
Notes, Examples, and Practice Quizzes (with Answers)

Topics include exponent rules, factoring, extraneous solutions, quadratics, absolute value, and more.

Exponents & Roots

Rules, Examples, and Notes:

Rule #1:
$$X^{A} \cdot X^{B} = X^{(A+B)}$$

Examples: $Y^{3} \times Y^{5} = Y^{8}$
 $5^{3} \cdot 5^{2} = 125 \times 25 = 3125 = 5^{5}$
Note: $Z^{2} \times Z^{4} = (Z \times Z) \times (Z \times Z \times Z \times Z) = Z^{6}$
 $2 + 4 = 6 \text{ total}$

Rule #2:
$$(X^A)^B = X^{(A \times B)}$$

Examples: $(X^4)^3 = X^{12}$
 $(4^2)^4 = 4^8 = 16^4 = 65536$
Note: $(Y^4)^3 = (Y \cdot Y \cdot Y \cdot Y) \times (Y \cdot Y \cdot Y) \times (Y \cdot Y \cdot Y \cdot Y) = Y^{12}$
 $3 \text{ groups of } 4 \text{ each } ----- 12 \text{ Total}$

Rule #3:
$$X^0 = 1$$

Examples: $Y^0 = 1$
 $8^0 = 1$

Note: $Y^4 \times Y^{-4} = \frac{Y \cdot Y \cdot Y \cdot Y}{Y \cdot Y \cdot Y \cdot Y} = 1$

Rule #4:
$$X^{(-A)} = \frac{1}{(X^A)}$$

Example: $X^{-3} = 1/(X^3)$
 $5^{-2} = 1/5^2 = \frac{1}{25}$
Note: $Y^{(-A)} = Y^{(-A)} \cdot \frac{Y^A}{Y^A} = \frac{Y^{(-A)} \times Y^A}{Y^A} = \frac{Y^0}{Y^A} = \frac{1}{Y^A}$

Rule #5:
$$X^{(1/2)} = \sqrt{X}$$
 (or, more generally: $X^{(m/n)} = \sqrt{X}^{m}$)

Examples: $25^{(1/2)} = \sqrt{25} = 5$
 $8^{(1/3)} = \sqrt[3]{8} = 2$
"cube root of 8"

Note: $Y^{(1/2)} \times Y^{(1/2)} = Y^1$ as $\sqrt{Y} \cdot \sqrt{Y} = Y$
 $8^{(1/3)} \times 8^{(1/3)} \times 8^{(1/3)} = 8^{(1/3 + 1/3 + 1/3)} = 8^1 = 8$
 $A^{(5/2)} = A^{(1/2)} \times A^5 = (\sqrt{A})^5$

Rule #6:
$$X^{A} \cdot Y^{A} = (XY)^{A}$$

Examples: $5^{3} \cdot 7^{3} = 125 \times 343 = 35^{3} = 42875$
 $(5 \times 5 \times 5)(7 \times 7 \times 7) = (5 \times 7)(5 \times 7)(5 \times 7) = 35 \times 35 \times 35$
 $4^{(1/2)} \times 16^{(1/2)} = 64^{(1/2)} = 8$
 $\sqrt{4} \times \sqrt{16} = \sqrt{4 \times 16} = \sqrt{64} = 8$

Solving radical (exponent) equations

- 4 Steps:
- 1) Isolate radical
- 2) Square both sides
- 3) Solve
- 4) Check (for extraneous answers)

- 4 Steps for fractional exponents
 - 1) Isolate term
 - 2) Raise to power that eliminates the exponents
 - 3) Solve
 - 4) Check

Example 1:
$$\sqrt{5x} + 10 = 25$$
 Isolate -- subtract 10 from both sides $\sqrt{5x} = 15$ Square both sides $5x = 225$ Solve -- divide 5 from both sides $x = 45$ Check $\sqrt{5(45)} + 10 = 25$

25 = 25

Example 2:
$$\sqrt{3x} + 12 = 6$$
 $\sqrt{3x} = -6$

Now, check the answer.

 $3x = 36$
 $x = 12$

Now, check the answer.

There is no solution!

Example 3:
$$\sqrt{x + 30} = x$$
 square both sides $x + 30 = x^2$ solve $x^2 - x - 30 = 0$ $\sqrt{(-5) + 30} = (-5)$ -5 is extraneous! $(x + 5)(x - 6) = 0$ $5 \neq -5$ $x = -5, 6$ check $\sqrt{(6) + 30} = (6)$ $x = 6$

Example 4:
$$4(x-2)^{\frac{1}{3}} - 12 = 0$$
 isolate the exponent
$$4(x-2)^{\frac{1}{3}} = 12$$

$$(x-2)^{\frac{1}{3}} = 3$$
 raise to 3rd power (to eliminate the exponent)
$$x-2=27$$
 solve
$$x=29$$

Rational Exponent Equations: Negative Numbers, Absolute Values, and Eliminated Answers

Rational Exponent Equations Domain Restrictions:

A Comparison

$$y = \frac{2}{x^3}$$
 can $x = -4$? YES $y = \frac{3}{x^2}$ can $x = -4$? NO
$$(-4^2)^{\frac{1}{3}}$$
 or
$$y = \sqrt[3]{16}$$
 or
$$(-4^3)^{\frac{1}{2}}$$
 or
$$(-4^3)^{\frac{1}{2}}$$
 or
$$(-4^3)^{\frac{1}{2}}$$
 or
$$(-4^3)^{\frac{1}{2}}$$
 or
$$(-4^3)^{\frac{1}{2}}$$
 or
$$(-4^3)^{\frac{1}{2}}$$

Examples:

$$2(x + 4)^{\frac{2}{3}} = 8$$

$$(x + 4)^{\frac{2}{3}} = 4$$

$$(x + 4) = 4^{\frac{3}{2}}$$

$$x + 4 = 8 \qquad x + 4 = -8$$

$$x = 4 \qquad x = -12$$

$$2(x-3)^{\frac{2}{3}} = 50$$

$$\left((x-3)^{\frac{2}{3}}\right)^{\frac{3}{2}} = 25^{\frac{3}{2}}$$

$$x-3 = 125 \text{ or } x-3 = -125$$

$$x = 128 \text{ or } x = -122$$

$$2(x+5)^{\frac{2}{5}} = 32$$

$$(x+5)^{\frac{2}{5}} = 16$$

$$\left((x+5)^{\frac{1}{5}}\right)^{2} = 16$$

$$\left|(x+5)^{\frac{1}{5}}\right| = 4$$

$$x = 1019 \text{ or } x = -1029$$

since it is the "square root of a square", the term is absolute value

$$(x+3)^{\frac{3}{5}} = -8$$

Since it is a 1/5 root, a negative is permitted...

$$x + 3 = (-8)^{\frac{5}{3}}$$

(if possible, "Go smaller first")

$$x + 3 = \left(-8^{\frac{1}{3}}\right)^5$$

$$x + 3 = (-2)^5$$

(It's easier to find the cube root of 8 first, then 2 to the 5th power --rather than 8 to the 5th power first, then

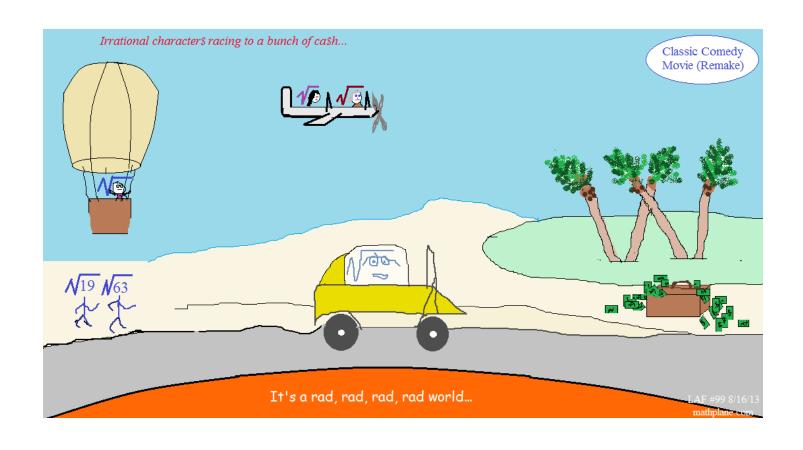
$$x + 3 = -32$$

the cube root of 32,768!)

$$x = -35$$

 $\frac{\frac{3}{2}}{2(x)^2 + 21} = 13$ $\frac{\frac{3}{2}}{2(x)^2 + 21} = 13$ Since it is a 1/2 root, a negative is NOT permitted... $2(.16^{\frac{1}{3}})^{\frac{3}{2}} + 21 = 13$ But, when you check the answer: 2(4) + 21 = 138 = -8There is no real solution!!

Why do you need to include an absolute value?


Does
$$\sqrt{x^2} = x$$
? Test points: If $x = 3$: $\sqrt{3^2} = 3$ But, if $x = -3$ $\sqrt{(-3)^2} = -3$ $\sqrt{9} = 3$ $3 = 3$ $3 = -3$

However, if we include an absolute value sign:

$$\sqrt{x^2} = |x| \qquad \text{If } x = 3: \qquad \sqrt{3^2} = |3| \qquad \text{But, if } x = -3 \qquad \sqrt{(-3)^2} = |-3|$$

$$\sqrt{9} = |3| \qquad \sqrt{9} = |-3|$$

$$3 = |3| \qquad 3 = |-3| \qquad 3 = |-3|$$

Practice Exercises -→

Exponents, Roots, & Addition Exercise

Solve the 15 problems below. Then, add all the solutions. What is the total? (rounded to 3 decimal places.)

1)
$$(3^3)^2 =$$

$$(2)^{-2} =$$

3)
$$(4)^{3/2} =$$

4)
$$\sqrt{64} - \sqrt[3]{8} =$$

5)
$$9^2 + 9^{1/2} =$$

6)
$$(.3)^3 =$$

7)
$$(32)^{2/5} =$$

8)
$$(1/3)^{-2} =$$

9)
$$(-5)^3 =$$

10)
$$\sqrt{(3)^4} =$$

11)
$$\sqrt{2} \times \sqrt{50} =$$

12)
$$1^2 - 2^3 + 3^4 =$$

13)
$$(1/2)^3 =$$

14)
$$8^{1/3} \cdot 8^{2/3} =$$

15)
$$\sqrt[3]{(-8)} - \sqrt[3]{27} =$$

- -

- -

-

100

1)
$$3\sqrt{24} + 5\sqrt{54}$$

2)
$$\sqrt[3]{54} + 2\sqrt[3]{16}$$

3)
$$\sqrt[4]{162} + 5 \sqrt[4]{32}$$

4)
$$7\sqrt[4]{64} - 2\sqrt[4]{4}$$

5)
$$\sqrt[3]{375} - \sqrt[3]{81} + \sqrt[3]{24}$$

6)
$$4\sqrt[5]{x^9 y^3 z^6} + 3\sqrt[5]{x^4 y^3 z^{11}}$$

7)
$$\frac{1}{4(50)^2} + 6(200)^{\frac{1}{2}}$$

8)
$$\frac{1}{8(80)^3}$$
 - $5(10)^{\frac{1}{3}}$

I. Evaluate

a)
$$9^{\frac{1}{2}}$$

b)
$$9^{-\frac{1}{2}}$$

d)
$$27^{\frac{2}{3}}$$

$$e) 81^{-\frac{1}{4}}$$

II. Simplify the expressions

a)
$$\sqrt{8} \cdot \sqrt{40}$$

b)
$$6^{\frac{1}{2}} \cdot 12^{\frac{1}{2}}$$

c)
$$\sqrt[4]{16} + \sqrt[3]{8}$$

d)
$$\left(5\sqrt{3}\right)^2$$

e)
$$\frac{1}{(81)^4} \cdot (81)^{\frac{1}{2}}$$

f)
$$\sqrt[3]{\sqrt{64}}$$

g)
$$(9m^4)^{\frac{1}{2}}$$

h)
$$\left(\frac{1}{4}\right)^{\frac{-1}{2}}$$

$$i)\left(\frac{9}{16}\right)^{\frac{3}{2}}$$

III. Solve the following.

a)
$$\sqrt{4x-27}-1=4$$

b)
$$5\sqrt{x} + 7 = 8$$

c)
$$2 + (4 - x)^{\frac{3}{2}} = 10$$

d)
$$\sqrt{3x} = \sqrt{x+4}$$

e)
$$(x+4)^{\frac{3}{4}} = 27$$

f)
$$\sqrt{(x+1)^3} - 1 = 7$$

IV. Solve . (Identify any extraneous solutions)

a)
$$\sqrt{x+7} + 5 = x$$

b)
$$\sqrt{x+2} = x$$

c)
$$\frac{1}{(5x+4)^2} - 3x = 0$$

d)
$$\sqrt{4x-5} = 3\sqrt{x-5}$$

e)
$$(x-9)^{\frac{1}{2}}+1=x^{\frac{1}{2}}$$

f)
$$(x+5)^{\frac{1}{2}} - (5-2x)^{\frac{1}{4}} = 0$$

V. Simplify (or factor) the following.

a)
$$(\sqrt{b^2+1}-1)(\sqrt{b^2+1}+1)$$

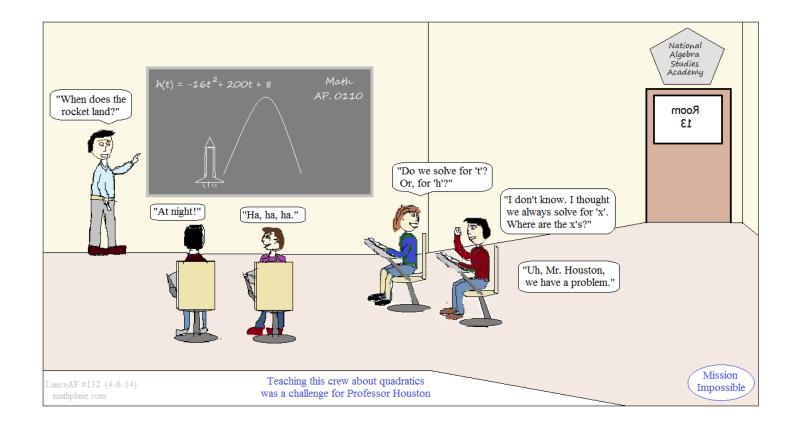
b)
$$y^{5/2} - y^{1/2}$$

c)
$$x^{-3/2} - 2x^{-1/2} + x^{1/2}$$

d)
$$6x^{-1/2} + 8x^{1/2} + 2x^{3/2}$$

e)
$$\frac{x^{-2} - y^{-2}}{x^{-1} + y^{-1}}$$

f)
$$2(a+1)^{1/2} - a(1+a)^{-1/2}$$


a)
$$2(x+5)^{\frac{3}{2}} + 128 = 0$$

b)
$$y = 6 + \sqrt{y}$$

c)
$$\sqrt{3-x} = \sqrt{7-2x}$$

d)
$$3(x+5)^{\frac{2}{3}} + 2 = 50$$

c)
$$\sqrt{3-x} = \sqrt{7-2x}$$
 d) $3(x+5)^{\frac{2}{3}} + 2 = 50$ e) $2(x-1)^{\frac{3}{2}} - 7 = 23$

Solutions →

SOLUTIONS

1)
$$(3^3)^2 = (3 \times 3 \times 3)(3 \times 3 \times 3) = 27 \times 27 = 729$$

2)
$$(2)^{-2} = 2^2 = 4$$
.. therefore, $2^{-2} = 1/4$ or .25

3)
$$(4)^{3/2} = 4^3$$
 is 64, and $64^{1/2} = 8$

4)
$$\sqrt{64} - \sqrt[3]{8} = 8 - 2 = 6$$

5)
$$9^2 + 9^{1/2} = 81 + 3 = 84$$

6)
$$(.3)^3 = .3 \times .3 \times .3 = .09 \times .3 = .027$$

7)
$$(32)^{2/5} = 32^{1/5} \times 32^{1/5} = 2 \times 2 = 4$$

8)
$$(1/3)^{-2} = (1/3)^2 = 1/9$$
.. therefore, $(1/3)^{-2} = 9$ (the reciprocal of 1/9)

9)
$$(-5)^3 = -5 \times -5 \times -5 = -125$$

10)
$$\sqrt{(3)^4} = (3)^4 = 81$$
 and $\sqrt{81} = 9$

11)
$$\sqrt{2} \times \sqrt{50} = \sqrt{100} = 10$$

12)
$$1^2 - 2^3 + 3^4 = 1 - 8 + 81 = 74$$

13)
$$(1/2)^3 = 1/2 \times 1/2 \times 1/2 = 1/8 = .125$$

14)
$$8^{1/3} \cdot 8^{2/3} = 8^1 = 8$$

15)
$$\sqrt[3]{(-8)} - \sqrt[3]{27} = -2 - 3 = -5$$

87.125

Now Add them up! The Total of ALL 15 solutions is 811.402

(rounded to 3 decimal places)

Simplify the following expressions.

1)
$$3\sqrt{24} + 5\sqrt{54}$$

$$3 \cdot 2\sqrt{6} + 5 \cdot 3\sqrt{6}$$

$$6\sqrt{6} + 15\sqrt{6} = 21\sqrt{6}$$

3)
$$\sqrt[4]{162} + 5 \sqrt[4]{32}$$

$$\sqrt[4]{81 \cdot 2} + 5 \sqrt[4]{16 \cdot 2}$$

$$3 \stackrel{\checkmark}{\sqrt[4]{2}} + 5 \cdot 2 \stackrel{\checkmark}{\sqrt[4]{2}} = \boxed{13 \stackrel{\checkmark}{\sqrt[4]{2}}}$$

5)
$$\sqrt{3/375} - \sqrt{3/81} + \sqrt{3/24}$$

$$\sqrt[3]{_{5\cdot5\cdot5\cdot3}} - \sqrt[3]{_{3\cdot3\cdot3\cdot3}} + \sqrt[3]{_{2\cdot2\cdot2\cdot3}}$$

$$5\sqrt[3]{3} - 3\sqrt[3]{3} + 2\sqrt[3]{3} = \boxed{4\sqrt[3]{3}}$$

7)
$$\frac{1}{4(50)^2} + 6(200)^{\frac{1}{2}}$$

$$4 \cdot \sqrt{50} + 6 \cdot \sqrt{200}$$

$$4 \cdot 5 \sqrt{2} + 6 \cdot 10 \sqrt{2}$$

SOLUTIONS

2)
$$\sqrt[3]{54} + 2\sqrt[3]{16}$$

$$\sqrt[3]{27 \cdot 2} + 2\sqrt[3]{8 \cdot 2}$$

$$3\sqrt[3]{2} + 2\cdot 2\sqrt[3]{2} = 7\sqrt[3]{2}$$

4)
$$7\sqrt[4]{64} - 2\sqrt[4]{4}$$

$$7 \sqrt[4]{2 \cdot 2 \cdot 2 \cdot 2 \cdot 4} - 2 \sqrt[4]{4}$$

$$7 \cdot 2 \stackrel{\checkmark}{\cancel{4}} 4 - 2 \stackrel{\checkmark}{\cancel{4}} 4 = 12 \stackrel{\checkmark}{\cancel{4}} 4$$

6)
$$4\sqrt[5]{x^9y^3z^6} + 3\sqrt[5]{x^4y^3z^{11}}$$

$$4xz / \sqrt{5} x^4 y^3 z + 3z^2 / \sqrt{5} x^4 y^3 z$$

$$(4x + 3z)z \sqrt{5/x^4 y^3 z}$$

8)
$$\frac{1}{8(80)^3} - 5(10)^{\frac{1}{3}}$$

$$8 \sqrt[3]{8 \cdot 10} - 5 \sqrt[3]{10}$$

$$_{16} \sqrt[3]{_{10}} - _{5} \sqrt[3]{_{10}}$$

$$11 / \sqrt[3]{10}$$

mathplane.com

SOLUTIONS

I. Evaluate

a)
$$9^{\frac{1}{2}}$$
 b) $9^{\frac{-1}{2}}$ c) 1^{0}

b)
$$9^{-\frac{1}{2}}$$

d)
$$27^{\frac{2}{3}}$$

$$e) 81^{\frac{-1}{4}}$$

$$81^{\frac{1}{4}} = 3$$

$$\frac{1}{3}$$

d)
$$27^{\frac{2}{3}}$$

$$\left(27^{\frac{1}{3}}\right)^2$$

because
$$3 \cdot 3 \cdot 3 \cdot 3 = 8$$

so,
$$81^{\frac{-1}{4}} = \boxed{-3}$$

$$5\frac{3}{5^2} = \sqrt{25}^3$$

$$16^{.25} \cdot 16^{.25} \cdot 16^{.25} = 16$$

$$= 128 \qquad \frac{1}{\sqrt{64}}$$

3
$$\frac{1}{3}$$
 1 27^{3} because $3 \cdot 3 \cdot 3 \cdot 3 = 81$ so, $81^{\frac{-1}{4}} = -3$ so, $81^{\frac{-1}{4}} = -3$ 1 so, $81^{\frac{-1}{4}} = -3$ so,

$$=\frac{1}{243}$$

II. Simplify the expressions

a)
$$\sqrt{8} \cdot \sqrt{40}$$

$$\sqrt{48}$$

$$\sqrt{16 \cdot 3} = \boxed{4 / \sqrt{3}}$$

b)
$$6^{\frac{1}{2}} \cdot 12^{\frac{1}{2}}$$

$$\sqrt{\frac{6}{6} \cdot \sqrt{12}}$$

$$\sqrt{\frac{72}{6}} = 6\sqrt{\frac{2}{2}}$$

c)
$$\sqrt[4]{16} + \sqrt[3]{8}$$

d)
$$\left(5\sqrt{3}\right)^2$$

$$5\sqrt{3} \cdot 5\sqrt{3} =$$

e)
$$\frac{1}{(81)^4} \cdot (81)^{\frac{1}{2}}$$

$$81^{\left(\frac{1}{4} + \frac{1}{2}\right)} = 81^{\frac{3}{4}} = 27$$

f)
$$\sqrt[3]{\sqrt{64}}$$

$$\sqrt{3/8}$$
 = 2

g)
$$(9m^4)^{\frac{1}{2}}$$
 $9^{\frac{1}{2}} \cdot m^{\frac{4}{2}}$

h)
$$\left(\frac{1}{4}\right)^{\frac{-1}{2}}$$

$$\frac{1}{\left(\frac{1}{4}\right)^{\frac{1}{2}}} = \frac{1}{\frac{1}{2}} = 2$$

i)
$$\left(\frac{9}{16}\right)^{\frac{3}{2}}$$

$$\left\langle \frac{9}{16} \right\rangle^{\frac{1}{2}} = \frac{3}{4}$$

and
$$\left(\frac{3}{4}\right)^3 = \boxed{\frac{27}{64}}$$

SOLUTIONS

III. Solve the following.

a)
$$\sqrt{4x-27}-1=4$$

$$\sqrt{4x-27}=5$$

(square both sides)

$$4x - 27 = 25$$
$$4x = 52$$

$$4x = 32$$
$$x = 13$$

d)
$$\sqrt{3x} = \sqrt{x+4}$$

$$3x = x + 4$$

$$2x = 4$$

To check answer, substitute into original

problem:
$$\sqrt{3(2)} = \sqrt{(2) + 4}$$

$$\sqrt{6} = \sqrt{6} \vee$$

c)
$$2 + (4 - x)^{\frac{3}{2}} = 10$$

$$(4-x)^{\frac{3}{2}} = 8$$

$$(4-x)^{1} = 8^{\frac{2}{3}}$$

x = 0

x = 3

$$4 - x = 4$$

f)
$$\sqrt{(x+1)^3} - 1 = 7$$

$$\sqrt{(x+1)^3} = 8$$

$$(x+1)^3 = 64$$

$$x + 1 = 4$$

IV. Solve. (Identify any extraneous solutions)

a)
$$\sqrt{x+7} + 5 = x$$

$$S = X$$

 $\sqrt{x+7} = x-5$

(square both sides)

$$x + 7 = x^2 - 10x + 25$$

$$x + 7 = x^2 - 10x + 10$$

$$(x-2)(x-9) = 0$$

$$x = 2, 9$$

$$x = 2, 9$$

b)
$$\sqrt{x+2} = x$$

(check answers)

 $\sqrt{(9)+7}+5=(9)$

$$x + 2 = x^2$$

b) $5\sqrt{x} + 7 = 8$ (isolate the radical)

 $5\sqrt{x} = 1$

 $\sqrt{x} = \frac{1}{5}$

(square both sides)

e) $(x+4)^{\frac{3}{4}} = 27$

x + 4 = 81

x = 77

$$x^2 - x - 2 = 0 \qquad \boxed{x = 2}$$

$$(x-2)(x+1)=0$$

$$(x-2)(x+1) = 0$$

$$x = -1/2$$
 (check answers

(check answers)
$$\sqrt{(2) + 7} + 5 = (2)$$

$$3 + 5 \neq 2$$

$$\sqrt{(-1) + 2} = (-1) \text{ NO (extraneous)}$$

$$\sqrt{(-1) + 2} = (-1)$$
 NO (extra

c)
$$(5x+4)^{\frac{1}{2}} - 3x = 0$$

$$\sqrt{(5x+4)} = 3x$$

$$5x + 4 = 9x^2$$

$$9x^{2} - 5x - 4 = 0$$
 $(5(1) + 4)^{\frac{1}{2}} - 3(1)$

$$(9x + 4)(x - 1) = 0$$

$$(9x + 4)(x - 1) = 0$$

$$yx + 4/(x - 1) = 0$$

 $x = 1 - 4/9$

(check answers)

$$x = 1, -4/9$$
 $\left(5(\frac{-4}{9}) + 4\right)^{\frac{1}{2}} - 3(\frac{4}{9})$

x = 1

d)
$$\sqrt{4x-5} = 3\sqrt{x-5}$$

e)
$$(x-9)^{\frac{1}{2}} + 1 = x^{\frac{1}{2}}$$

(square both sides)

$$\sqrt{(x-9)} = \sqrt{x} - 1$$
 (square both sides)

$$4x - 5 = 9(x - 5)$$

$$x - 9 = x - 2\sqrt{x} + 1$$

$$4x - 5 = 9x - 45$$

$$40 = 5x$$
$$x = 8$$

(isolate the radical)

$$2\sqrt{x} = 10$$

$$\sqrt{X} = 5$$

$$x = 25$$

f)
$$(x+5)^{\frac{1}{2}} - (5-2x)^{\frac{1}{4}} = 0$$

$$(x+5)^{\frac{1}{2}} = (5-2x)^{\frac{1}{4}}$$

(Remove the exponents by taking the '4th power' of each side -- or, squaring each side twice)

$$(x+5)^2 = 5-2x$$

 $x^2+10x+25=5-2x$

$$x^2 + 12x + 20 = 0$$

$$(x+2)(x+10)=0$$

$$x = -2, -10$$

(check answers)
$$-2: \frac{1}{2} \frac{1}{4}$$

$$-2: \quad 3^{\frac{1}{2}} = 9^{\frac{1}{4}} \quad \boxed{ }$$

$$-10: (-5)^{\frac{1}{2}} = (25)^{\frac{1}{4}}$$

extraneous!

V. Simplify (or factor) the following.

SOLUTIONS

Rational Exponents and Radical Equations

a)
$$(\sqrt{b^2+1}-1)(\sqrt{b^2+1}+1)$$

$$\sqrt{b^2 + 1}$$
 2

(FOIL (the conjugates))

 $b^2 + 1 - 1$

b)
$$v^{5/2} - v^{1/2}$$
 (GCF: the lowest exponent)

$$y^{1/2} (y^2 - 1)$$
 (factor)
 $y^{1/2} (y + 1)(y - 1)$

c)
$$x^{-3/2} - 2x^{-1/2} + x^{1/2}$$
 (factor out the lowest exponent)
 $x^{-3/2} (1 - 2x + x^2)$ (factor the quadratic)
 $x^{-3/2} (x - 1)(x - 1)$
 $x^{-3/2} (x - 1)^2$

d)
$$6x^{-1/2} + 8x^{1/2} + 2x^{3/2}$$
 (take out greatest common factor and "smallest exponent") $2x^{-1/2}$ (3 + 4x + x^2) (factor quadratic) $2x^{-1/2}$ (x + 1)(x + 3)
$$\frac{2(x+1)(x+3)}{x^{1/2}}$$
 or
$$\frac{2x^{1/2}(x+1)(x+3)}{x}$$

e)
$$\frac{x^{-2} - y^{-2}}{x^{-1} + y^{-1}}$$
 (re-write the negative exponents)

$$\frac{\frac{1}{x^2} - \frac{1}{y^2}}{\frac{1}{x} + \frac{1}{y}}$$
 (add numerator terms; add denominator terms)

$$\frac{(a+1)^{-1/2} [2(a+1)^1 - a]}{a+1}$$
 factor out term with lowest exponent
$$(a+1)^{-1/2}$$

$$\frac{(a+1)^{-1/2} [2a+2-a]}{a+1}$$

$$\frac{2+a}{(a+1)^{3/2}}$$

f) $2(a+1)^{1/2} - a(1+a)^{-1/2}$

$$\frac{y^2 - x^2}{x^2 y^2}$$
 • $\frac{xy}{y+x}$ (factor, cancel, and simplify)

$$\frac{(y-x)(y+x)}{x^2 y^2} \cdot \frac{xy}{y+x}$$

$$\frac{(y-x)}{xy}$$

mathplane.com

a)
$$2(x+5)^{\frac{3}{2}} + 128 = 0$$

 $2(x+5)^{\frac{3}{2}} = -128$
 $(x+5)^{\frac{3}{2}} = -64$

Note: square root isn't negative, so there will be no solution!!

$$x + 5 = (-64)^{\frac{2}{3}}$$

$$x + 5 = (-4)^{2}$$

$$x = 11$$
NO SOLUTION

if x = 11,
then
$$2(11+5)^{\frac{3}{2}} + 128 = 0$$

 $128 + 128 = 0$

d)
$$3(x+5)^{\frac{2}{3}} + 2 = 50$$

isolate the exponent part

$$3(x+5)^{\frac{2}{3}} = 48$$

$$(x+5)^{\frac{2}{3}} = 16$$

Since the root is 2/3, a negative is permitted!

$$\left((x+5)^{\frac{1}{3}} \right)^{2} = 16$$

$$(x+5)^{\frac{1}{3}} = \pm 4$$

$$x+5 = \pm 64$$

$$x = 59 \text{ or } -69$$

$$y = 6 + \sqrt{y}$$

$$y - y^{\frac{1}{2}} - 6 = 0$$

$$(y^{\frac{1}{2}} - 3)(y^{\frac{1}{2}} + 2) = 0$$

$$(y^{\frac{1}{2}} - 3) = 0$$

$$(y^{\frac{1}{2}} + 2) = 0$$
The real solution

e)
$$2(x-1)^{\frac{3}{2}} - 7 = 23$$

 $2(x-1)^{\frac{3}{2}} = 30$
 $(x-1)^{\frac{3}{2}} = 15$

Since it is a 1/2 root, a negative is NOT permitted...

$$(x-1) = (15)^{\frac{2}{3}}$$
$$x = \sqrt[3]{225} + 1$$

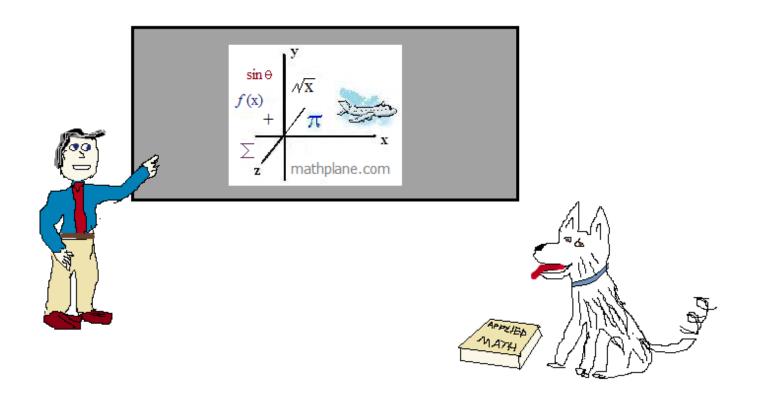
c)
$$\sqrt{3-x} = \sqrt{7-2x}$$

$$3 - x = 7 - 2x$$

$$x = 4$$

quick check:

$$\sqrt{3-4} = \sqrt[4]{7-2(4)}$$


$$\sqrt[4]{-1} = \sqrt[4]{-1}$$

NO REAL SOLUTIONS

Thanks for visiting. (Hope it helped!)

If you have questions, suggestions, or requests, let us know.

Enjoy.

Also, at TeachersPayTeachers

And, Mathplane Express for mobile and tablets at Mathplane.ORG

Find X:

1)
$$\sqrt[3]{X} = 2$$

2)
$$X^3 = 216$$

3)
$$N^{X} = 1$$

4)
$$4 \cdot 2^{-2} = X$$

5)
$$3^3 = X$$

6)
$$(27)^{\frac{1}{3}} = X$$

7)
$$\left(\frac{1}{49}\right)^{\frac{-1}{2}} = X$$

8)
$$2^{X-2} = 4$$

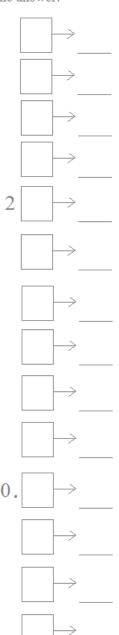
9)
$$(32)^{\frac{2}{5}} = X$$

10)
$$3\sqrt[4]{81} = X$$

11)
$$(125)^{\frac{-1}{3}} = X$$
 (express as decimal)

12)
$$\sqrt{49} - \sqrt{16} = X$$

13)
$$3^{(X+3)} = 27^2$$


14)
$$\sqrt[3]{(7)^3} = X$$

Letter/Number Key

A B E O P Q R S T U 1 2 3 4 5 6 7 8 9 0

Solve the 14 equations.

Then, convert the numbers into letters to reveal the answer!

SOLUTIONS

A math beverage?

Square root beer!

Find X:

1)
$$\sqrt[3]{X} = 2$$
 $X = 2^3 = 8$

2)
$$X^3 = 216$$
 $X = \sqrt[3]{216} = 6$

3) $N^{X} = 1$ X = 0

4)
$$4 \cdot 2^{-2} = X$$
 $4 \cdot \frac{1}{4} = 1$

5)
$$3^3 = X$$
 $3 \cdot 3 \cdot 3 = 27$

6)
$$(27)^{\frac{1}{3}} = X$$
 $\sqrt[3]{27} = 3$

7)
$$\left(\frac{1}{49}\right)^{\frac{-1}{2}} = X \left(\frac{49}{1}\right)^{\frac{1}{2}} = 7$$

8)
$$2^{X-2} - 4$$

8)
$$2^{X-2} = 4$$
 $2^{X-2} = 2^2$ then, $X-2=2$ $X=4$

9)
$$(32)^{\frac{2}{5}} = X$$
 $(32^{\frac{1}{5}})^2 = X$ $(2)^2 = X$ $X = 4$

$$2^{\frac{1}{5}})^2 = X$$
 (2) $= X$

10)
$$3\sqrt[4]{81} = X$$
 $3(3) = 9$

11)
$$(125)^{\frac{-1}{3}} = X$$
 (express as decimal) $\left(\frac{1}{125}\right)^{\frac{1}{3}} = \frac{1}{5} = .2$

12)
$$\sqrt{49} - \sqrt{16} = X$$
 $7 - 4 = 3$

13)
$$3^{(X+3)} = 27^2$$
 $3^{(X+3)} = (3^3)^2$ $3^{(X+3)} = 3^6$ $X+3=6$ $X=3$

14)
$$\sqrt[3]{(7)^3} = X$$
 $(7^3)^{\frac{1}{3}} = 7^1 = 7$

Letter/Number Key

ABEOPQRSTU

Solve the 14 equations.

Then, convert the numbers into letters to reveal the answer!

$$8 \rightarrow S$$

$$6 \rightarrow Q$$

$$0 \longrightarrow \Pi$$

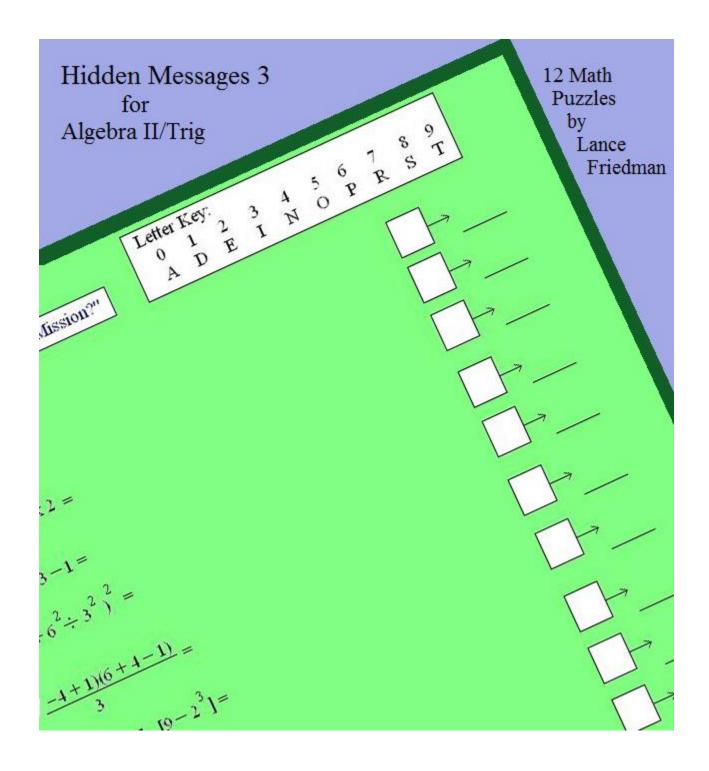
$$1 \rightarrow A$$

$$2 \mid 7 \mid \rightarrow R$$

$$3 \rightarrow E$$

$$7 \rightarrow R$$

$$4 \rightarrow 0$$


$$0.2 \rightarrow B$$

$$3 \rightarrow E$$

$$3 \rightarrow E$$

$$7 \rightarrow R$$

www.mathplane.com

Find more hidden message puzzles throughout the mathplane site!