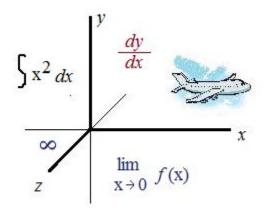
Calculus, Natural Log, and e

Practice Test and Solutions



mathplane.com

Topics include logarithms, area, tangent lines, implicit differentiation, graphing, inverses, partial fractions, and more.

Calculus: Logarithms, In, and e

I. Logarithm Review

1) Answer: $\ln 1 = \ln e = \ln 0 =$

(no calculator)

2) $\log 4 = .602$ $\log 3 = .477$

Find: $\log 12 = \log 400 = \log(.75) =$

(no calculator)

3) Solve for x:

A) $\log_5 x + \log_5 (x-4) = 1$	B) $3^{X} = 8$	C) $2^{6-x} = 4^{2+x}$
----------------------------------	----------------	------------------------

Challenge: $4^{X} - 2^{X+1} = 3$

II. Calculus: e and ln

1) Find $\frac{dy}{dx}$

Calculus: Logarithms, ln, and e

$$y = e^{2x}$$
 $y = -e^{-x}$ $y = e^{2}$ $y = \ln(2x + 4)$

$$y = \ln(3)$$
 $y = \ln(x+3)^2$ $y = \ln((x+3)^2)$ $y = \frac{2}{\sqrt{3x}}$

2) What is the equation of the line tangent to $y = e^{2x-3}$ at the point $(\frac{3}{2}, 1)$? Optional: graph your result

3) What is the equation of the normal to $y = \ln(x - 2) + 4$ at the point (3, 4)? Optional: graph your result

⁴⁾
$$\int e^{2x} dx$$
 $\int \frac{3x}{3x^2+2} dx$ $\int \frac{2}{3x+3} dx$

Calculus: Logarithms, \ln , and e

5) What is the area of the region above the x-axis that is bounded by the y-axis, x = 3, and e^{X} ?

 6) What is the area of the region bounded by y = ln(x) + 2, y = 2, and x = 5? (Use Calculator) 7) Find the equation of the line that is tangent to f(x) = 3x² - lnx at (1, 3) (Optional: Use a graphing calculator to confirm your answer)

Calculus: Logarithms, In, and e

$$y = \frac{x^2}{2} - \ln x$$

What are the extrema?

Points of inflection?

(Optional: Use a graphing calculator to check your answers)

Mathplane.com

III. Inverses and derivatives

1) f(x) and g(x) are one to one inverses.

If the slope of f(x) at (3, 8) is 2, where is the slope of g(x) equal to 1/2?

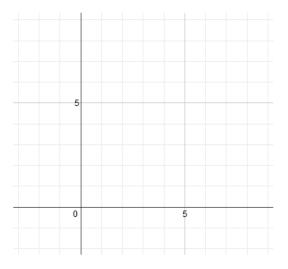
2) $f(x) = x^3 - x - 6$ What is $f^{-1}(0)$?

- 3) $h(x) = \ln(x) + 4$
 - a) What is the inverse of h(x)?

b) $h(3) = \ln(3) + 4$ (≈ 5.1) What is the slope at h(3)?

c) Graph h(x) and $h^{-1}(x)$

Sketch the tangent lines at (3, 5.1) and (5.1, 3)What are the equations of the tangent lines?



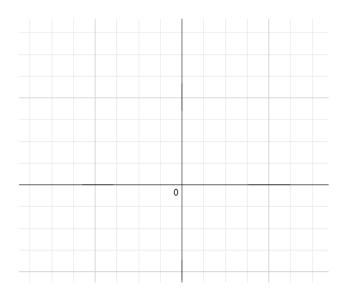
IV. Exponential Functions

Find the first derivatives:

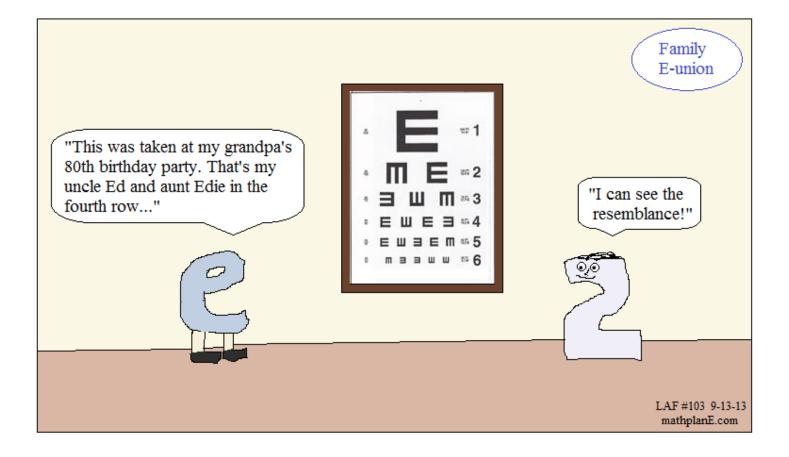
1)
$$g(x) = 2^{x+3}$$
 2) $f(x) = x^2 e^x$ 3) $g(t) = t^2 2^t$

4) What is the equation of the line tangent to $y = 2^{-X}$ at (0, 1)?

(optional: sketch a graph containing the function and tangent line)



mathplane.com



SOLUTIONS-→

Calculus: Logarithms, In, and e

I. Logarithm Review

1) Answer:	$\ln 1 = \log_e 1 = x$	$\ln e = \log_e e = y$ $\ln 0$	$= \log_e 0 = z$
(no calculator)	$e^{X} = 1$ x = 0	$e^{y} = e$ y = 1	$e^{Z} = 0$ No solution (logarithms cannot be zero or negative)
2) $\log 4 = .602$	$\log 3 = .477$		
Find:	$\log 12 = \log(3 \cdot 4)$	$\log 400 = \log(4 \cdot 10)$	$\log(.75) = \log \frac{3}{4}$
(no calculator)	$= \log 3 + \log 4$ $= .477 + .602 =$	$= \log 4 + \log 10$ 1.079 $= .602 + 1 = 1.602$	$= \log 3 + \log 4$ $= .477602 =125$
3) Solve for x:			
A) $\log_5 x + \log_5 x$	(x-4) = 1	B) $3^{X} = 8$	C) $2^{6-x} = 4^{2+x}$
$\log_5 x(x-4)$ $5^{1} = x(x-4)$		$\log 3^{X} = \log 8$ $x \log 3 = \log 8$	$2^{6-x} = (2^2)^{2+x}$ quick check:
$5^{2} = x^{2} - 4x$	á.	$x = \frac{\log 8}{\log 3}$	$2^{6-x} = 2^{4+2x} \qquad 2^{5.33} = 4^{2.67}$ 6-x = 4 + 2x 40.3 = 40.3
$x^{2}-4x-5=$ (x - 5)(x + 1) =		$=\frac{.903}{.477}=1.89$	$x = \frac{2}{3}$
x = 5, -1	log (-1) does not exist	quick check:	

3^{1.89}=8

Challenge: $4^{X} - 2^{X+1} = 3$

therefore,

 $4^{X} - 2^{X+1} - 3 = 0$ $2^{X} = -1$ and 3 $(2^{2})^{X} - (2^{X})(2^{1}) - 3 = 0$ -1 is extraneous! approximately 1.585 $(2^{X})^{2} - (2^{X})(2^{1}) - 3 = 0$ $2^{X} = 3$ Let $y = 2^X$ 2[×] = 3 2[×]=-1 Check: $y^2 - 2y - 3 = 0$ X log 2 = log 3 x log 2 = log (-1) $4^{1.585} - 2^{2.585} =$ (y-3)(y+1) = 0X = Log3/log 2 x = log (-1)/ log (2) 9 - 6 = 3 y = -1, 3 X = 1.5849625 x does not exist

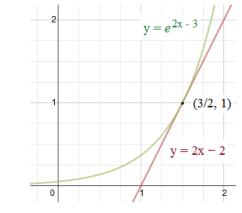
II. Calculus: e and ln

1) Find $\frac{dy}{dx}$ for $y = e^{u}$ "derivative of exponent times itself" for $y = \ln(u)$ "derivative over itself" $y = e^{2x}$ $y = -e^{-X}$ $y = e^{2}$ $y = \ln(2x + 4)$ $(-1)(-e^{-X})$ $2e^{2X}$ $\frac{2}{2x+4}$ or 1 e^2 is a constant x + 2e-x or $y = \ln(x+3)^2$ $y = \ln((x + 3)^2)$ $y = \frac{2}{e^{3X}}$ $y = \ln(3)$ $2(\ln(x+3)^{1} \cdot \frac{1}{(x+3)})$ $\frac{2(x+3)}{(x+3)^2}$ 0 $2 \cdot e^{-3X}$ $\frac{2\ln(x+3)}{(x+3)}$ $\ln(3)$ is a constant $\frac{2}{x+3}$ -6 -6e^{-3X} e^{3X} or

normal line: y - 4 = -1(x - 3)

2) What is the equation of the line tangent to $y = e^{2x-3}$ at the point $(\frac{3}{2}, 1)$? Optional: graph your result

To find the equation of a line, we need a point and the slope. Point: (3/2, 1)Slope: rate of change at x = 3/2 $y' = 2 \cdot e^{-2x-3}$ at (3/2, 1) $y' = 2 \cdot e^{0} = 2$ tangent line: $y - 1 = 2(x - \frac{3}{2})$



Calculus: Logarithms, In, and e

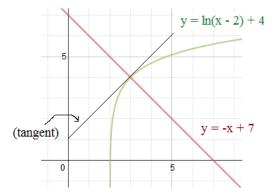
3) What is the equation of the normal to y = ln(x - 2) + 4 at the point (3, 4)? Optional: graph your result

The normal is perpendicular to the tangent line

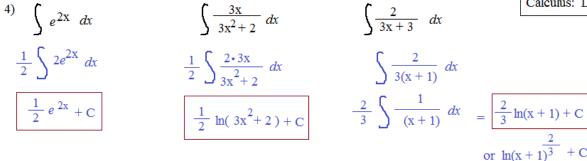
Point: (3, 4)

Find $\frac{dy}{dx}$ to get instantaneous rate of change (i.e. slope) $\frac{dy}{dx} = \frac{1}{x-2} + 0$ slope at (3, 4) is 1 (tangent slope)

therefore, opposite reciprocal is -1 (normal slope)



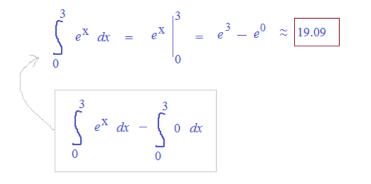
Calculus: Logarithms, In, and e



5) What is the area of the region above the x-axis that is bounded by the y-axis, x = 3, and e^{X} ?

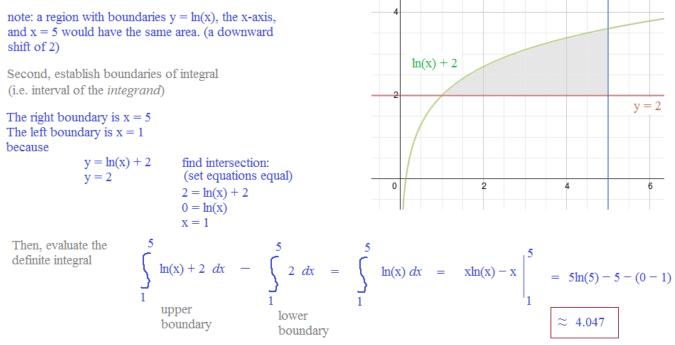
A quick sketch will show the enclosed region (and its boundaries) The endpoints of the integral will be x = 0 and x = 3

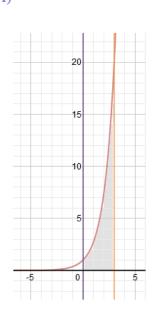
and, the upper boundary will be $y = e^X$ and the lower boundary will be y = 0



 6) What is the area of the region bounded by y = ln(x) + 2, y = 2, and x = 5? (Use Calculator)

First, draw a sketch





x = 5

7) Find the equation of the line that is tangent to $f(x) = 3x^2 - \ln x$ at (1, 3) (Optional: Use a graphing calculator to confirm your answer)

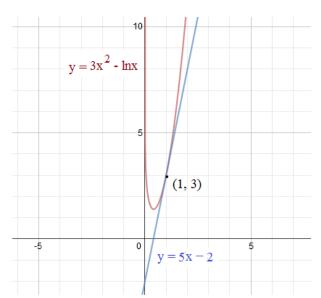
Point: (1, 3)

Slope: find instantaneous rate of change (derivative)

$$f'(x) = 6x - \frac{1}{x}$$

then, slope at (1, 3) is f'(1) = 5

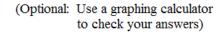
Equation of tangent	line:	
y - 3 = 5(x - 1)	or	y = 5x - 2

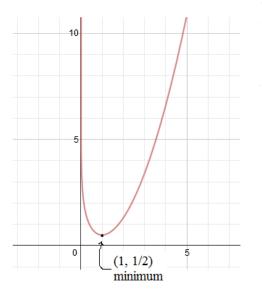


8)
$$y = \frac{x^2}{2} - \ln x$$

What are the extrema?

Points of inflection?





To find extrema (max. or min), set first derivative equal to zero.

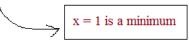
 $y' = x - \frac{1}{x}$ $x - \frac{1}{x} = 0$ multiply both sides by x $x^2 - 1 = 0$ factor (x + 1)(x - 1) = 0

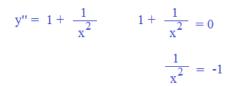
x = -1 and 1

since ln(-1) does not exist, -1 is extraneous!

Calculus: Logarithms, In, and e

at x = 0, derivative is < 0 (decreasing) at x = 2, derivative is > 0 (increasing)





No solution, so there is no point of inflection!

Mathplane.com

III. Inverses and derivatives

1) f(x) and g(x) are one to one inverses.

If the slope of f(x) at (3, 8) is 2, where is the slope of g(x) equal to 1/2?

Since f(x) and g(x) are inverses, they reflect over y = x.

the rate of change (slopes) of reflection points will be reciprocals...

the reflection point of (3, 8) is (8, 3)

2) $f(x) = x^3 - x - 6$

What is $f^{-1}(0)$?

We need to find two parts: 1) the value of $f^{-1}(0)$

2) f'(x) $f' = 3x^2 - 1$

$$f^{-1}(a) = \frac{1}{f'(f^{-1}(a))}$$

$$\frac{1}{3(2)^2 - 1} = \boxed{\frac{1}{11}}$$

f(x)

= x

(8, 3)

 $g(\mathbf{x})$

- 3) $h(x) = \ln(x) + 4$
 - a) What is the inverse of h(x)? $y = \ln(x) + 4$ "switch x and y" $x = \ln(y) + 4$ $\ln(y) = x - 4$ "solve for y" $h^{-1}(x) = e^{x - 4}$ $\log_e(y) = (x - 4)$ $y = e^{x - 4}$
 - b) $h(3) = \ln(3) + 4$ (≈ 5.1) What is the slope at h(3)?

$$h'(x) = \frac{1}{x} + 0$$
 $h'(3) = \frac{1}{3}$

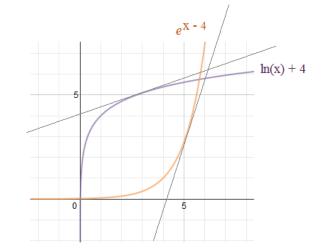
$$h^{-1}(5.1) \approx 3$$
 What is the slope at $h^{-1}(5.1)$?

$$h^{-1}(\mathbf{x}) = e^{\mathbf{x} - 4}$$
 $h^{-1}(5.1) = e^{5.1 - 4} = e^{1.1} = 3$

c) Graph h(x) and $h^{-1}(x)$

Sketch the tangent lines at (3, 5.1) and (5.1, 3)What are the equations of the tangent lines?

$$y - 5.1 = \frac{1}{3} (x - 3)$$
 and $y - 3 = 3(x - 5.1)$
 $y = \frac{1}{3} x + 4.1$ $y = 3x - 12.3$



If
$$x^3 - x - 6 = 0$$

 $x = 2$

(3, 8

possible example

IV. Exponential Functions

Find the first derivatives:

1)
$$g(x) = 2^{x+3}$$
 2) $f(x) = x^2 e^x$

using logarithmic differentiation:

$$y = 2^{x + 3}$$

$$\ln y = \ln(2^{x + 3})$$

$$\ln y = (x + 3)\ln 2$$

$$\frac{1}{y} \cdot y' = (1 + 0)\ln 2 + 0(x + 3)$$

$$y' = y\ln 2$$

$$y' = 2^{x + 3} \cdot \ln 2$$

 $f(x) = x^2 e^x$ 3) $g(t) = t^2 2^t$

product rule:

$$f'(x) = 2x(e^{x}) + e^{x}(x^{2}) \qquad g'(t) = 2t \cdot 2^{t} + 2^{t}(\ln 2) \cdot t^{2}$$

+ 3)ln2
+ 0)ln2 + 0(x + 3)
$$= xe^{x}(x + 2) \qquad = 2^{t}\left((\ln 2)t^{2} + 2t\right)$$

using the definition/formula:

$$u = x + 3$$

$$\frac{du}{dx} = 1$$

$$\frac{d}{dx}(2^{x+3}) = (1)(2^{x+3}) \ln 2$$

$$a = 2$$

$$\frac{d}{dx}(a^{u}) = \frac{du}{dx}(a^{u})\ln a$$

4) What is the equation of the line tangent to $y = 2^{-X}$ at (0, 1)?

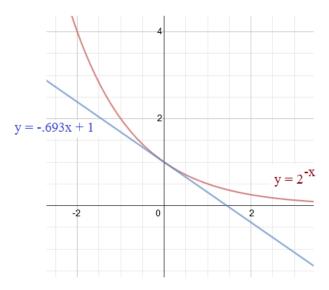
(optional: sketch a graph containing the function and tangent line)

To find the equation of a line, we need the

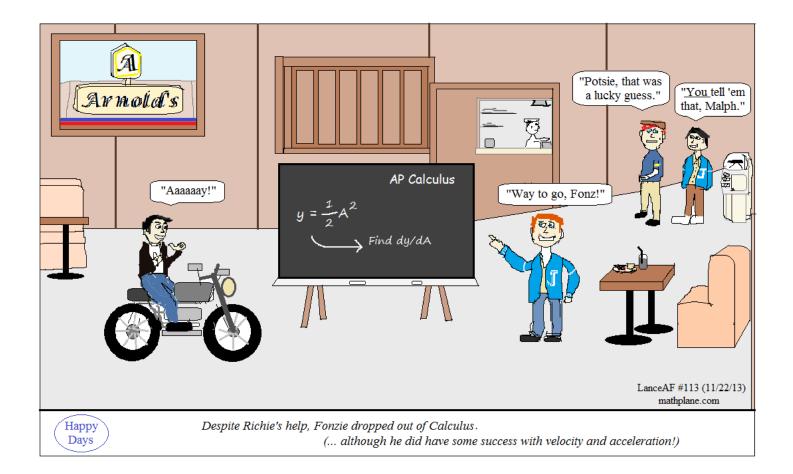
point: (0, 1)

slope:
$$y' = (-1)(2^{-X})(\ln 2)$$

at x = 0, the slope is $-(\ln 2) \approx -.693$
tangent line: $y = -.693x + 1$



SOLUTIONS



Implicit Differentiation and Logarithm extras---ightarrow

Implicit differentiation and natural log

Example: Find $\frac{dy}{dx}$: $x^2 + 3\ln y + y^2 = 10$

$$2x + 3 \cdot \frac{1}{y} \frac{dy}{dx} + 2y \frac{dy}{dx} = 0$$

$$\frac{3}{y} \frac{dy}{dx} + 2y \frac{dy}{dx} = -2x$$

$$\frac{dy}{dx} \left(\frac{3}{y} + 2y\right) = -2x$$

$$\frac{dy}{dx} = \frac{-2x}{\frac{3+2y^2}{y}} = \frac{-2xy}{3+2y^2}$$

Example: Find the equation of the line tangent to $x + y - 1 = \ln(x^2 + y^2)$ at (1, 0)

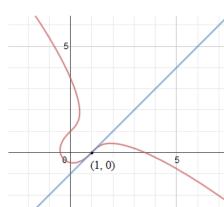
To find equation of a line, we need slope and a point.

Point: (1, 0) Slope: Take the derivative and evaluate the point of tangency

Implicit differentiation: $1 + (1)\frac{dy}{dx} - 0 = \frac{2x + (2y)\frac{dy}{dx}}{(x^2 + y^2)}$ cross-multiply $(x^2 + y^2) + (x^2 + y^2)\frac{dy}{dx} = 2x + (2y)\frac{dy}{dx}$ collect dy/dx to one side $(x^2 + y^2) - 2x = (2y)\frac{dy}{dx} - (x^2 + y^2)\frac{dy}{dx}$ factor out the dy/dx $\frac{(x^2 + y^2) - 2x}{(2y) - (x^2 + y^2)} = \frac{dy}{dx}$ To find slope at point of tangency, substitute (1, 0) for (x, y) $\frac{(1 + 0) - 2}{0 - (1 + 0)} = 1$

Equation of the tangent line: y - 0 = 1(x - 1)

or y = x - 1



Derivatives of logarithms (other than e)

Example:
$$f(x) = 5^X$$
 find $f'(x)$

$$\frac{d}{dx}(a^{X}) = (a^{X}) \ln a$$
(the base *a* is a constant)

using the definition:

$$5^{X} \cdot \ln 5$$

using logarithmic differentiation:

$$y = 5^{X}$$

$$\ln y = \ln 5^{X}$$

$$\ln y = \ln 5^{X}$$

$$\log \text{ of both sides}$$

$$\ln y = x \cdot \ln 5$$

$$\log \text{ of both sides}$$

$$\log \text{$$

Example:
$$y = 3^{x^2}$$
 find $\frac{dy}{dx}$
$$\frac{d}{dx} (a^u) = \frac{du}{dx} (a^u) \ln a$$
(the base a is a constant
and u is a function)

using the definition:

$$u = x^{2}$$

$$a = 3$$

$$\frac{du}{dx} = 2x$$

$$\frac{dy}{dx} = 3^{2} = (2x) \cdot 3^{2} \cdot 3^{2} \cdot 3^{2}$$

$$u = x^{2}$$

using logarithmic differentiation:

$$y = 3^{x^{2}}$$

$$\ln y = \ln 3^{x^{2}}$$

$$\ln y = x^{2} \ln 3$$

$$\ln y = 1.098x^{2}$$

$$\frac{1}{y} \cdot y' = 2.196x$$

$$\frac{1}{y} \cdot y' = 2x(\ln 3)$$

$$y' = 2.196x (3^{x^{2}})$$

$$y' = 2x \cdot \ln 3 \cdot 3^{x^{2}}$$

Example: What is the derivative of e^{X} ?

$$y = e^{X}$$
 $y' = e^{X} \cdot \ln(e)$
 $y' = e^{X} \cdot 1 = e^{X}$

Example:
$$y = (2x + 3)^{2} (x^{2} + 1)$$

In $y = \ln [(2x + 3)^{2} (x^{2} + 1)]$
In $y = \ln (2x + 3)^{2} + \ln (x^{2} + 1)$
In $y = \ln (2x + 3)^{2} + \ln (x^{2} + 1)$
In $y = 2\ln (2x + 3) + \ln (x^{2} + 1)$
In $y = 2\ln (2x + 3) + \ln (x^{2} + 1)$
In $y = 2\ln (2x + 3) + \ln (x^{2} + 1)$
In $y = 2\ln (2x + 3) + \ln (x^{2} + 1)$
In $y = 2\ln (2x + 3) + \ln (x^{2} + 1)$
In $y = 2\ln (2x + 3) + \ln (x^{2} + 1)$
In $y = 2\ln (2x + 3) + \ln (x^{2} + 1)$
In $y = 2\ln (2x + 3) + \ln (x^{2} + 1)$
In $y = 2\ln (2x + 3) + \ln (x^{2} + 1)$
In $y = 2\ln (2x + 3) + \ln (x^{2} + 1)$
In $y = 2\ln (2x + 3) + \ln (x^{2} + 1)$
In $y = 2\ln (2x + 3) + \ln (x^{2} + 1)$
In $y = 2\ln (2x + 3) + \ln (x^{2} + 1)$
In $y = 2\ln (2x + 3) + \ln (x^{2} + 1)$
In $y = 2\ln (2x + 3) + \ln (x^{2} + 1)$
In $y = 2\ln (2x + 3) + \ln (x^{2} + 1)$
In $y = 2\ln (2x + 3) + \ln (x^{2} + 1)$
In $y = 2\ln (2x + 3) + \ln (x^{2} + 1)$
In $y = 2\ln (2x + 3) + \ln (x^{2} + 1)$
In $y = 2\ln (2x + 3) + \ln (x^{2} + 1)$
In $y = 2\ln (2x + 3) + \ln (x^{2} + 1)$
In $y = 2\ln (2x + 3) + \ln (x^{2} + 1)$
In $y = 2\ln (2x + 3) + \ln (x^{2} + 1)$
In $y = 2\ln (2x + 3) + \ln (x^{2} + 1)$
In $y = 2\ln (2x + 3) + \ln (x^{2} + 1)$
In $y = 2\ln (2x + 3) + \ln (x^{2} + 1)$
In $y = 2\ln (2x + 3) + \ln (x^{2} + 1)$
In $y = 2\ln (2x + 3) + \ln (x^{2} + 1)$
In $y = 2\ln (2x + 3) + \ln (x^{2} + 1)$
In $y = 2\ln (2x + 3) + \ln (x^{2} + 1)$
In $y = 2\ln (2x + 3) + \ln (x^{2} + 1)$
In $y = 2\ln (2x + 3) + \ln (x^{2} + 1)$
In $y = 2\ln (2x + 3) + \ln (x^{2} + 1)$
In $y = 2\ln (2x + 3) + \ln (x^{2} + 1)$
In $y = 2\ln (2x + 3) + \ln (x^{2} + 1)$
In $y = 2\ln (2x + 3) + \ln (x^{2} + 1)$
In $y = 2\ln (2x + 3) + \ln (x^{2} + 1)$
In $y = 2\ln (2x + 3) + \ln (x^{2} + 1)$
In $y = 2\ln (2x + 3) + \ln (x^{2} + 1)$
In $y = 2\ln (2x + 3) + \ln (x^{2} + 1)$
In $y = 2\ln (2x + 3) + \ln (x^{2} + 1)$
In $y = 2\ln (2x + 3) + \ln (x^{2} + 1)$
In $y = 2\ln (2x + 3) + \ln (x^{2} + 1)$
In $y = 2\ln (2x + 3) + \ln (x^{2} + 1)$
In $y = 2\ln (2x + 3) + \ln (x^{2} + 1)$
In $y = 2\ln (2x + 3) + \ln (x^{2} + 1)$
In $y = 2\ln (2x + 3) + \ln (x^{2} + 1)$
In $y = 2\ln (2x + 3) + \ln (x^{2} + 1)$
In $y = 2\ln (2x + 3) + \ln (x^{2} + 1)$
In $y = 2\ln (2x + 3) +$

uses logarithms and implicit

g' f

g

nt uses power rule, product rule, in rule...

Example:

$$y = \sqrt{\frac{4}{\sqrt{\frac{(x-2)^3 (x^2+1)}{(2x+5)^3}}}}$$

$$\ln y = \ln \left[\frac{(x-2)^3 (x^2+1)}{(2x+5)^3} \right]^{\frac{1}{4}}$$

$$\ln y = \frac{1}{4} \ln \left[\frac{(x-2)^3 (x^2+1)}{(2x+5)^3} \right]^{\frac{1}{4}}$$

$$1 = \ln (x-2)^3 + \ln (x^2+1) + \ln (2x+1)$$

$$\ln y = \frac{1}{4} \left[\ln (x-2)^3 + \ln (x^2+1) + \ln (2x+5)^3 \right]$$
$$\ln y = \frac{1}{4} \left[3\ln (x-2) + \ln (x^2+1) + 3\ln (2x+5) \right]$$
$$\frac{1}{y} \frac{dy}{dx} = \frac{1}{4} \left[\frac{3}{(x-2)} + \frac{2x}{(x^2+1)} + \frac{3 \cdot 2}{(2x+5)} \right]$$
$$\frac{dy}{dx} = \frac{1}{4} \left[\frac{3}{(x-2)} + \frac{2x}{(x^2+1)} + \frac{3 \cdot 2}{(2x+5)} \right] y$$

$$\frac{dy}{dx} = \frac{1}{4} \left[\frac{3}{(x-2)} + \frac{2x}{(x^2+1)} + \frac{3 \cdot 2}{(2x+5)} \right] \left[\frac{(x-2)^3 (x^2+1)}{(2x+5)^3} \right]^{\frac{1}{4}}$$

Calculus: Logarithm Extras

Derivative of an exponential function (other than e^X)

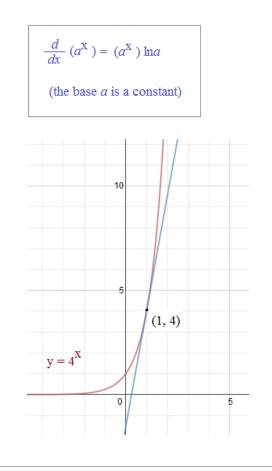
Example: Find the equation of the line tangent to $y = 4^{X}$ at (1, 4)

To determine the equation of a line, we need a point and the slope.

Point: (1, 4)

Slope: Find the derivative

 $y' = 4^{X} \cdot \ln(4)$ and, at x = 1 the slope is $4^{(1)} \cdot \ln(4) \approx 5.545$ y - 4 = 5.545(x - 1)



Logarithmic Differentiation: Using logarithms and implicit differentiation to find a derivative.

Example: $y = x^{sinx}$ Find $\frac{dy}{dx}$

Since there is a variable in the term AND the exponent, it cannot be directly differentiated. But, we can take the natural log of both sides...

$$\ln(y) = \ln(x \sin x)$$

Logarithm properties: power rule $\ln(y) = \sin x \cdot \ln(x)$

Implicit differentiation

multiply both sides by y (to isolate the dy/dx)

substitute the y with the original terms

$$\frac{1}{y} \frac{dy}{dx} = \cos x \cdot \ln(x) + \sin x \cdot \frac{1}{x}$$
$$\frac{dy}{dx} = y \left(\cos x(\ln(x)) + \frac{\sin x}{x} \right)$$
$$\frac{dy}{dx} = x \frac{\sin x}{\cos x(\ln(x)) + \frac{\sin x}{x}}$$

Find the derivative (using logrithmic differentiation):

1)
$$y = \sqrt{\frac{x^2 + 1}{x^2 + 2}}$$

2)
$$y = \frac{x \sqrt{x^2 + 4}}{x + 1}$$

Find the derivative (using logrithmic differentiation):

1)
$$y = \sqrt{\frac{x^2 + 1}{x^2 + 2}}$$
 (take the natural log of each side; then, use log properties to rewrite)

$$\ln y = \ln \left(\frac{x^2 + 1}{x^2 + 2}\right)^{1/2} \qquad \ln y = \frac{1}{2} \left[\ln(x^2 + 1) - \ln(x^2 + 1)\right]$$

(take derivative; use implicit differentiation)

$$\frac{1}{y} \frac{dy}{dx} = \frac{1}{2} \left[\frac{2x}{(x^2+1)} - \frac{2x}{(x^2+2)} \right]$$
(simplify and substitue for y)

$$\frac{dy}{dx} = \left[\frac{x}{(x^2+1)} - \frac{x}{(x^2+2)} \right] y$$

$$\frac{dy}{dx} = \left[\frac{x}{(x^2+1)} - \frac{x}{(x^2+2)} \right] \sqrt{\frac{x^2+1}{x^2+2}}$$

2)

2)
$$y = \frac{x \sqrt{x^2 + 4}}{x + 1}$$

(take the natural log of each side; then, use log properties to rewrite)

$$\ln y = \ln x + \ln (x^{2} + 4)^{2} - \ln (x + 1)$$
$$\ln y = \ln x + \frac{1}{2} \ln (x^{2} + 4) - \ln (x + 1)$$

(take derivative; use implicit differentiation)

$$\frac{1}{y} \frac{dy}{dx} = \frac{1}{x} + \frac{1}{2} \frac{2x}{(x^2 + 4)} - \frac{1}{x + 1}$$
$$\frac{dy}{dx} = \begin{bmatrix} \frac{1}{x} + \frac{x}{(x^2 + 4)} & -\frac{1}{x + 1} \end{bmatrix} y$$

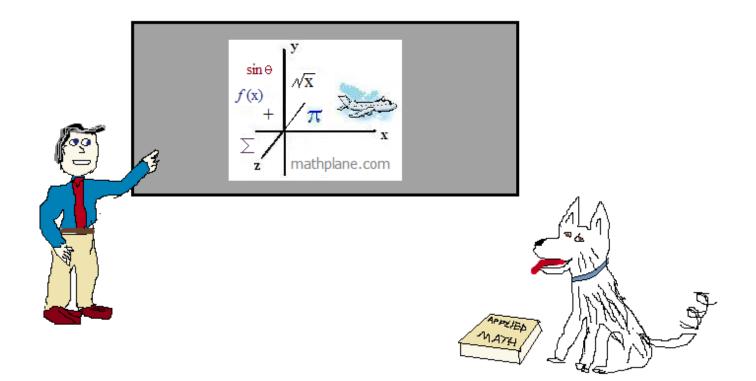
(simplify and substitue for y)

$$\frac{dy}{dx} = \left[\frac{1}{x} + \frac{x}{(x^2+4)} - \frac{1}{x+1}\right] \frac{x\sqrt[n]{x^2+4}}{x+1}$$

Thanks for visiting. (Hope it helped!)

If you have questions, suggestions, or requests, let us know.

Enjoy



Also, at TeachersPayTeachers

And, mathplane.ORG for mobile and tablets