Calculus: Volume of Solids

Definite Integral Notes, Examples, and Formulas related to
Disc/Washer and Shell/Cylinder Methods

Includes Practice Test (with solutions)
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Shell (or, Cylinder) Method



Utilizing the Shell (Cylinder) Method |

Example: Find the volume of a solid formed by revolving the area bounded by

y=x2—6x+5 and y = 0 around the x-axis.
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Now, suppose we want to find the volume of a solid
formed from the same area revolved around the v-axis.

If we use the disc method, we need to express
the equations in terms of y.

What is the inverse of y=x%—6x+5 ? Shell (Cylinder) Method
This is difficult to figure out.. b
However, there is another approach to finding the volume of a solid. Volume = E 2 di ioht
the "shell method". Tr (radius)(height) dx
It takes partitions that are parallel to the axis of a
rotation.
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e The middle partition

revolved around the y-axis since it's area under the x-axis,

forms a cylinder the value was negative...

4 This lateral area is 24 TT But, area cannot be negative...
(the sum of lateral areas from all 64 Tr

\ . . .
S - the cylinders is the volume of the solid)




Find the volume of a solid formed by revolving the area bounded by
y=/A/x y=0 and x=9

around the x-axis

Disc Method
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Partitions are perpendicular to the x-axis
Each partition is a disc!
(the radius of each disc is the function)
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Volume of Solids: Shell vs. Disc Method

Lateral Area of cylinder:
LA = 27T (radius)(height)

Shell Method
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Partitions are parallel to the x-axis

Each partition is a cylinder!

(the height of each cylinder is the function, and the
radius of each cylinder is y)
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Each cylinder is a 'shell'.
When all the different sized shells are
added together, they form the solid.



(Depending on the function, orientation, and/or rotation, one method may be easier than the other.... )

Example:  What is the volume of the solid from the

region between the x-axis and y= 2 +4x-3 2

revolved around the y-axis?

Method 1: Apply the "cylinder method" (or "shell method™) 1

Note: each partition is a cylinder with

radius: x

height: x% +4x-3

formula for surface area of cylinder:

SA = 27[ (radius) (height)

We'll construct an definite integral that
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Method 2: Using "Disk Method" (and horizontal partitions)

Since we're using horizontal partitions, we need to
solve for x....

= x2 +4x—3 solve for x:
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. assume this is the y-axis.....then, the
edge of this cone would be the function..."

The Math Guy enjoys his new profession...

"...s0, you can see that if we
rotate this function around
the stick, we can determine
the volume of the solid!"

What the heck is

"Mister, can I

have my popsicle?"

This is taking forever.
We should've gotten

Frozen Treats
Cones & P'ias

Practice Test-—2>



Volume of Solids Quiz: Disc and Shell Methods

1)  Find the volume of a solid with area bounded by y= x? and y=4x- x? ,and

a) revolved around the y-axis

b) revolved around x = 4

2) Find the volume of a solid with area bounded by
y=x3 y=0 and x=2
and revolved around:
a) X-axis
b) y-axis
c) thelinex=4

d) theliney=38



3) The region R is bounded by y=Ax Volume of Solids Quiz: Disc and Shell Methods

x=10
y=12
Find the volume of the region R rotated around x =4,
a) using the disk method

b) using the shell method

4) Find the volume of the solid generated by revolving the ellipse ox? + 16},?2 = 144

a) around its major axis
Use disk and shell methods...

b) around its minor axis




AP Calculus
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Despite Richie's help, Fonzie dropped out of Calculus.

(... although he did have some success with velocity and acceleration!)
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Volume of Solids Quiz: Disc and Shell Methods

1)  Find the volume of a solid with area bounded by y= x? and y=4x - x? , and

a) revolved around the y-axis

b) revolved around x = 4

Since it is difficult to put the second equation in terms of y,

we'll utilize the 'shell method' (and use parallel partitions)
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Observe: Each cylinder (shell) has radius x
and height (4x —x2)-x2

and, 2 (radius)(height) is the surface
area of each cylinder!

height of each
Xx=4

cylinder (shell)

radius is Lateral Area of Cylinder is
(‘-3

2 T (radius)(height)



2) Find the volume of a solid with area bounded by

y= x3 y=0 and x=2
and revolved around:
a) x-axis
b) y-axis
c) thelinex=4
d) theliney=28
b) Utilizing the shell method:
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d) Using the shell method:
the line y = 8
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d) Using the disk / washer method:
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Volume of Solids Quiz: Disc and Shell Methods
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It's negative because

the region is below y =8
Of course, area must be
positive...
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3) The region R is bounded by y=Ax SOLUTIONS Volume of Solids Quiz: Disc and Shell Methods

x=0
y=2 x=0 x=4
Find the volume of the region R rotated around x =4, o
a) using the disk method %= y2
b) using the shell method /”-—’—-
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4) TFind the volume of the solid generated by revolving the ellipse ox® + 16}?2 = 144

a) around its major axis

b) around its minor axis

In standard form:
2 2
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a). major axis is the x-axis

Since the ellipse (ellipsoid) is symmetric, we'll focus on the top 1/2 of the figure...

Then, using the disk method...
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b) minor axis is the y-axis

Volume of Solids Quiz: Disc and Shell Methods

radius
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SOLUTIONS
Use disk and shell methods...
The boundries are -4 to 4
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Again, the ellipse (and ellipsoid) is symmetric over the axis, so we can work on half.

Then, using the shell method...
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The cylinders/shells have vertical heights,
and we'll focus on quadrant I...
So the boundaries will be 0 to 4..
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Using a calculator ----> the integral is 32 | !

- 0] cylinder)

Finally, we double the answer to account for the o
bottom half of the ellipsoid! 6411




Thanks for visiting. (Hope it helped!)
If you have questions, suggestions, or requests, let us know.

Cheers
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