) 
$$1 + \frac{1}{\sqrt{5/2}^2} + \frac{1}{\sqrt{5/3}^2} + \frac{1}{\sqrt{5/4}^2} + \dots$$
 Does the series converge or diverge?

rewrite.... 
$$\frac{1}{2/5} + \frac{1}{2/5} + \frac{1}{2/5} + \frac{1}{2/5} + \frac{1}{2/5}$$
  $\sum_{n=1}^{\infty} \frac{1}{n^{2/5}}$ 

$$\sum_{n=1}^{\infty} \frac{1}{n^{2/5}}$$

This is a p-series where p = 2/5

Since p = 2/5 < 1, this series DIVERGES

6) 
$$\sum_{n=1}^{\infty} \frac{3}{n(n+3)} + \frac{1}{7^n} =$$

$$\sum_{n=1}^{\infty} \frac{3}{n(n+3)} + \sum_{n=1}^{\infty} \left(\frac{1}{7}\right)^n \quad \text{(geometric series)} \quad \sum_{n=1}^{\infty} \left(\frac{1}{7}\right)^n \quad \frac{\frac{1}{7}}{1+1/7} = \frac{\frac{1}{7}}{\frac{6}{7}}$$

$$\sum_{n=1}^{\infty} \left(\frac{1}{7}\right)^n$$

$$\frac{\frac{1}{7}}{1+1/7} = \frac{\frac{1}{7}}{\frac{6}{7}}$$

so,  $\sum_{n=-1}^{\infty} \left(\frac{1}{7}\right)^n = \frac{1}{6}$ 

$$\sqrt{\phantom{a}}$$

using partial fractions..

$$\frac{3}{\dot{} \cdot n(n+3)} \quad = \quad \frac{A}{n} \quad + \quad \frac{B}{(n+3)}$$

$$\frac{3}{ \ \ 'n(n+3)} \ \ = \ \ \underline{ \ \ } \frac{A(n+3)}{ \ \ n(n+3)} \ \ + \ \underline{ \ \ } \frac{B(n)}{ \ \ n(n+3)} -$$

$$\frac{3}{\ln(n+3)} = \frac{A(n+3)}{\ln(n+3)} + \frac{B(n)}{\ln(n+3)}$$

$$\sum_{n=1}^{\infty} \frac{3}{\ln(n+3)} = \sum_{n=1}^{\infty} \frac{1}{n} + \sum_{n=1}^{\infty} \frac{-1}{n+3}$$

$$3 = An + 3A + Bn$$

$$3A = 3$$

and 
$$n(A + B) = 0 n$$

$$A = 1$$

$$B = +1$$

using "telescoping"...
$$1 + \frac{1}{2} + \frac{1}{3} + \frac{1}{4} + \frac{1}{5} + \dots$$

$$= 1 + \frac{1}{2} + \frac{1}{3} = \frac{11}{6}$$

a) 
$$\sum_{n=0}^{\infty} 3 \left( \frac{x}{4} \right)^n$$

 $\sum_{n=0}^{\infty} 3\left(\frac{x}{4}\right)^n$  This is a geometric series, so  $\left|\frac{x}{4}\right| < 1$ 

SOLUTIONS

b) 
$$\sum_{n=0}^{\infty} \frac{n(x+3)^n}{5^n}$$

Using the nth root

$$-1 < \frac{(x+3)}{5} < 1$$

$$\lim_{n\to\infty} \ \frac{\sqrt[n]{n} \cdot \sqrt[n]{(x+3)^n}}{\sqrt[n]{5^n}} \quad = \quad \frac{1\cdot (x+3)}{5}$$

8) 
$$\sum_{n=1}^{\infty} \frac{2}{n^2 + n} =$$

First, we'll confirm the sequence converges to 0...

there is a pattern: 1, 1/3, 1/6, 1/10, 1/15....

the limit sequence goes to zero...

"Telescoping"

Now, we'll see if the series converges...

Use partial fractions 
$$\frac{2}{n^2+n} = \frac{A}{n} + \frac{B}{n+1}$$

$$n^2 + n$$
  $+ \frac{n}{n+1}$ 

if 
$$n = 0$$
, then  $A = 2$ 

$$2 = A(n+1) + B(n)$$
 if  $n = 0$ , then  $A = 2$  if  $n = -1$ , then  $B = -2$ 

if 
$$n = -1$$
 then  $B = -2$ 

$$\frac{2}{n^2+n} = \frac{2}{n} + \frac{-2}{n+1}$$

$$\sum_{n=1}^{\infty} \frac{2}{n^2 + n} = 2 - 1 + 1 - 2/3 + 2/3 - 2/4 + 2/4 \dots = 2$$

Find the sum....

$$1 - \frac{1}{4} + \frac{1}{16} - \frac{1}{64} + \dots + (-1)^n \frac{1}{n} + \dots$$

Using "telescoping", we'll split the positives and negatives...

Two geometric series...

$$1 + \frac{1}{16} + \frac{1}{256} + \dots + = \sum_{n=0}^{\infty} \cdot \frac{1}{16^n}$$

$$\frac{1}{1 - \frac{1}{16}} = 16/15$$

$$-\frac{1}{4} - \frac{1}{64} - \frac{1}{1024} - \dots = -\frac{1}{4} \left( 1 + \frac{1}{16} + \frac{1}{256} + \dots + \right) = -\frac{1}{4} \sum_{n=0}^{\infty} \frac{1}{16^n} - \frac{1}{4} \cdot 16/15 = -4/15$$

$$-\frac{1}{4} \cdot 16/15 = -4/1$$

# Improper Integrals



# Examples-→

### Improper Integrals

Definition: A definite integral where the integrand has a discontinuity between the bounds of integration. (or, the upper/lower bound is  $\pm -\infty$ )

An improper integral can be evaluated using limits!

if the limit exists (and is finite), it converges

if the limit does not exist (or, is infinite), it diverges

Example:

$$\int_{1}^{\infty} \frac{1}{x^{1.1}} dx$$

Step 1: If possible, sketch a graph

We're looking for the area under the curve. (Since it goes on forever, we are looking for the value of convergence it approaches.)





$$\int_{1}^{\infty} x^{-1.1} dx = \frac{x^{-.1}}{-.1} \Big|_{1}^{\infty} = \lim_{b \to \infty} \frac{1}{-.1b^{.1}} - \frac{1}{-.1(1)^{1}}$$
("bottom heavy",

Step 3: Find the limits

$$=$$
 0  $-10$   $=$  10

so it goes to 0)

Example:

$$\int_{0}^{\ln 4} x^{-2} e^{\frac{1}{X}} dx$$

$$-1 \int_{0}^{\ln 4} -1 x^{-2} e^{\frac{1}{x}} dx = -1 \cdot e^{\frac{1}{x}}$$

$$= -e^{\frac{1}{\ln 4}} - e^{\frac{1}{\ln 4}}$$
Since 1/0 is undefined, this integral diverges

Since the derivative of  $\frac{1}{x}$  is  $-x^{-2}$ ,

= 00

we insert a -1

"When it's difficult to evaluate an integral, try a similar equation."

Example: Does  $\int_{1}^{\infty} \frac{dx}{1 + e^{X}}$  converge or diverge?

 $\frac{1}{1+e^{X}}$  is difficult to integrate...

However,  $\frac{1}{e^{X}}$  is much easier....

$$\frac{1}{e^{X}} > \frac{1}{1+e^{X}}$$

Since the larger value (greater area) converges, the lesser value must converge, too...

 $\int_{1}^{\infty} \frac{1}{e^{x}} dx = \int_{1}^{\infty} e^{-x} dx = \int_{1}^{\infty} -e^{-x} dx$ 

$$= -e^{-x} \begin{vmatrix} \infty & \lim_{b \to \infty} & -e^{-x} \\ 1 & \end{vmatrix}_{1}^{b}$$

$$\lim_{b \to \infty} -e^{-b} - e^{-1}$$

$$0 + \frac{1}{e} = \frac{1}{e}$$



Example:

Does 
$$\int \frac{2 + \cos \ominus}{\ominus} d\ominus$$
 converge or diverge?

Again, this integral is difficult to find. But,

 $\frac{2}{\bigcirc}$  is similar and much easier.

$$\frac{2 + \cos \ominus}{\ominus} > \frac{2}{\ominus}$$

Since the <u>smaller</u> value diverges, the larger value must diverge, too.

$$\int_{-\infty}^{\infty} \frac{2}{d\Theta} d\Theta = 2 \int_{-\infty}^{\infty} \frac{1}{d\Theta} d\Theta =$$

$$2\ln \Theta \left| \begin{array}{c} \infty \\ = \ln \Theta^2 \end{array} \right| \left| \begin{array}{c} \infty \\ = \infty - \ln(\Upsilon)^2 \end{array} \right|$$

Example: Does 
$$\int_{1}^{\infty} \frac{e^{-x}}{\sqrt{x}} dx$$
 converge or diverge?

First, let's rewrite the equation:  $\frac{1}{e^{X} \sqrt{X}}$ 

Then, to test for convergence, let's pick a function that is greater...

$$\frac{1}{\sqrt{x}} > \frac{1}{e^{x} \sqrt{x}}$$
 for all  $x \ge 1$ 

$$\int_{1}^{\infty} \frac{1}{\sqrt{x}} dx = \lim_{b \to \infty} \int_{1}^{b} (x)^{\frac{-1}{2}} dx \longrightarrow \lim_{b \to \infty} 2x^{\frac{1}{2}} \Big|_{1}^{b} = \infty - 2$$
DIVERGES

Since the 'larger' equation diverges, the comparison test is inconclusive....

Now, let's test another function....

$$\frac{1}{e^{X}} > \frac{1}{e^{X} / \sqrt{X}} \quad \text{for all } x \ge 1$$

$$\int_{1}^{\infty} \frac{1}{e^{x}} dx = \lim_{b \to \infty} \int_{1}^{b} e^{-x} dx \longrightarrow \lim_{b \to \infty} -e^{-x} \Big|_{1}^{b} = \lim_{b \to \infty} \frac{-1}{e^{x}} \Big|_{1}^{b} = 0 + \frac{1}{e}$$

**CONVERGES** 

Since the 'larger' equation converges, the integral must converge, too!

What is the area under the curve  $y = \frac{1}{x^2 + 1}$  in Quadrant I?

Step 1: If possible, sketch the graph



The curve approaches 0 in both directions.

Step 2: Determine boundaries of integrand (ends of the integral)

We're looking for the area in quadrant I. (under the curve and above the x-axis)

Since the curve never gets to the x-axis, the boundaries of the integral will be

$$x = 0$$
 and  $\infty$ 



Step 3: Evaluate integral

$$\int_{0}^{\infty} \frac{1}{x^{2}+1} dx = \lim_{b \to \infty} \int_{0}^{b} \frac{1}{x^{2}+1} dx = \lim_{b \to \infty} \tan^{-1}(x) \Big|_{0}^{b} = \frac{1}{2} - 0 = \boxed{\frac{1}{2}}$$

 $tan(\frac{1}{2})$  is undefined

$$tan(0) = 0$$

Evaluate

ate 
$$\int_{1}^{\infty} \frac{\tan^{-1}(t)}{1+t^2} dt$$

$$\int_{1}^{\infty} \tan^{-1}(t) \frac{1}{1+t^{2}} dt = \lim_{b \to \infty} \frac{(\tan^{-1}(t))^{2}}{2} \Big|_{1}^{b} = \lim_{b \to \infty} \frac{(\tan^{-1}(b))^{2}}{2} - \frac{(\tan^{-1}(1))^{2}}{2} - \frac{(\tan^{$$

## Thanks for visiting. (Hope it helped!)

If you have questions, suggestions, or requests, let us know.

### Cheers



## Mathplane Express for mobile at Mathplane.ORG

Also, content at the Mathplane stores, available at TES and TeachersPayTeachers.





LanceAF #168 (12-12-14) mathplane.com Twelve hours later, the Kodak family did try one more pose... (The evening photo wasn't much better....)