Algebra 2 Review 001

Examples and practice worksheets (with solutions)

Topics include conics, arc length and sector area, factoring, venn diagram, domain, radicals, and more.

Mathplane.com

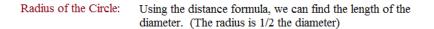
To express the equation of a circle, we need the radius and center of the circle.

Center of the Circle: Since (-2, -5) and (2, 1) are endpoints of a diameter, the midpoint is the center of the circle.

Midpoint formula:
$$\left(\frac{(x_1 + x_2)}{2}\right) \frac{(y_1 + y_2)}{2}$$

 $\left(\frac{(-2+2)}{2}\right) \frac{(-5+1)}{2} = (0, -2)$

The center (h, k) is (0, -2)



Distance Formula:

$$d = \sqrt{(x_1 - x_2)^2 + (y_1 - y_2)^2}$$
$$d = \sqrt{(-2 - 2)^2 + (-5 - 1)^2}$$
$$d = \sqrt{16 + 36} = \sqrt{52} = 2\sqrt{13}$$

The diameter is $2\sqrt{13}$, so the radius is $\sqrt{13}$

Equation of the Circle:

 $(x-h)^2 + (y-k)^2 = r^2$

where r is the radius and (h, k) is the center of the circle.

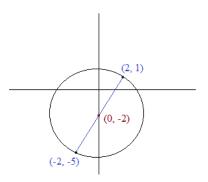
$$(x - 0)^{2} + (y - (-2))^{2} = (\sqrt{13})^{2}$$

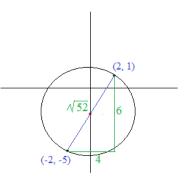
 $x^{2} + (y + 2)^{2} = 13$

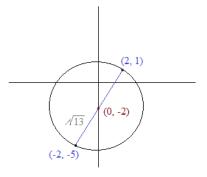
Quick Check: Do endpoints fit into the equation?

(2, 1)
$$(2)^{2} + ((1) + 2)^{2} = 13$$

 $4 + 9 = 13$ (-2, -5) $(-2)^{2} + ((-5) + 2)^{2} = 13$
 $4 + 9 = 13$ (-2)



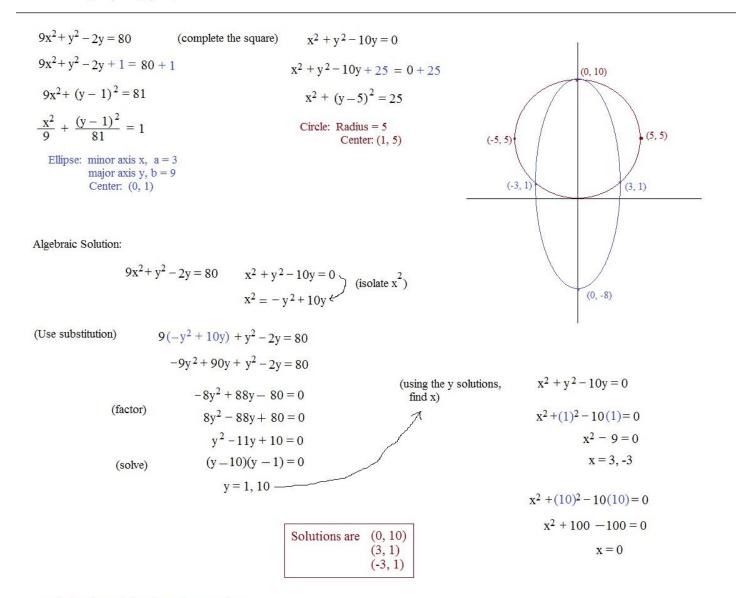




www.mathplane.com

Solve and Graph the following System:

$$9x^{2} + y^{2} - 2y = 80$$
$$x^{2} + y^{2} - 10y = 0$$



To check, plug solutions into other equation:

$$9x^{2} + y^{2} - 2y = 80 \qquad (0, 10) \qquad 9(0)^{2} + (10)^{2} - 2(10) = 80$$
$$0 + 100 - 20 = 80$$
$$(3, 1) \qquad 9(3)^{2} + (1)^{2} - 2(1) = 80$$
$$81 + 1 - 2 = 80$$
$$(-3, 1) \qquad 9(-3)^{2} + (1)^{2} - 2(1) = 80$$
$$81 + 1 - 2 = 80$$

mathplane.com

Solve the following. (Use interval notation) Then, sketch the equations.

- 1) $X^3 3X^2 13X + 15 < 0$
- $\frac{2X-5}{X+2} \le 1$

1)
$$X^3 - 3X^2 - 13X + 15 < 0$$

Factor the polynomial. In this case, find the X-intercepts (zeros).

(Using Rational Root Theorem), possible intercepts are:

 $\pm\,1,\pm\,3,\pm\,5,\pm\,15$

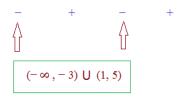
(Using the Remainder/Factor Theorem), try 1:

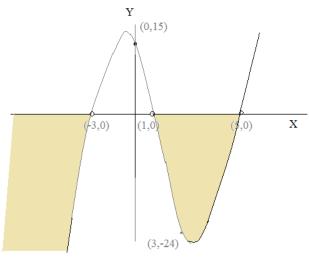
$$(1)^3 - 3(1)^2 - 13(1) + 15 = 0$$

Therefore, 1 is a root!

(Synthetic Division)

Now, test the intervals:





 $2) \quad \frac{2X-5}{X+2} \le 1$

First, set equation = 1. and, cross multiply...

$$\frac{2X-5}{X+2} = \frac{1}{1}$$
$$(2X-5)\cdot 1 = (X+2)\cdot 1$$
$$2X-5 = X+2$$
$$X = 7$$

Now, test points on each side of 7.

plug 5 into original equation:

 $\frac{2(5)-5}{(5)+2} \le 1?$

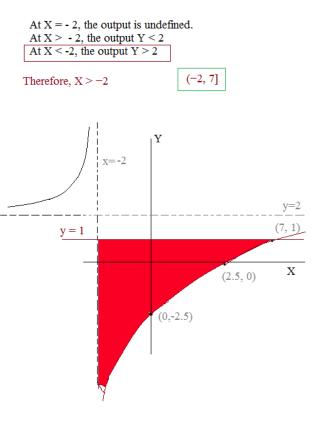
plug 9 into original equation:

$$\frac{2(9)+5}{(9)+2} \le 1?$$
 NO

Therefore, $X \le 7$

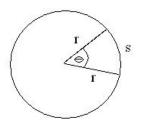
YES

**Identify the behavior of the function at the vertical asymptote!



The sector area of a circle is 3 cm^2 . And, the perimeter <u>of the sector</u> is 7 cm. What is the (possible) length(s) of the radius?

Step 1: Draw the figure; label the parts



Step 3: Combine formulas and use algebra to

find missing variables.

Step 2: List measurements and formulas.

Sector Area =
$$\frac{\Leftrightarrow}{360}$$
 $\text{Tr}^2 = 3\text{cm}^2$
Arc Length = $\frac{\Leftrightarrow}{360}$ 2 $\text{Tr} = \text{s}$
Perimeter of sector = r + r + s

$$= 2r + s = 7$$

$$\frac{\bigoplus}{360} = \frac{3 \text{ cm}^2}{717 r^2} \text{ (from sector area)}$$

$$\frac{\bigoplus}{360} = \frac{3}{2717 r} \text{ (from arc length)}$$

$$\frac{3 \text{ cm}^2}{717 r^2} = \frac{3}{2717 r} \text{ (substitution)}$$

$$\frac{3 \text{ cm}^2}{717 r^2} = \frac{3}{2} \frac{(\text{multiply both by 717})}{(\text{multiply both by 717})} \text{ (multiply both by 2)}$$

$$\frac{6 \text{ cm}^2}{r} = s$$

$$\frac{6 \text{ cm}^2}{r} = s$$

$$\frac{3 \text{ cm}^2}{17 r^2} = \frac{3}{2} \frac{(\text{multiply both by 717})}{(\text{multiply both by 2})} \text{ (from arc length)}$$

$$\frac{3 \text{ cm}^2}{17 r^2} = \frac{1}{2} \frac{1}{2} \frac{(\text{multiply both by 717})}{(\text{multiply both by 2})} \text{ (from arc length)}$$

$$\frac{3 \text{ cm}^2}{17 r^2} = \frac{1}{2} \frac{1}{2} \frac{(\text{multiply both by 717})}{(\text{multiply both by 2})} \text{ (from arc length)}$$

$$\frac{3 \text{ cm}^2}{17 r^2} = \frac{1}{2} \frac{1}{2} \frac{(\text{multiply both by 717})}{(\text{multiply both by 2})} \text{ (from arc length)}$$

$$\frac{3 \text{ cm}^2}{17 r^2} = \frac{1}{2} \frac{1}{2} \frac{(\text{multiply both by 717})}{(\text{multiply both by 2})} \text{ (from arc length)}$$

$$\frac{3 \text{ cm}^2}{17 r^2} = \frac{1}{2} \frac{1}{2} \frac{(\text{multiply both by 717})}{(\text{multiply both by 2})} \text{ (from arc length)}$$

$$\frac{3 \text{ cm}^2}{17 r^2} = \frac{1}{2} \frac{1}{2} \frac{(\text{multiply both by 717})}{(\text{multiply both by 2})} \text{ (from arc length)}$$

Step 5: Check your answer

If $r = 2 \text{ cm}$	Arc Length = $\frac{}{360} 2 \text{TT} = s$	Sector Area = $\frac{\odot}{360}$ $\text{Tr}^2 = 3 \text{cm}^2$
Area of circle = 4 11 Circumference = 4 11	$\frac{}{360}$ 2'TT(2cm) = 3	270
	360 2 11 (2011) 5	$\frac{\cancel{1}}{\cancel{1}} \cancel{1}(2)^2 = 3 \text{ cm}^2$
s = 3 (because we were given 2r + s = 7)	$\frac{\odot}{360}$ 4cm = $\frac{3}{11}$	360
	p635945 H	$\frac{270}{360}$ (4) = 3cm
	$\Theta = \frac{270}{11}$	$\frac{270}{360} = \frac{3}{4}$

(**Then, check r = 1.5)

Solving radical equations

Can you solve?

1)
$$\sqrt{2x+5} = x-5$$

3) $\sqrt{x} - \sqrt{x-5} = 1$
2) $\sqrt{7x+4} = x+2$
4) $\sqrt{x+3} + 2\sqrt{x} > 10$

Answers below the line ...

1)
$$\sqrt{2x+5} = x-5$$

square both sides $2x + 5 = (x-5)^2$
collect "like" terms $0 = x^2 - 10x + 25 - 2x - 5$
 $0 = x^2 - 12x + 20$
factor and solve $(x-2)(x-10) = 0$
 $x = 2 \text{ or } 10$
check
(in original equation) $\sqrt{2(2) + 5} = (2) - 5$
 $3 \neq -3 \times 2$ is extraneous
 $\sqrt{2(10) + 5} = (10) - 5$
 $5 = 5 \qquad 10$ is the solution

2)
$$\sqrt{7x + 4} = x + 2$$

square both sides $7x + 4 = (x + 2)^2$
collect "like" terms $0 = x^2 + 4x + 4 - 7x - 4$
 $x^2 - 3x = 0$
factor and solve $x(x + 3) = 0$
 $x = 0$ or 3
check answers $\sqrt{7(0) + 4} = (0) + 2$
 $2 = 2$
 $\sqrt{7(3) + 4} = (3) + 2$
 $5 = 5$
Both 0 and 3 are solutions

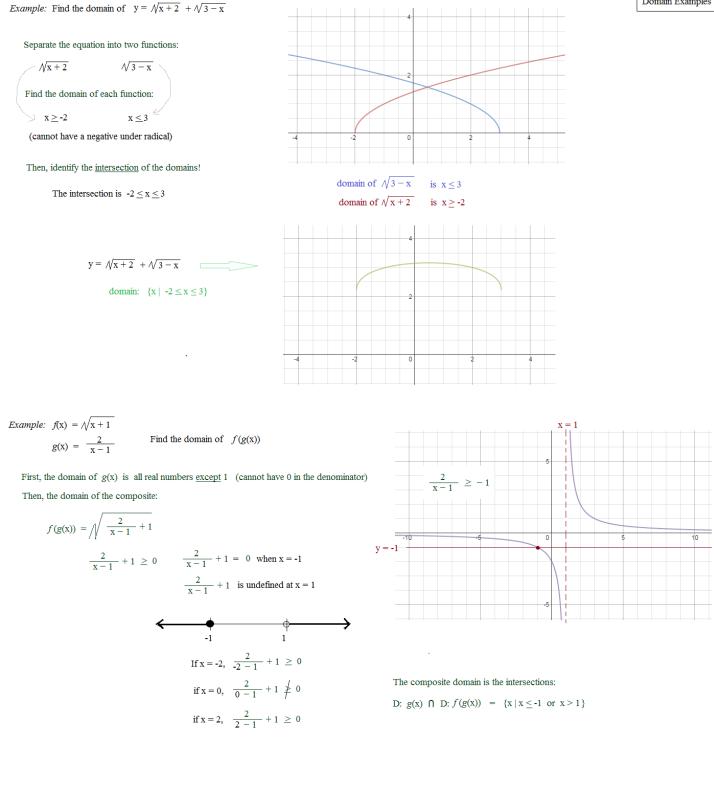
3) $\sqrt{x} - \sqrt{x-5} = 1$

Separate the radicals. Then, square both sides!	$\sqrt{x} = 1 + \sqrt{x-5}$ $x = (1 + \sqrt{x-5})(1 + \sqrt{x-5})$ $x = 1 + \sqrt{x-5} + \sqrt{x-5} + x-5$
Collect "like" terms and isolate the radical	$4 = 2 \sqrt{x-5}$
Square both sides again	16 = 4(x - 5)
Check answer	4 = x - 5 x = 9 $\sqrt{(9)} - \sqrt{(9) - 5} = 1$ 9 is the solution 3 - 2 = 1

4) $\sqrt{x+3} + 2\sqrt{x} > 10$ First, ignore the inequality and solve $\sqrt{x+3} = 10 - 2\sqrt{x}$ Square both sides $x + 3 = 100 - 40 \sqrt{x} + 4x$ Collect "like" terms $40\sqrt{x} = 97 + 3x$ Square both side $1600x = 9x^2 + 582x + 9409$ $9x^2 - 1018x + 9409 = 0$ Quadratic formula x = 102.96 and 10.15 (approx.)

> plug 10.15 into the original equation, and we can see the solution is $x \ge 10.15$

> > x > 10.15 (approx)



Find the domain:

$$f(x) = \sqrt{\frac{x+3}{2x^2 - 12x - 14}}$$

To determine the domain, recognize that the denominator cannot equal zero

AND the expression cannot be negative (because of the radical)

$$\frac{x+3}{2x^2 - 12x - 14} \ge 0$$

$$x+3 = 0$$

$$2x^2 - 12x - 14 = 0$$

$$2(x^2 - 6x - 7) = 0$$

$$2(x - 7)(x + 1) = 0$$

The equation equals zero when x = -3

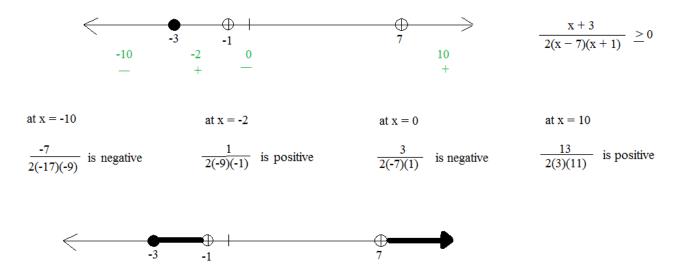
The denominator equals zero when x = 7 or x = -1

(undefined)

The 'critical values' are at -3, -1, and 7

The domain includes -3, but excludes -1 and 7

Test regions:

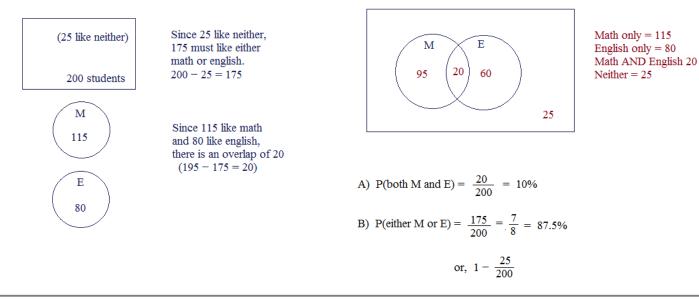


domain: [-3, -1) U (7, ∞)

1) In a survey of 200 students, 115 like math, 80 like english, 25 like neither.

- A) What is the probability that a selected student likes both english and math?
- B) What is the probability that a selected student likes either math or engish?

An effective method of solving is to use a Venn Diagram:

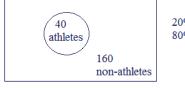


2) At the local high school, 20% of the students are athletes that play a sport.

Of the athletes, 25% play football, 10% play ONLY basketball, and 5% play football <u>and</u> basketball. (The rest of the athletes play other sports.)

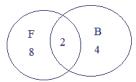
- A) What percent of athletes play sports other than football or basketball?
- B) If I pick a random student, what is the probability that he plays basketball?

To simplify, let's assume the high school has 200 students



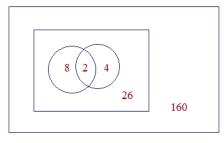
20% athletes 80% non-athletes

Then, let's break up the athletes



80% non-athletes

- 8 football only 4 basketball only 2 football/basketball
- A) Therefore, 40 athletes 14 basketball/football = 26 26 out of 40 play a different sport!



In the diagram, there are 200 students. And, 6 play basketball (4 play only basketball; 2 play basketball and football)

B) P(student plays basketball) = $\frac{6}{200} = 3\%$

$$\frac{26}{40} = 65\%$$

Algebra II Factoring Polynomials

Factor the following polynomials:

(Hints and approaches are at the bottom of the page)

1)
$$8a^3 - 27b^3$$

2) $12x^2 + 3xy - 9y^2$
3) $64m^2 - n^2 - 4 + 4n$

4)
$$x^4 - (y^2 - 25)^2$$

5) $x^4 - 19x^2 + 9$
6) $2x(1-x) + 3(x-1)$

7) $x^3 - y^2 + 2xy - y^3 - x^2$ 8) $3d(x + y) + 2c(y^2 - x^2)$

- 1) Difference of cubes
- 2) Greatest Common Factor & Trinomial Quadratic
- 3) Re-group
- 4) Difference of Squares
- 5) Re-write the middle term (and form a perfect square)
- 6) Re-write (x 1) and re-group
- 7) Difference of cubes and Difference of squares
- 8) Difference of squares Re-group

Algebra II - Simplifying Rational Expressions

Reduce/Simplify the following:

3)

5)

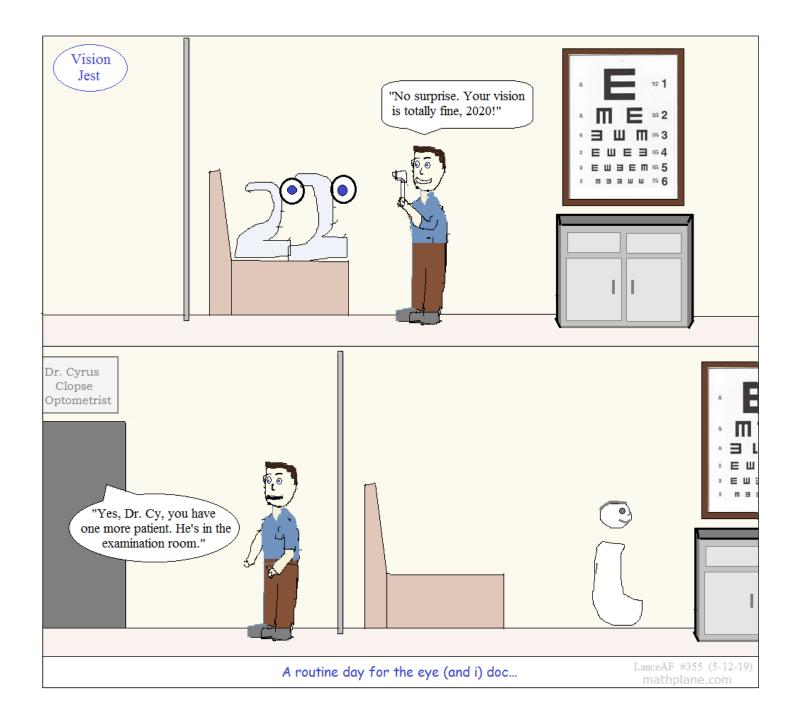
1)
$$2 + \frac{x}{x+5}$$

2)
$$\frac{2b^3 - b^2 - 6b}{2b^2 - 7b + 6}$$

$$\frac{2x+1}{2x^2+x-15} \quad \frac{6x^2-x-2}{x+3} \qquad \qquad 4) \quad \frac{x+3}{4x^2-9} \quad \frac{x^2+7x+12}{2x^2+7x-15}$$

$$\frac{x + \frac{1}{x + 2}}{x - \frac{1}{x + 2}}$$
6)
$$\frac{3(1 + x)^{1/3} - x(1 + x)^{-2/3}}{(1 + x)^{2/3}}$$

.



Algebra II Factoring Polynomials

Solutions

Factor the following polynomials:

(Hints and approaches are at the bottom of the page)

1)
$$8a^{3} - 27b^{3}$$

cube root of 1st term: 2a
cube root of 2nd term: 3b
(2a - 3b)(4a^{2} + 6ab + 9b^{2})
Fa
4) $x^{4} - (y^{2} - 25)^{2}$
 $[x^{2} + (y^{2} - 25)][x^{2} - (y^{2} - 25)]$
 $[x^{2} + (y + 5)(y - 5)][x^{2} - (y + 5)(y - 5)]$

2)
$$12x^{2} + 3xy - 9y^{2}$$

GCF is 3
 $3(4x^{2} + xy - 3y^{2})$
Factor the quadratic trinomial
 $\begin{pmatrix} 3y \end{pmatrix} \begin{pmatrix} y \end{pmatrix}$
 $(4x \ 3y)(x \ y)$
 $3(4x - 3y)(x + y)$
5) $x^{4} - 19x^{2} + 9$
 $x^{4} + 6x^{2} + 9 - 25x^{2}$
 $\begin{pmatrix} x^{2} + 3 \end{pmatrix} \begin{pmatrix} x^{2} + 3 \end{pmatrix} - 25x^{2}$
 $\begin{pmatrix} x^{2} + 3 \end{pmatrix}^{2} - 25x^{2}$

difference of squares

 $(x^{2} + 3 + 5x)(x^{2} + 3 - 5x)$

³⁾
$$64m^2 - n^2 - 4 + 4n$$

 $64m^2 - (n^2 + 4 - 4n)$
 $64m^2 - (n - 2)(n - 2)$
 $64m^2 - (n - 2)^2$
difference of squares
 $(8m + (n - 2))(8m - (n - 2))$
 $(8m + n - 2)(8m - n + 2)$
⁶⁾ $2x(1 - x) + 3(x - 1)$
 $2x(1 - x) + 3(-1)(1 - x)$
 $(2x - 3)(1 - x)$

7) $x^{3} - y^{2} + 2xy - y^{3} - x^{2}$ $x^{3} - y^{3} - x^{2} + 2xy - y^{2}$ $x^{3} - y^{3} - 1(x^{2} - 2xy + y^{2})$ $x^{3} - y^{3} - (x - y)(x - y)$ (x - y)(x² + xy + y²) - (x - y)² (x - y)[(x² + xy + y²) - (x - y)] (x - y)[x² + y² + xy - x + y]

8)
$$3d(x + y) + 2c(y^2 - x^2)$$

 $3d(x + y) + 2c(y + x)(y - x)$
 $(x + y)[3d + 2c(y - x)]$

- 1) Difference of cubes
- 2) Greatest Common Factor & Trinomial Quadratic
- 3) Separate
- 4) Difference of Squares
- 5) Re-write the middle term (and form a perfect square)
- 6) Re-write (x 1) and re-group
- 7) Difference of cubes and Difference of squares
- 8) Difference of squares Re-group

Algebra II - Simplifying Rational Expressions

SOLUTIONS

Reduce/Simplify the following:

1)
$$2 + \frac{x}{x+5} = \frac{2(x+5)}{(x+5)} + \frac{x}{x+5}$$
 (common denominator) 2) $\frac{2b^3 - b^2 - 6b}{2b^2 - 7b + 6}$ (factor out the 'b')
 $\frac{2x + 10 + x}{x+5}$ (distribute and add fractions)
 $\frac{3x + 10}{x+5}$ (collect "like" terms) $\frac{b(2b^2 - b - 6)}{(2b - 3)(b - 2)}$ (factor the quadratics)
 $\frac{b(2b+3)(b-2)}{(2b - 3)(b-2)}$ (factor the quadratics)
 $\frac{b(2b+3)}{(2b-3)}$
3) $\frac{2x+1}{2x^2 + x - 15} \div \frac{6x^2 - x - 2}{x+3}$ (Factor) 4) $\frac{x+3}{4x^2 - 9} \div \frac{x^2 + 7x + 12}{2x^2 + 7x - 15}$
 $\frac{2x+1}{(2x-5)(x+3)} \div \frac{(3x-2)(2x+1)}{x+3}$ ("invert and multiply") $\frac{x+3}{(2x+3)(2x-3)} \div \frac{(x+3)(x+4)}{(2x-3)(x+5)}$ (factor)

$$\frac{2x+1}{(2x-5)(x+3)} \cdot \frac{x+3}{(3x-2)(2x+1)}$$
 (cancel and
combine terms)
$$\frac{1}{(2x-5)(3x-2)}$$

$$\frac{x+3}{(2x+3)(2x-3)} \stackrel{\bullet}{\cdot} \frac{(x+3)(x+4)}{(2x-3)(x+5)}$$
(factor)

$$\frac{x+3}{(2x+3)(2x-3)} \cdot \frac{(2x-3)(x+5)}{(x+3)(x+4)}$$
 (invert and multiply)
(reduce)
$$x+5$$

$$\frac{x+5}{(2x+3)(x+4)}$$

(combine fractions in the 6) $3(1+x)^{1/3} - x(1+x)^{-2/3}$ (factor numerator) and $(1+x)^{2/3}$ (use the SMALLER rational exponent)

rational exponent)

$$\frac{(1+x)^{-2/3} [2x+3]}{(1+x)^{2/3}}$$

2x + 3(1 + x) 4/3

 $\frac{(1+x)^{-2/3} [3(x+1)-x]}{2/3}$

5)
$$\frac{x + \frac{1}{x + 2}}{x - \frac{1}{x + 2}} = \frac{\frac{x(x + 2)}{(x + 2)} + \frac{1}{x + 2}}{\frac{x(x + 2)}{(x + 2)} - \frac{1}{x + 2}}$$

 $\frac{x^2 + 2x + 1}{(x + 2)}$ (Divide -- "invert and multiply" $\frac{x^2 + 2x - 1}{(x + 2)}$ (Divide -- "invert and multiply"

$$\frac{x^2 + 2x + 1}{(x+2)}$$
 • $\frac{(x+2)}{x^2 + 2x - 1}$ (sim

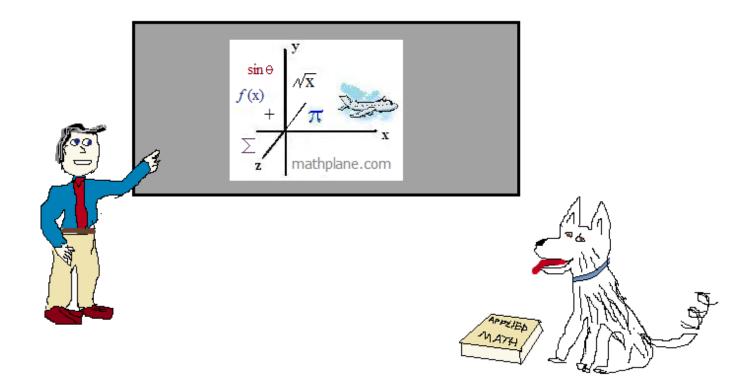
$$\frac{(x+1)^2}{x^2+2x-1}$$

$$)^{2}$$

Thanks for visiting! (Hope it helped.)

If you have questions, suggestions, or requests, let us know.

Cheers



Also, find us at mathplane.ORG for mobile and tablets.

And, TeachersPayTeachers.com