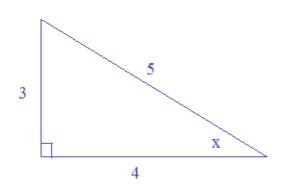
Did you know?

A sample of math topics...


Includes the "rule of 72", pi, venn diagram, roulette wheels, exponents, area and volume, and more..

Mathplane.com

What are the angle measures of a triangle with sides 3, 4, and 5?

Solution:

As with most problems, it's helpful to draw a picture and write a formula

Pythagorean Theorem:

$$a^2 + b^2 = c^2$$
confirms that it's
 $a^2 + a^2 = 5^2$
a right triangle

Here is the picture of the right triangle --- the largest side must be the *hypotenuse*... (the other sides are the *legs*)

Then, Sine
$$x = \frac{\text{opposite}}{\text{hypotenuse}} = \frac{3}{5} = .60$$

Now, find the ArcSine of .60.... $(i.e. \sin(36.87) = 3/5)$

The sum of the interior angles of any triangle is 180 degrees,

therefore, the other angle is

$$180 - (36.87 + 90) = 53.13^{\circ}$$

The angle measures are 90° 53.13° 36.87°

"The Rule of 72"

What is it? If a sum is compounding at X%, that sum will double in approximately $\frac{72}{V}$ cycles.

Example:

Suppose you deposit \$100 in a bank that earns 10% interest per year. How many years will it take to double your money?

Using the "rule of 72"

$$\frac{72}{10} = 7.2$$

So, a little over 7 years...

time	balance
0	100 (initial deposit)
1	110 (100 + 10)
2	121 (110 + 11)
3	133.10 (121 + 12.10)
1 2 3 4 5 6 7 8	146.41 (133.1 + 13.31)
5	161.05 (146.41 + 10% of 146.41)
6	177.15 (161.05 + interest payment)
7	194.86 (177.15 + interest on 177.15)
8	212.57
	Account doubles from 100 to 200 shortly after 7 years

Formula for compounding interest:

Amount = P (1 + interest rate) t (where P is the principle and t is the time it compounds)

Using our example:

$$200 = 100 (1 + .10)^{t}$$

$$\frac{200}{100} = (1.10)^{t}$$

$$2 = (1.10)^{t}$$

(Use a calculator to solve. Or, use logarithms)

$$\log 2 = \log (1.10)^{t}$$

$$\log 2 = t \cdot \log (1.10)$$

$$t = \frac{\log 2}{\log (1.10)} = \frac{.3010}{.0414} \cong 7.27$$

**If you're earning 10% interest, it will take approximately 7.27 years for you to double your money!

Solve the following:

$$9^2 =$$

$$9^{-2} =$$

$$9^{1/2} =$$

$$\frac{-1}{9}^{1/2} =$$

Review:

$$X^a \cdot X^b = X^{a+b}$$
 $(X^a)^b = X^{ab}$

$$(X^a)^b = X^{ab}$$

$$x^{0} = 1$$

Solutions and Verification

$$9^2 = 81$$

$$9 \times 9 = 81$$

$$9^{-2} = \frac{1}{81}$$

$$9^2 \cdot 9^{-2} = 9^0 \implies 81 \cdot 9^{-2} = 1$$
 (reciprocal)

therefore,
$$9^{-2} = \frac{1}{81}$$

$$9^{1/2} = 3$$

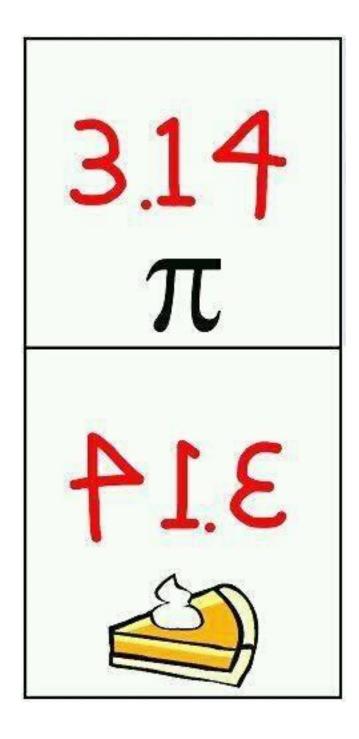
$$9^{1/2} \cdot 9^{1/2} = 9^1 \longrightarrow 9^{1/2} \cdot 9^{1/2} = 9$$

$$9^{-1/2} = \frac{1}{3}$$

therefore,
$$9^{1/2} = 3$$
 (square root)
 $\overline{9}^{1/2} \cdot 9^{1/2} = 9^0 \longrightarrow \overline{9}^{1/2} \cdot 3 = 1$

therefore,
$$-9^{1/2} = \frac{1}{3}$$

**Bonus Question:


Simplify
$$(2e^4)^3$$

Solution and Verification

$$(2e^4)^3 = 8e^{12}$$

$$2e^4 \cdot 2e^4 \cdot 2e^4 = 8e^{12}$$

Pi in the mirror....

Prime Numbers

Definition: A natural number (i.e. positive integer) greater than 1 that has <u>no positive divisors other than 1 and itself.</u>

Its factors are only 1 and itself

- * 2 is the only even prime number. It is divisible by 1 and itself. (Every other even number is divisible by itself, 1, and 2)
- * A non-prime, positive integer is called a "composite number". It has at least 3 factors: 1, itself, and at least one other number.
- * Zero is neither prime nor composite.

Why? Because, zero has an infinite number of factors. (i.e. any number multiplied by 0 is zero!)

* One is neither prime nor composite.

Why? Because, one has only 1 divisor: itself. So, it does not fit either definition.

* Negative numbers, such as -7, are not prime.

Why are negative numbers not included in the definition of prime?

Allowing negatives would double the number of divisors/factors.

Example: 7 would have factors of -1, 1, 7, -7 -7 would have factors of -1, 1, 7, -7

Other Comments:

300 BC Euclid demonstrated that there are infinitely number of primes.

3rd Century BC Greek mathematician Eratosthenes figured out a way to generate a list of primes. ('sieve of Eratosthenes')

7th Century Rules for negative numbers were stated

-- The concept of primes preceded the idea of negative numbers. So, primes excluded non-positive integers. The definition of prime numbers was never modified to include negatives.

- * The Fundamental Theorem of Arithmetic -- Any integer greater than one can be expressed uniquely as a product of primes.

 To maintain unique factorization, 1's and negative numbers must be omitted.
- * A Marsenne Number is a positive integer that is 1 less than a power of 2

$$M_{p} = 2^{P} - 1$$

So, a Marsenne Prime is any Marsenne number that is prime.

Find more information at these sites:

http://en.wikipedia.org/wiki/Prime_number

http://wiki.answers.com/Q/Is_1_a_composite_number

http://nrich.maths.org/5961

http://primes.utm.edu/notes/faq/one.html

http://mathworld.wolfram.com/PrimeNumber.html

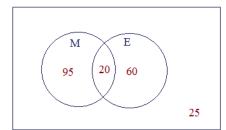
http://mathforum.org/library/drmath/view/57036.html

http://numberphile.com/videos/31.html

- 1) In a survey of 200 students, 115 like math, 80 like english, 25 like neither.
 - A) What is the probability that a selected student likes both english and math?
 - B) What is the probability that a selected student likes either math or engish?

An effective method of solving is to use a Venn Diagram:

(25 like neither)

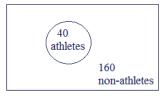

200 students

Since 25 like neither, 175 must like either math or english. 200 - 25 = 175

M 115

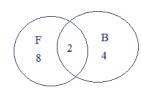
E 80

Since 115 like math and 80 like english, there is an overlap of 20 (195 - 175 = 20)


Math only = 115 English only = 80 Math AND English 20 Neither = 25

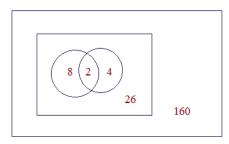
- A) P(both M and E) = $\frac{20}{200}$ = 10%
- B) P(either M or E) = $\frac{175}{200}$ = $\frac{7}{8}$ = 87.5%

or,
$$1 - \frac{25}{200}$$


- 2) At the local high school, 20% of the students are athletes that play a sport. Of the athletes, 25% play football, 10% play ONLY basketball, and 5% play football and basketball. (The rest of the athletes play other sports.)
 - A) What percent of athletes play sports other than football or basketball?
 - B) If I pick a random student, what is the probability that he plays basketball?

To simplify, let's assume the high school has 200 students

20% athletes 80% non-athletes


Then, let's break up the athletes

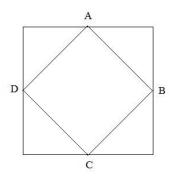
- 8 football only
- 4 basketball only
- 2 football/basketball
- A) Therefore, 40 athletes 14 basketball/football = 26 26 out of 40 play a different sport!

$$\frac{26}{40} = 65\%$$

Assuming 200 students:

In the diagram, there are 200 students.

And, 6 play basketball

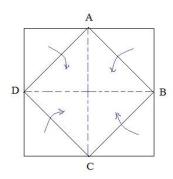

(4 play only basketball; 2 play
basketball and football)

B) P(student plays basketball) = $\frac{6}{200}$ = 3%

"Area of a square inscribed in a square"

Square ABCD is inscribed in the larger square.

If the area of the larger square is 100 sq. feet, what is the area of ABCD?

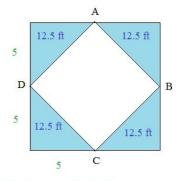


Note: There are a few approaches to solving.

<u>Hint</u>: Since it is a square inscribed in a square, A, B, C, and D are midpoints of the sides of the larger square!

Solution using different approaches:

1) Observations and recognizing triangles



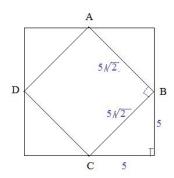
The large triangle contains 8 congruent triangles and

the small triangle contains 4 of those triangles..

Therefore, the area is 4/8 (100) = 50 square feet!

2) large square - extra triangles = inside square

Area of large square = 100 sq. feet Therefore, each side is 10 feet


Since A, B, C, and D are midpoints, each triangle has a base of 5 and height of $5\dots$

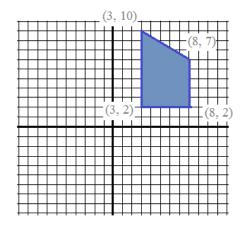
Therefore, the area of each triangle is 1/2bh = 25/2

Since there are 4 triangles, the extra area is 50 sq. feet.

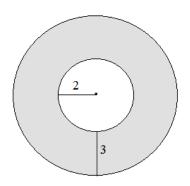
So, the inside square is 100 feet - 50 feet = 50 feet...

3) Calculate the area of the inside square

Consider the right triangle (45-45-90) From this (or the pythagorean theorem), we know the length of each side of the inside square is $5\sqrt{2}$


Area of a square is S2

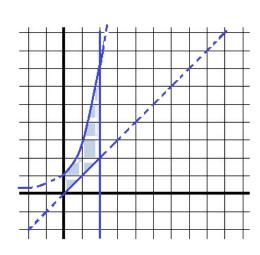
So, area of inscribed square is $\left(5\sqrt{2}\right)^2 = 50$ square feet!


Three Area Problems....

What is the area of each shaded region?

1) Quadrilateral

2) Concentric Circles


3) The area bordered by:

$$y = e^{X}$$
$$y = x$$
$$x = 2$$

$$y = x$$

$$x = 2$$

the y-axis

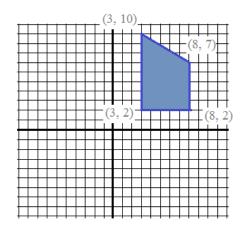
Three Area Problems....

What is the area of each shaded region?

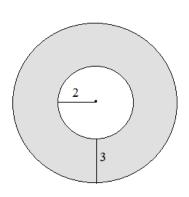
1) Quadrilateral

(side x side)
$$\frac{1}{2}$$
 (base)(height) $\frac{1}{2}$ (base1 + base2)(height)

$$(5 \times 5) + \frac{1}{2} (5)(3)$$


$$25 + 15/2 = 32.5$$

method 2: (sideways) trapezoid


$$\frac{1}{2}$$
(base1 + base2)(height)

$$\frac{1}{2}$$
 (8 + 5)(5)

$$\frac{1}{2}$$
 65 = 32.5

2) Concentric Circles

radius of big circle:
$$2 + 3 = 5$$

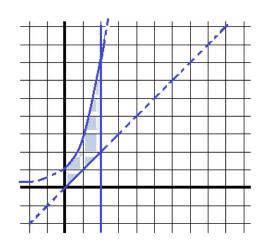
area of big circle: $1 + 17 = 25$

$$\Pi r^2 = 4 \Pi$$

area of shaded region = area
$$_{big}$$
 + area $_{small}$

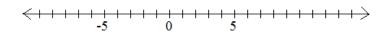
3)
$$y = e^{X}$$

 $y = x$
 $x = 2$
the y-axis

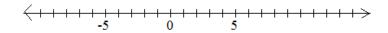

The shaded area consists of the area under the log function MINUS the right triangle (i.e. the area under the line
$$y = x$$
)

(approx.)

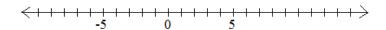
$$A_{\log} = \int_{0}^{2} e^{X} dx = e^{2} - e^{0}$$
$$= 7.39 - 1$$

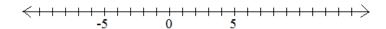

$$A_{tri} = \frac{1}{2}(2)(2) = 2$$

Total Area is approx. 4.39 sq. units

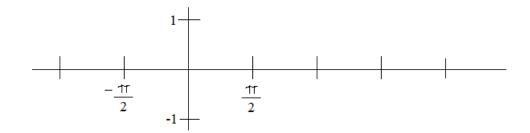


Sketch each of the following on a number line:


1) $|x-4| \le 0$


2) |x + 5| > 0

3) x < 6 OR $x \le -2$



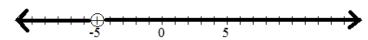
4) |x-6|+8<4

5) Extra:

Sketch the function |Sin x|

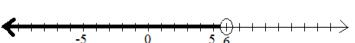
1) $|x-4| \le 0$

At x = 4, |x - 4| = 0... At all other x, the absolute value output will be > 0



2) |x + 5| > 0

At x = -5, |x + 5| = 0...


All real numbers EXCEPT -5

At all other x, the output is > 0

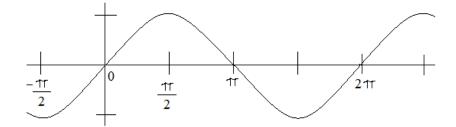
I

3) $x \le 6$ OR $x \le -2$ If $x \le -2$, then it must be less than 6.. So, the solution will be $x \le 6$

U

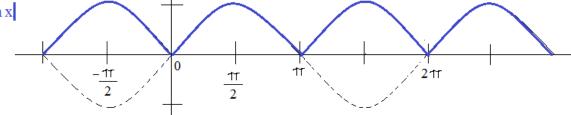
4) |x - 6| + 8 < 4 ----> |x - 6| < -4

Since the absolute value of any term is non-negative, there is no solution!

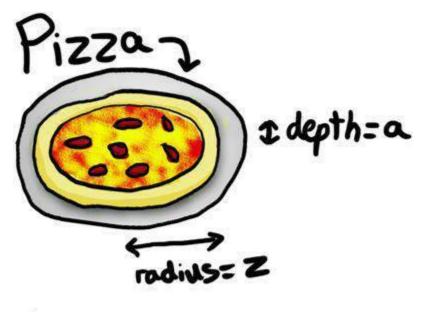

Ø

O

5) Extra: Sketch the function |Sin x|


N

Sin x

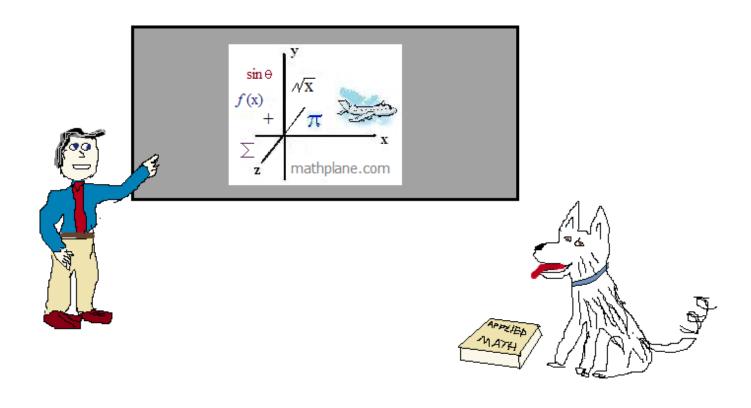


S

Sin x

Pizza Pi(e)

Volume= pi·z·z·a



What is the sum of all the numbers on a roulette wheel? 666

Thanks for visiting!

If you have questions, suggestions, or requests, let us know..

Cheers

Find more math notes, examples, and practice at the mathplane sites...

Also, our stores at TeachersPayTeachers and TES