
Final Report for MSc Individual Project

Gait generation for quadrupedal walking robot

Author name:

David Jedeikin

Supervisor:
Dr. Petar Kormushev

Submitted in partial fulfilment of the requirements for the award of MSc in Human and
Biological Robotics from Imperial College London

September 14, 2018 Word Count: 5992



Abstract

Over the past few decades we have seen significant advances in multi-pedal robotics. Legged robots are
able to traverse terrain and environments where wheeled or tracked robots would otherwise fail. This
report documents the design, implementation and testing of a bespoke high-level controller, implemented
using ROS and Python, for DogBot: a quadrupedal robot developed by React Robotics. A gait graph
method was used to generate multiple gaits, while a mapping function allowing the robot to be commanded
in any direction was designed. A step interpolation algorithm has been constructed allowing online, step
parameter changes, which has radically improved the response of the controller. An IMU was embedded
in both the physical and simulated model of the robot allowing inference of the robots’ orientation.
Using this information, a yaw controller capable of operating in both manual and autonomous mode was
developed, while a roll and pitch controller was designed to improve locomotion over uneven and inclined
terrains. In order to defend against unanticipated forces or pushes, a push detector and defence strategies
were designed. Finally, a Bayesian optimization hyper-parameter search was carried out in an attempt to
learn the best parameters for certain scenarios. The majority of the testing was conducted in simulation
as the physical robot experienced a number of mechanical failures. In simulation, the robot performed
consistently and well, while although the physical robot showed significant potential it required additional
testing and parameter tuning. This controller provides a strong and modular base upon which further
research may be conducted.

Acknowledgements

First and foremost, I would like to thank my supervisor, Dr. Petar Kormushev, for guiding me through
this incredible project. Petar’s wisdom and experience has been invaluable, he has taught me how to
efficiently simplify and break down complex problems into achievable tasks, starting with simple solutions
and increasing complexity where necessary. I would also like to thank Ke Wang and Roni Saputra for their
constant support, assistance and advice. Lastly I would like to thank Gor Nersisyan, Kawin Larppichet,
Shloak Mehta, Marion Tormento and Louis Rouillard for their support and great company throughout
this brilliant experience.

I



Contents

1 Introduction 1

2 Methods 3

2.1 Individual leg control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
2.1.1 Two-dimensional piecewise cycloid step trajectory . . . . . . . . . . . . . . . . . . 4
2.1.2 Three-dimensional trajectory generator and inverse kinematics . . . . . . . . . . . 5

2.2 Gait generation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.3 Rotation and translation step vector mapping . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.4 Yaw feed forward term . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.5 Step interpolation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.6 Attitude control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.6.1 Yaw controller . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.6.2 Roll and pitch controller . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.7 Push recovery . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.8 Bayesian optimization hyper-parameter search . . . . . . . . . . . . . . . . . . . . . . . . 18
2.9 Overview of complete controller . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

3 Results 20

3.1 Gait generation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
3.2 Rotation, translation and manoeuvrability . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
3.3 Step interpolation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
3.4 Yaw controller . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
3.5 Roll and pitch controller . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
3.6 Push recovery . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
3.7 Bayesian Optimization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

4 Discussion 28

4.1 Gait generation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
4.2 Manoeuvrability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
4.3 Yaw controller . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
4.4 Roll and pitch controller . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
4.5 Push recovery . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
4.6 Bayesian optimization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
4.7 Overall controller . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

5 Conclusion 31

Appendices 34

A Operational instructions 35

II



A.1 Getting started with the Gazebo simulation . . . . . . . . . . . . . . . . . . . . . . . . . . 35
A.2 Getting started with the physical robot . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

A.2.1 Connecting the batteries of the physical robot . . . . . . . . . . . . . . . . . . . . . 36
A.2.2 Homing the motors using the GUI . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
A.2.3 Controlling the physical robot using ROS . . . . . . . . . . . . . . . . . . . . . . . 37

B Additional information 38

B.1 State estimator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
B.2 Additional flow diagrams . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

III



List of Figures

1.1 Side view photograph of DogBot . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Oblique angle photograph of DogBot . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.3 React Robotics photograph of DogBot [1] . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

2.1 Flow diagram of the final high-level controller . . . . . . . . . . . . . . . . . . . . . . . . . 3
2.2 Step trajectory diagrams . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
2.3 Three-dimensional step trajectory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.4 Side views of a three-dimensional step trajectory . . . . . . . . . . . . . . . . . . . . . . . 5
2.5 Sign convention showing how the origin of each leg lies at the hip. . . . . . . . . . . . . . 6
2.6 Trigonometric diagrams used to calculate inverse kinematics equations . . . . . . . . . . . 6
2.7 Timing-based gait graphs for walking and trotting gaits . . . . . . . . . . . . . . . . . . . 7
2.8 Simplified example of a trotting gait graph and timing diagram superposition . . . . . . . 8
2.9 Rotation and step translation diagrams . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.10 Step vector information flow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.11 Labelled diagram of Xbox remote control mapping . . . . . . . . . . . . . . . . . . . . . . 10
2.12 Gazebo model with various transverse step offsets . . . . . . . . . . . . . . . . . . . . . . . 10
2.13 Yaw angle oscillations over eight trotting gait cycles, with no feed forward correction term 11
2.14 Feed forward yaw term algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.15 Step and gait parameter changes between gait cycles . . . . . . . . . . . . . . . . . . . . . 11
2.16 Step and parameter changes within gait cycles . . . . . . . . . . . . . . . . . . . . . . . . 12
2.17 Step parameter interpolation solution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.18 Flow diagram of the yaw controller . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.19 Diagram showing the roll, pitch and horizontal reference frame . . . . . . . . . . . . . . . 14
2.20 Side view diagrams of DogBot traversing uneven terrain . . . . . . . . . . . . . . . . . . . 14
2.21 Software implementation of the roll and pitch controller thread . . . . . . . . . . . . . . . 15
2.22 Force detector diagrams . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.23 Average acceleration window graphs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.24 Push recovery algorithm including the force detection and the defence strategy . . . . . . 17
2.25 Bayesian optimization algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
2.26 ROS rqt node/topic graph . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

3.1 Front left and back right legs in stance phase during trotting gait . . . . . . . . . . . . . . 20
3.2 Front right and back left legs in stance phase during trotting gait . . . . . . . . . . . . . . 21
3.3 Robot failure instances . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
3.4 Anti-clockwise rotation sequence, starting at the top left, of the simulated robot . . . . . 22
3.5 Clockwise rotation sequence, starting at the top left, of the real robot . . . . . . . . . . . 22
3.6 Graph showing sagittal step length change from 50 cm to 200 cm within a gait cycle . . . 23
3.7 Resulting effect of various different yaw feed forward terms . . . . . . . . . . . . . . . . . 23
3.8 Resulting effect of various different yaw feed forward terms . . . . . . . . . . . . . . . . . 24
3.9 Rough terrain model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

IV



3.10 Simulated robot stepping onto a box . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
3.11 Simulated robot side stepping onto a box . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
3.12 Simulated robot attempting to traverse an uneven inclined terrain . . . . . . . . . . . . . 25
3.13 Force detector tested with combinations of different forces and durations . . . . . . . . . . 26
3.14 Simulated robot experiencing a transverse force . . . . . . . . . . . . . . . . . . . . . . . . 27

B.1 Software implementation of the Step and Rotation Function . . . . . . . . . . . . . . . . . 39

V



Chapter 1

Introduction

Over the past few decades, a significant amount of research regarding developing and improving quadrupedal
robotic platforms has been conducted. This research is being driven by the potential implications and
applications of such technology. In particular, stable and well-controlled legged robots will be able to
access locations that are inaccessible to wheeled or tracked robotic platforms. Among other things, this
will allow autonomous systems to complete tasks that currently lead people into dangerous or potentially
life-threatening situations. Examples of quadrupedal robots that have been - and are being - developed
include Boston Dynamics Big Dog[2], Spot, Spot mini, Wildcat and LS3, for which there have been very
few scientific publications. Other such robots include MIT’s cheetah [3], IIT’s HyQ [4], HyQmini [5] and
HyQ2max [6] and ETH Zurich’s starlETH [7], and ANYmal [8].

In addition to research focusing on physical robot implementations, significant simulation and animation-
based research has successfully been conducted. Such an example is the work conducted by van de Panne
et al. [9] in the development of locomotion skills for simulated quadrupeds. Gait graphs and motion
capture comparisons were used to optimize and generate exceptionally realistic quadrupedal gaits and
skills. This research clearly shows that gait generation has been successfully implemented in a number of
different robots, by a number of different research groups. However, this project focuses on developing a
high-level controller for DogBot (Figure 1): a unique quadrupedal robot, developed by React Robotics,
with different dynamics, physical properties, sensory capabilities and low-level joint controllers. Although
inspiration, principals and theories from previous publications may be utilized, a novel and bespoke
high-level controller is required.

Figure 1.1: Side view photograph of DogBot

1



Figure 1.2: Oblique angle photograph of DogBot

The robot’s current design allows for position control of the 12 joints and a ROS controller has been
developed by React Robotics, thus the output of the high-level controller should be the joints required
to drive the robot. The aim of this project is therefore to develop a novel and bespoke high-level gait
controller for DogBot that is able to:

1. Generate multiple gaits

2. Manoeuvre in all directions

3. Be autonomously and/or manually controlled

4. Be robust, perturbation-resistant, and able to traverse uneven terrain.

Since it is likely that this controller will be improved upon in the future and used to develop, implement
and test machine/reinforcement learning algorithms, additional major requirements include the usability,
simplicity, and modularity of the controller. The controller must be treated as a black-box model, passing
and changing parameters as required.

Figure 1.3: React Robotics photograph of DogBot [1]

2



Chapter 2

Methods

This section will include the detailed design of the high-level controller. It will explain the controller
conceptionally, as well as the software design involved in implementing the controller. The controller was
written using Python and ROS, and Gazebo was used to visualize and test the algorithms. Figure 2
below shows a flow diagram of the final high-level controller. In all flow diagrams, red parallelograms will
represent global variables, green rectangles will represent callback functions and orange rectangles will
represent separate threads. This section will explain the controller using a bottom-up approach, meaning
that it will begin by explaining the control of a single leg and a two-dimensional step trajectory, thereafter
increasing the complexity and building up the various components of the high-level controller shown in
Figure 2.

Figure 2.1: Flow diagram of the final high-level controller

3



2.1 Individual leg control

2.1.1 Two-dimensional piecewise cycloid step trajectory

A simple step trajectory generator, based on the composite cycloid trajectory initially proposed in [10],
was developed. The trajectory generator depends on a number of parameters that affect the shape, size,
and direction of the step. The step consists of a separate stance and a swing phase. The trajectory
generator was modified such that the origin corresponds to the hip of the robot, and the starting position
is in the middle of the stance phase. The piecewise trajectory generator was defined as follows:

Rh = Robot height H = Step height Sx = Step length
T = Total gait period Ts = Stance period Ty = Swing period

t ∈ [0, T ] α = t− Ts
2 τ = α

Ty

z(t) =























−Rh if t <= Ts
2

{

2H(τ −
1
4πsin(4πτ)− 1)−Rh if (α <= Ty

2

−2H(τ −
1
4πsin(4πτ)− 1)−Rh if (α > Ty

2

if Ts
2 < t <= Ty + Ts

2

−Rh if t > Ty + Ts
2

(2.1)

x(t) = sign(Sx)











−
Sx
Ts

t if t <= Ts
2

Sx(τ −
sin(2πτ)

2π )− Sx
2 if Ts

2 < t <= Ty + Ts
2

0.5Sx
Ty+0.5Ts−T

+ 0.5Sx(1− Ty+0.5Ts
Ty+0.5Ts−T

) if t > Ty + Ts
2

(2.2)

Figure 2.2(a) below is a visual example of this piecewise trajectory generator. It’s important to observe
how the position in space is dependent on the timing vector, t. This property was exploited in order to
generate various gaits. Figure 2.2(b) shows a labeled animation of a step.

(a) Visual example of the piecewise step generator
with a gait period of 10 s a time increment of 1 s and
a swing/stance ratio of 0.5

(b) Labelled animated step diagram

Figure 2.2: Step trajectory diagrams

4



2.1.2 Three-dimensional trajectory generator and inverse kinematics

The two-dimensional trajectory generator was expanded into a three-dimensional trajectory generator,
shown in Figure 2.3, by including a transverse step defined by Equation 2.3. Figure 2.4 shows how the
cycloid is maintained in both step directions.

y(t) = sign(Sy)











−
Sy
Ts

t if t <= Ts
2

Sy(τ −
sin(2πτ)

2π )− Sy
2 if Ts

2 < t <= Ty + Ts
2

0.5Sy
Ty+0.5Ts−T

+ 0.5Sx(1− Ty+0.5Ts
Ty+0.5Ts−T

) if t > Ty + Ts
2

(2.3)

Figure 2.3: Three-dimensional step trajectory

(a) Sagittal plane view (b) Transverse plane view

Figure 2.4: Side views of a three-dimensional step trajectory

Given a time vector, robot parameters, and step parameters, Equations 2.1, 2.2 & 2.3 now define the
position (x, y, z) of a foot during a step, relative to the respective hip joint of the leg. This allows a step
in any direction to be generated, however, a convention was required. Figure 2.5 shows the convention

5



used through the design. The advantage of such a convention is that a signed step vector results in the
same step for each leg.

(a) (b)

Figure 2.5: Sign convention showing how the origin of each leg lies at the hip.

Three-dimensional inverse kinematics equations were then used to determine the angles required to follow a
trajectory. Figure 2.6 shows the trigonometric diagrams used to calculate the inverse kinematic equations
which start at Equation 4.

Figure 2.6: Trigonometric diagrams used to calculate inverse kinematics equations

6



P ∗ =
√

x2 + (y −Ho(sin(θ1)))2 + (z +Ho(cos(θ1)))2 (2.4)

P =
√

x2 + y2 + z2 (2.5)

α = cos−1

(

(P ∗)2 + L2
1 − L2

2

2L1P ∗

)

(2.6)

θ1 = sin−1

(

Y

P

)

(2.7)

θ2 = tan−1

(

−P ∗

x

)

− α (2.8)

θ3 = cos−1

(

(P ∗)2 − L2
1 − L2

2

2L1L2

)

(2.9)

2.2 Gait generation

Using the step trajectory generator and inverse kinematics solutions, a gait generator was developed.
A gait graph method, similar to the one proposed in [9], was used. The gait graph method assumes
all four legs are simultaneously cycling through step trajectories. The various gaits are then defined by
timing offsets between the four legs. Figure 2.7 shows the gait graphs used for generating the trotting
and walking gaits. The timing offsets are shown for the walking gait, these offsets are used to generate
individual timing vectors for each leg, which determine the position of the respective foot at a given
time.

Figure 2.7: Timing-based gait graphs for walking and trotting gaits

7



Figure 2.8 is an example of how a gait graph could be used to generate a trotting gait. Superimposing
correctly-offset timing vectors onto the gait graph allows the simple case to be observed. Unrealistic
timing parameters, the same as those chosen in Figure 2.2(a), have been used to simplify the example.
At the time of interest, (indicated with a red box), both the front right and back left legs have a t value
of 3 s, and are about to initiate the swing phase. The front left and back right legs have a t value of 8 s,
and are about to initiate the stance phase.

Figure 2.8: Simplified example of a trotting gait graph and timing diagram superposition

2.3 Rotation and translation step vector mapping

At this stage, although the robot could step in any direction, the motion and direction of the actual
robot was not yet controlled. In order to do so, a function mapping body rotations(θ) and translations
(T ) to individual footstep vectors was developed. Figure 2.9 shows the diagrams used to develop this
function. The black circles represent the respective feet of the robot, before and after the steps have been
taken, with their positions defined relative to the center of the robot. The large dashed arrows represent
the axis of the robot, before (X,Y ) and after (Xn, Y n) a body rotation and/or translation. Finally, the
black arrows represent the step vectors from the current to the future feet position, required to perform
the body rotation and/or translation. The calculation mapping a translation and rotation to a footstep
vector for a single foot is as follows:

[

Stepy
Stepx

]

=

([

y
x

] [

cos(θ) −sin(θ)
sin(θ) cos(θ)

]

+

[

Ty

Tx

])

−

[

y
x

]

(2.10)

Figure 2.10 shows the data flow from the step and rotation calculator through the trajectory generator,
and inverse kinematics calculator to the final angles required to move the robot.

In order to test the developed functions, various parameters were mapped to an Xbox remote control.
The parameters can be seen in Table 2.1. A labeled diagram of the Xbox remote control can be seen

8



(a) Pure rotation (b) Rotation and translation

Figure 2.9: Rotation and step translation diagrams

Figure 2.10: Step vector information flow

in Figure 2.11. Please see Figure B.1, a flow diagram, in the Appendix for a further explanation of the
software implementation of this function.

9



Xbox command Robot parameter

Sagittal step Tx

Transverse step Ty

Body yaw rotation θ
Robot height control Rh
Break control Sx, Sy,H = 0

Table 2.1: Table showing robot parameter Xbox mapping

Figure 2.11: Labelled diagram of Xbox remote control mapping

2.4 Yaw feed forward term

In order to improve the stability of the robot, a transverse step offset was added: Figure 2.12. Although
this improved the stability, it caused yaw to oscillate between gait cycles. Each time the trotting leg pairs
made contact with the ground, a slight moment was generated causing the robot to rotate.

(a) Zero transverse step offset (b) Transverse step offset of 130mm

Figure 2.12: Gazebo model with various transverse step offsets

These oscillations, generated as the trotting leg pairs transition from swing to stance phase, can be seen
in Figure 2.13. In order to solve this problem, a yaw feedforward term - acting in opposite directions
during the two stance phases - was included in the step and rotation calculator (Figure 2.14).

10



Figure 2.13: Yaw angle oscillations over eight trotting gait
cycles, with no feed forward correction term

Figure 2.14: Feed forward yaw term algo-
rithm

2.5 Step interpolation

During the initial testing of the controller, gait and step parameters - such as step vectors (which were
contained in the step length matrix), step height, and robot height - were only changed between gait cycles.
This ensured continuity between gait cycles and step trajectories, however, reduced the responsiveness
of the controller. This algorithm can be seen in Figure 2.15. Simply changing step and gait parameters
within gait cycles, without interpolation, resulted in large discontinuities between step trajectories, and
very jerky motion. This can be seen in Figure 2.16.

(a) Algorithm changing gait and step
parameters between gait cycles

(b) Visual diagram of increasing the step length
and height between gait cycles

Figure 2.15: Step and gait parameter changes between gait cycles

11



(a) Algorithm changing gait and step
parameters within gait cycles

(b) Visual diagram of step length and height in-
crease within gait cycles

Figure 2.16: Step and parameter changes within gait cycles

In order to solve this problem, a simple step interpolation algorithm was developed. The algorithm (Figure
2.17(a)) compares the modulus of the difference between the previous and current step parameters. If
the difference of any parameter is greater than a defined threshold, the new parameter is incremented
towards the desired step parameter within the gait cycle. This works by creating multiple small step
parameter changes that do not cause jerky motion. This results in a smooth trajectory transition profile
and increased responsiveness of the controller. An example diagram can be seen in Figure 2.17(b).

(a) Step parameter interpolation solution
algorithm

(b) Step parameter interpolation
solution example

Figure 2.17: Step parameter interpolation solution

12



2.6 Attitude control

In order to obtain feedback information, allowing the inference of the robot’s orientation, an IMU (inertial
measurement unit) was added to both the simulated model and the physical robot. The IMU was used
to implement two separate general controllers, as well as a push recovery method. Standard ROS PID
controller nodes were used, these controllers required set-points and states as inputs, and output the
necessary control effort.

2.6.1 Yaw controller

The PD yaw controller was designed to operate in two different modes: manual and autonomous. In
manual mode, when using the Xbox remote control, the robot is rotated until the required angle is
reached. Once the position is reached, the controller is activated, the current angle is saved as the set-
point, and the yaw is used as the robot state. This holds the robot in position until a new command
is received. This algorithm can be seen in Figure 2.18. In autonomous mode, the set-point angle is
predefined and control effort is supplied until the set-point is reached.

Figure 2.18: Flow diagram of the yaw controller

13



2.6.2 Roll and pitch controller

The roll and pitch controller was initially designed to improve stability when traversing inclined, declined,
rough and uneven terrain. Traversing uneven terrain with all legs the same height causes the robot to
roll and pitch. This shifts the center of mass, which destabilizes the robot, often resulting in it falling
over.

By individually controlling the height of each leg, the roll and pitch of the robot was minimized, resulting
in improved stability. In order to achieve this, each leg was assigned a control node and the height of the
hip relative to a horizontal reference (initially proposed in [11]) was controlled. This reference frame can
be seen in Figure 2.19. The set-point was set to zero, the state was defined as (∆Z) (the relative height
of the hip) and the controlled effort was used to adjust the leg height. Figure 2.20(a) shows how ∆Z is
defined under a pure roll case, and Figure 2.20(b) shows the robot after it has been stabilized.

Figure 2.19: Diagram showing the roll, pitch and horizontal reference frame

(a) DogBot experiencing a pure pitch due to uneven
terrain

(b) DogBot, after the roll and pitch controller has
been used to stabilize the robot

Figure 2.20: Side view diagrams of DogBot traversing uneven terrain

14



The ∆Z for a single leg was calculated as follows, where (x, y, z) represents the coordinates of the hip
with zero roll or pitch.





y′

x′

z′



 =





cos(θ) 0 −sin(θ)
0 1 0

sin(θ) 0 cos(θ)









1 0 0
0 cos(α) sin(α)
0 −sin(α) cos(α)









y
x
z



 (2.11)

∆Z = z′ (2.12)

Figure 2.21 shows how the roll and pitch controller thread is implemented in software. One final addition
to the thread was the ability to detect flat ground or constant slopes/steps. These two states were detected
by comparing the individual legs height as well as the average leg height. If flat ground was detected, all
leg heights were reset to the robot height. If a constant slope or step was detected, the front and back
legs were set to the respective front and back average heights.

Figure 2.21: Software implementation of the roll and pitch controller thread

15



2.7 Push recovery

In order to improve the robustness and perturbation resistance of the controller, a push/force detector
was developed using the linear accelerations linear accelerations (Ax, Ay) from the IMU (Figure 2.22(a)).
Simply analysing instantaneous linear acceleration proved unsuccessful as due to the dynamic nature
of the system - the signals contained significant noise, making it difficult to define threshold detection
values.

Sliding window averages of the accelerations were instead computed and used for detection. The slid-
ing window average works by computing the average acceleration over a time window period. Figure
2.22(b) is a simplified visual example of how the average acceleration windows of 0.06 s and 0.08 s would
be calculated. Assuming an IMU publish rate of 100 hz, for a window width of 0.06 s the previous 6
accelerations would be averaged, while for a window width of 0.08 s the previous 8 acceleration values
would be averaged.

(a) Digram showing theoretical force application and
lateral accelerations

(b) Example of the sliding window average acceleration
detection

Figure 2.22: Force detector diagrams

The force detectability for a number of different window sizes were compared in order to determine the
most suitable size. Figure 2.23(a) shows how the window sizes were compared. The horizontal axis shows
the gait cycle simulation increments, where a full gait cycle takes 100 increments. The vertical axis shows
the average window acceleration.

In Figure 2.23(a), both 0.06 s and 0.08 s windows clearly showed detectable acceleration spikes. However,
0.06 s seemed slightly too sensitive, with a larger average window amplitude. Thus, 0.08 s was chosen as
the most suitable window size, and a force detection acceleration threshold was defined as 4m/s2. This
is shown in Figure 2.23(b).

With the push/force detection in place, different defence tactics were experimented with. One of the more
successful strategies involved stepping in the direction opposing the force - by an amount proportional
to the force - increasing the transverse step offset and reducing the height of the robot. These robot
parameters were maintained for 0.5 s, thereafter resetting the default parameters (Figure 2.24).

16



(a) Graph showing average acceleration for different win-
dow sizes for 30 gait cycles, with applied forces at 10 and
20 gait cycles.

(b) Graph showing average acceleration for a window size of
0.08 s, with force detection threshold defined at 4m/s2. In
this example, both forces are clearly detected.

Figure 2.23: Average acceleration window graphs

Figure 2.24: Push recovery algorithm including the force detection and the defence strategy

17



2.8 Bayesian optimization hyper-parameter search

Increasing the complexity of the controller resulted in a severe increase in the number of hyper-parameters.
It was noticed how slight changes of certain parameters significantly affected the performance of the
controller. Due to the number of hyper-parameters and possible combinations, manual tuning is simply
not feasible. This scenario is well suited to Bayesian optimization hyper-parameters search, as extracting
data points is highly expensive. The hyper-parameters to be optimized included:

Step length Step height Robot Height Gait period
Yaw Kp Yaw Kd RollPitch Kp Roll Pitch Kd

Transverse step offset Sagittal step offset Gait Swing period

In order to implement a Bayesian optimization hyper-parameter search, a function was required. The
function was defined as a particular simulated task to be optimized. The inputs to the function were
defined as the hyper-parameters to be optimized, while the output of the function was a custom-define
reward, based on how successfully the robot completed the task. In this way, the robot could learn
the best parameters for a particular task. Figure 2.25 shows the basic algorithm used to optimize the
hyper-parameters for a particular task.

Figure 2.25: Bayesian optimization algorithm

18



2.9 Overview of complete controller

Referring back to the overall controller flow diagram shown in Figure 2, it is now clear how each process
has been designed and how the various processes interact with one another. The main controller elements
have been assigned individual threads that allow them to be turned on and off as required.

Figure 2.26 is an example of a ROS rqt graph for the entire controller. In this example, the robot is being
controlled manually, using the Xbox remote control. Here it can be seen how the DogBot name-space
contains one topic per joint-angle of the robot. Thus, in order to control the robot - using the ROS
controller developed by React Robotics - the calculated joint angles must be published to the respective
joint-angle topics.

Figure 2.26: ROS rqt node/topic graph

19



Chapter 3

Results

Testing was extensively conducted on the simulated model of the robot, throughout the project. Un-
fortunately, as the physical robot was an earlier iteration of the design, some mechanical problems were
experienced, limiting the physical robot testing time. Only the open loop controller (Without the IMU)
was briefly tested on the physical robot.

3.1 Gait generation

The controller was able to generate both walking and trotting gaits in the simulated robot. These
two gaits were also tested on the physical robot, while suspended in the air, and while unsupported.
While suspended, the physical robot elegantly demonstrated both walking and trotting gaits. While
unsupported, the robot was able to generate both gaits, however, it was unstable and required further
parameter tuning. Figures 3.1 and 3.2 compare the trotting gait of the simulated and physical robots.
Although it appears both the simulated and physical robot are successfully trotting, this was not always
the case. The simulated robot was far more consistent and stable, often the physical robot became
unstable and therefore struggled to maintain synchronicity. Weight shifting during the dynamic trotting
gait prevented swing pairs from being able to lift simultaneously (Figure 3.3(a)). This problem was
improved by adding a saggital step offset however. However, defining the correct offset required more
testing time.

(a) Physical robot (b) Simulation of the robot

Figure 3.1: Front left and back right legs in stance phase during trotting gait

20



(a) Physical robot (b) Simulation of the robot

Figure 3.2: Front right and back left legs in stance phase during trotting gait

(a) Example loss of gait synchronicity (b) Example of the simulated robot falling while ro-
tating at high speeds

Figure 3.3: Robot failure instances

3.2 Rotation, translation and manoeuvrability

In simulation, the controller was efficacious: both rotation and translation were tested autonomously and
with the Xbox remote control. Although the robot was very manoeuvrable, without feedback control it
occasionally became unstable and fell, especially when turning at relatively high speeds, Figure 3.3(b).
Figure 3.4 shows the simulated robot successfully rotating anti-clockwise.

The physical robot performed in a similar manner, it was able to rotate and translate in any direction,
however - as with the gait testing - it was not completely stable and required significant further parameter
tuning. Figure 3.5 shows the physical robot rotating clockwise.

21



Figure 3.4: Anti-clockwise rotation sequence, starting at the top left, of the simulated robot

Figure 3.5: Clockwise rotation sequence, starting at the top left, of the real robot

3.3 Step interpolation

The step interpolation method was implemented as jerky and loud noises were noticed when changing step
parameters of the physical robot within gait cycles. The step interpolation radically improved this. Once
it was implemented, the robot’s motion was smooth and step parameter changes caused no additional
noise. Figure 3.6 shows an example of a major sagittal step change.

22



Figure 3.6: Graph showing sagittal step length change from 50 cm to 200 cm within a gait cycle

3.4 Yaw controller

The yaw controller consisted of a feed forward term, intended to reduce yaw oscillations, as well as a
feedback controller to maintain position. Figure 3.7 shows the yaw oscillations with various different feed
forward term values.

(a) Yaw oscillations with various different feed forward
terms

(b) Yaw oscillations with the best feed forward term of 15◦,
which reduced the oscillations by 2◦

Figure 3.7: Resulting effect of various different yaw feed forward terms

Figure 3.8 shows the two different modes of the yaw feedback controller. Figure 3.8 (a) is an example of
the manual feedback controller: as expected, the yaw state leads the set-point. The feedback controller
is turned off while an Xbox yaw command is being received, the desired position is then saved and the
controller is turned on, holding the robot in-place. This was tested by resetting the model position

23



to 0◦, using Gazebo, during each saved position. The controller successfully returns the robot to the
desired, position demonstrating its effectiveness. Figure 3.8 (b) is a conventional example of the controller
in autonomous mode: desired positions are defined and the controller provides effort to reach these
positions.

(a) Manual, Xbox yaw feedback controller mode (b) Autonomous yaw feedback controller mode

Figure 3.8: Resulting effect of various different yaw feed forward terms

3.5 Roll and pitch controller

The roll and pitch controller was tested on a number of different terrains and uneven surfaces. Figure 3.9
shows a model that was designed specifically to test the controller in simulation.

Figure 3.9: Rough terrain model

Figure 3.10 shows the robot’s front two legs stepping onto a box. In Figure 3.10 (a), the roll and pitch
controller is inactivated, causing the robot to experience a pitch, which then leads to instability. In figure
3.10 (b), the roll and pitch controller is active. Here, the robot adjusts the height of the front legs to
reducing the pitch and regaining stability. Figure 3.11 shows a similar experiment, however, in this case,
the robot experiences a roll by side stepping onto the box. With an inactive controller, Figure 3.11 (a),

24



the robot is not able to compensate for this and falls over. In Figure 3.11 (b) the robot uses the controller
to autonomously regain stability.

(a) Controller inactive (b) Controller active

Figure 3.10: Simulated robot stepping onto a box

(a) Controller inactive (b) Controller active

Figure 3.11: Simulated robot side stepping onto a box

Figure 3.12 shows the robot attempting to traverse an uneven inclined terrain. Without the controller,
Figure 3.12 (a), the robot experiences a significant pitch and in most cases falls over. With the controller
active, Figure 3.12 (b), the robot adjusts the height of the legs accordingly and improves the stability.
The controller improved the stability of the robot in this scenario, however, it did still tend to fall on
some occasions. It is however, worth mentioning that, using the roll and pitch controller, the robot was
able to elegantly descend stairs very consistently.

(a) Controller inactive (b) Controller active

Figure 3.12: Simulated robot attempting to traverse an uneven inclined terrain

25



3.6 Push recovery

Before different push recovery defence strategies were tested, the push detector was tested by applying
a force between 0 - 100N for a duration of between 0 - 1 s. Figure 3.13 shows how the four different force
and duration combinations were successfully detected.

Figure 3.13: Force detector tested with combinations of different forces and durations

Figure 3.14 shows the simulated robot experiencing a transverse force, both with and without the push
recovery in place. In this example, the defence strategy involved stepping in the direction opposing the
force, increasing the transverse step offset and reducing the height of the robot. This strategy was very
effective and dramatically increased the resistance to perturbations of the robot, and prevented it from
falling over.

3.7 Bayesian Optimization

The Bayesian optimization hyper-parameters search was used in an attempt to optimize the parameters
for two different scenarios. In each case, a simulation function, including a task-specific reward function,
was developed. The first case involved walking up uneven terrain, the reward function was dependent
on distance, speed and stability. The second case involved defending against random forces, acting in
all different directions and for different durations. The reward function was dependent on time and
cumulative force magnitudes experienced. An open-source Bayesian Optimization framework was then
used to perform the learning. Unfortunately, due to time constraints, neither of the scenarios were
correctly optimized to completion and required additional training.

26



(a) Push recovery inactive (b) Push recovery active

Figure 3.14: Simulated robot experiencing a transverse force

27



Chapter 4

Discussion

4.1 Gait generation

The gait generation results - in particular, the simulated and supported robot results - suggest that the
controller is able to successfully generate both the walking and trotting gaits using the simple and adapt-
able gait graph method. When these locomotion gaits were implemented on the unsupported physical
robot, it showed significant potential, however, it was unstable and difficult to control. Significant time is
required to perform the sim to real conversion, which can be a tedious parameter-tuning process. With-
out this critical testing time, it is impossible to know whether the instability is caused by incorrectly-tuned
parameters, the hardware or the controller itself.

The addition of tactile sensors on the feet of the robot could radically improve the stability. The current
position controller assumes that all feet make contact with the ground during the transition from swing
to stance phase. However, this is not always the case, as a small roll or pitch angle cause the feet to make
contact before or after the swing to stance phase transition. If contact is made before the transition, the
robot continues the trajectory, which forces it away from the ground and further disturbs the roll/pitch of
the robot. A similar process occurs if contact is made after the transition. Tactile sensors could be used
as a binary switch, indicating a required transition from swing to stance phase, which would improve the
stability.

Another major problem experienced was the lack of friction on the feet of the robot. This cause the
robot to slip, and further prevented elegant locomotion. Various different high-friction materials, such
as bicycle tubing, rubber, and tennis table bat padding were appended in an attempt to increase the
friction. These materials only slightly reduced the slippage. A possible solution could be an integrated
rubber compressible spherical foot.

4.2 Manoeuvrability

A function mapping a translation or rotation to individual footstep vectors was used to maneuver the
robot. Additionally, these translations, rotations and other locomotion parameters could be updated
within gait cycles, resulting in a highly responsive controller. Trajectory discontinuities were eliminated
by implementing a step interpolator. The results suggest that the controller was able to successfully
maneuver the robot in any direction.

Although the simulated robot demonstrated precise control, the physical robot was far more erratic.
Additionally, the physical robot tended to move backwards for sagittal step lengths less than 50mm. In

28



order to solve this, a feed forwards offset of 50 mm was added. This, however, introduced a problem with
the step interpolation when transitioning from stationary to non-stationary gaits. The step interpolator
prevented an instantaneous step length of 50 mm, resulting in the robot moving backward initially before
continuing.

This brought to light an obvious trade-off of the step interpolator between response time and smooth
transitioning. A possible solution would be a variable step interpolator, depending on the desired action
of the robot.

4.3 Yaw controller

The yaw controller consisted of a feed forward term and a feedback controller, and was specially designed
to be used in either autonomous or manual mode (using the Xbox controller). Based on the results, the
yaw controller was successfully able to maintain or achieve a desired position. One problem that remained
was the yaw oscillations. The feedforward term reduced the oscillations, however, the robot continued to
yaw back and forth by about 2 degrees. In order to completely solve this problem, all feet must make
perfectly normal contact with the ground when transitioning from swing to stance phase - this will prevent
the contact forces from generating undesired moments.

4.4 Roll and pitch controller

The roll and pitch controller was designed to maintain the roll and pitch angles of the robot at zero. The
testing showed that the design was successfully implemented, and in most cases it improved the stability
of the robot. The controller worked well on both constant and irregular gradients between 0 and 20
degrees, and on step of heights between 0mm and 200mm. However, maintaining zero roll and pitch on
steeper inclines became very impractical as either the front or the back legs were forced to inoperable
heights. This problem could be solved by using the IMU to detect the gravity vector, pitching the legs
appropriately, such that the body of the robot remained parallel to the slope, while the legs remained
vertical. In doing so, the center of mass would shift, preventing the robot from toppling over. This
solution was attempted, however, further tuning and testing is required.

4.5 Push recovery

Linear accelerations, were used to detect forces applied to the robot. This force detector successfully
detected a range of different forces applied for different durations. A defence strategy - which included
reducing the height of the robot, increasing the transverse step offset and stepping in the direction
opposing the applied force - was then implemented. This strategy significantly improved the resistance to
applied forces and perturbations. Although this strategy was successful in simulation, it was not tested
on the physical robot and could prove to be impractical or ineffective. Many different research groups
have successfully solved this problem using slightly more calculated and complex strategies, such as the
push recovery based on capture points presented in [11]. Thus, in the future, it may be necessary to use
the existing and effective push detector with a different defence strategy.

29



4.6 Bayesian optimization

A Bayesian optimization algorithm was implemented, in an attempt to perform hyper-parameter opti-
mization for various tasks. Although the implementation didn’t necessarily yield successful results, it was
a sound demonstration of the modularity, and proved that this controller can be integrated and used in
machine learning applications.

One major problem was the occasional case in which seemingly good parameters yielded poor results.
This dramatically distorted the optimization function, and disrupted the process. This could be corrected
by running each set of parameters more than once, only using the best outcome. The underlying premise
is that it is possible for good parameters to yield a poor result, however, it is highly unlikely that poor
parameters will yield a good result.

4.7 Overall controller

The controller successfully demonstrated the ability to generate multiple gaits, manoeuvre in all directions,
be autonomously or manually controlled, and - to some extent - was perpetuation resistant. Therefore, it
met the primary aims of the project. The results suggest that the gait generation method, manoeuvrability
and yaw control require little improvement and are suitable to be used as they are, in future work.
However, the other feedback controller methods could require improvement and additional development.
With that said, before any improvements are made, the current controller must be fully tested on the
physical robot - with appropriate parameter tuning time - in order to legitimately identify the successes
and shortcomings of the controller.

30



Chapter 5

Conclusion

A bespoke high-level controller for DogBot - a quadrupedal robot - was designed, implemented and tested.
The controller is capable of generating multiple gaits using a gait graph method and maneuver in all di-
rections. An IMU (inertial measurement unit) was added to the robot, which enabled the development of
various attitude controllers as well as a push detection and recovery method. The controller was success-
fully implemented and tested in simulation, however, the physical robot was unstable and erratic. Due to
a number of minor mechanical failures, the physical robot testing time was limited, making it impossible
to accurately identify the true source of the instability. The modular design of the controller allows for
application and implantation within learning algorithms, this was demonstrated using a Bayesian opti-
mization hype-parameter search. Moving forward, the addition of tactile and other sensors could be used
to further improve the controller. Thus, this controller provides a strong and modular base upon which
further research and development can be conducted.

31



Bibliography

[1] R. Robotics, “Dogbot,” 2018, photograph taken from React Robotics website. [Online]. Available:
https://reactrobotics.com/

[2] M. Raibert, K. Blankespoor, G. Nelson, and R. Playter, “Bigdog, the rough-terrain quadruped
robot,” IFAC Proceedings Volumes; 17th IFAC World Congress, vol. 41, no. 2, pp. 10 822–10 825,
2008. [Online]. Available: http://www.sciencedirect.com/science/article/pii/S1474667016407020

[3] S. Seok, A. Wang, Y. C. Meng, D. Otten, J. Lang, and S. Kim, “Design principles for highly efficient
quadrupeds and implementation on the mit cheetah robot,” 2013, pp. 3307–3312.

[4] C. Semini, G. T. N, E. Guglielmino, M. Focchi, F. Cannella, and G. C. D, “Design of hyq a
hydraulically and electrically actuated quadruped robot,” Proceedings of the Institution of Mechanical
Engineers, Part I: Journal of Systems and Control Engineering, vol. 225, no. 6, pp. 831–849, 2011,
doi: 10.1177/0959651811402275; 31. [Online]. Available: https://doi.org/10.1177/0959651811402275

[5] H. Khan, S. Kitano, M. Frigerio, M. Camurri, V. Barasuol, R. Featherstone, D. G. Caldwell, and
C. Semini, “Development of the lightweight hydraulic quadruped robot minihyq,” 2015, pp. 1–6.

[6] C. Semini, V. Barasuol, J. Goldsmith, M. Frigerio, M. Focchi, Y. Gao, and D. G. Caldwell, “Design of
the hydraulically actuated, torque-controlled quadruped robot hyq2max,” IEEE/ASME Transactions
on Mechatronics, vol. 22, no. 2, pp. 635–646, 2017.

[7] M. Hutter, C. Gehring, M. Bloesch, M. A. Hoepflinger, C. D. Remy, and R. Siegwart, StarlETH:
A compliant quadrupedal robot for fast, efficient, and versatile locomotion, ser. Adaptive Mobile
Robotics. World Scientific, 2012, pp. 483–490.

[8] M. Hutter, C. Gehring, D. Jud, A. Lauber, C. D. Bellicoso, V. Tsounis, J. Hwangbo, K. Bodie,
P. Fankhauser, M. Bloesch, R. Diethelm, S. Bachmann, A. Melzer, and M. Hoepflinger, “Anymal - a
highly mobile and dynamic quadrupedal robot,” 2016, pp. 38–44.

[9] S. Coros, A. Karpathy, B. Jones, L. Reveret, and M. van de Panne, “Locomotion skills for simulated
quadrupeds,” ACM Trans. Graph., vol. 30, no. 4, pp. 59:1–59:12, Jul. 2011. [Online]. Available:
http://doi.acm.org/10.1145/2010324.1964954

[10] Y. Sakakibara, K. Kan, Y. Hosoda, M. Hattori, and M. Fujie, “Foot trajectory for a quadruped
walking machine,” 1990, p. 322 vol.1.

[11] V. Barasuol, J. Buchli, C. Semini, M. Frigerio, E. R. D. Pieri, and D. G. Caldwell, “A reactive
controller framework for quadrupedal locomotion on challenging terrain,” 2013, pp. 2554–2561.

[12] C. Gehring, S. Coros, M. Hutter, M. Bloesch, M. A. Hoepflinger, and R. Siegwart, “Control of
dynamic gaits for a quadrupedal robot,” 2013, pp. 3287–3292.

[13] L. Righetti and A. J. Ijspeert, “Pattern generators with sensory feedback for the control of quadruped
locomotion,” 2008, pp. 819–824.

32

https://reactrobotics.com/
http://www.sciencedirect.com/science/article/pii/S1474667016407020
https://doi.org/10.1177/0959651811402275
http://doi.acm.org/10.1145/2010324.1964954


[14] A. J. Ijspeert, “Central pattern generators for locomotion control in animals and robots: A review,”
Neural Networks; Robotics and Neuroscience, vol. 21, no. 4, pp. 642–653, 2008. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S0893608008000804

[15] C. Semini, V. Barasuol, T. Boaventura, M. Frigerio, M. Focchi, D. G. Caldwell, and J. Buchli,
“Towards versatile legged robots through active impedance control,” The International Journal of
Robotics Research, vol. 34, no. 7, pp. 1003–1020, 2015, doi: 10.1177/0278364915578839; 12. [Online].
Available: https://doi.org/10.1177/0278364915578839

[16] M. Hutter, C. Gehring, M. Bloesch, M. Hoepflinger, and R. Siegwart, “Walking and running with
starleth,” 2013, iD: 189758. [Online]. Available: https://infoscience.epfl.ch/record/189758/files/
Hutter2013AMAM.pdf

[17] M. Hutter, C. Gehring, M. A. Hpflinger, M. Blsch, and R. Siegwart, “Toward combining speed,
efficiency, versatility, and robustness in an autonomous quadruped,” IEEE Transactions on Robotics,
vol. 30, no. 6, pp. 1427–1440, 2014.

[18] J. Liu, J. Pu, and J. Gu, “Central pattern generator based crawl gait control for quadruped robot,”
2016, pp. 956–962.

[19] R. F. Souto, G. A. Borges, and A. R. S. Romariz, “Gait generation for a quadruped robot using
kalman filter as optimizer,” 2009, pp. 1037–1042.

[20] C. Gehring, S. Coros, M. Hutler, C. D. Bellicoso, H. Heijnen, R. Diethelm, M. Bloesch, P. Fankhauser,
J. Hwangbo, M. Hoepflinger, and R. Siegwart, “Practice makes perfect: An optimization-based ap-
proach to controlling agile motions for a quadruped robot,” IEEE Robotics & Automation Magazine,
vol. 23, no. 1, pp. 34–43, 2016.

[21] S. Zhang, H. Ma, Y. Yang, and J. Wang, “The quadruped robot adaptive control in trotting
gait walking on slopes,” in 2nd International Conference on Materials Science, Resource and
Environmental Engineering (MSREE 2017), vol. 1890, Coll. of Mechatron. Eng. Autom., Nat. Univ.
of Defense Technol. Changsha, Changsha, China. USA: AIP - American Institute of Physics, 10/05
2017, p. 020004 (14 pp.), t3: AIP Conf. Proc. (USA); undefined; undefined; undefined; undefined.
[Online]. Available: http://dx.doi.org/10.1063/1.5005182

33

http://www.sciencedirect.com/science/article/pii/S0893608008000804
https://doi.org/10.1177/0278364915578839
https://infoscience.epfl.ch/record/189758/files/Hutter2013AMAM.pdf
https://infoscience.epfl.ch/record/189758/files/Hutter2013AMAM.pdf
http://dx.doi.org/10.1063/1.5005182


Appendices

34



Appendix A

Operational instructions

This section includes the operation instructions for getting the physical robot, as well as the Gazebo model
of the robot up and running. It includes common problems experiences at the various stages solutions
to them. It also includes tips regarding the controller scripts and how to work your way around them.
Please note that the ROS controller developed by React Robotics is designed such that controller scripts,
which publish desired motor positions to the respective topics, work identically on both the physical
robot and the Gazebo simulation. For more information and a detailed set-up guide, please see: React
Robotics DogBot Repository. Please note, Dr. Petar Kormushev has been provided with screen and video
recording of the following processes.

A.1 Getting started with the Gazebo simulation

1. Open up a terminal and navigate to the following directory: ∼/src/RR/DogBot/ROS

2. Run: catkin build

3. Run: source devel/setup.bash

4. Run: roslaunch dogbot gazebo gztest.launch

5. At this point Gazebo with the model of DogBot should be open

6. If Gazebo crashes, close the terminal, wait a minute and go back to step 4.

7. You now need to run a controller script in a new terminal, using a launch file

8. Run: roslaunch dogbot control current controller.launch

9. Have a look at this launch file, it launches a number of nodes including the main controller node,
the xbox controller node, a PID node for the yaw controller and 4 PID nodes (one per leg) for the
roll and pitch controller

10. Make sure the xbox remote control is connected, once it is, you should be able to use it to control
the robot.

11. If you could like to view or edit the main scripts, you can find them in the following directory:
∼/src/RR/DogBot/ROS/src/dogbot control/scripts

35

https://github.com/craftit/DogBotSoftware
https://github.com/craftit/DogBotSoftware


A.2 Getting started with the physical robot

A.2.1 Connecting the batteries of the physical robot

1. Please see: Official DogBot Powering-up and Battery Guide for a detailed description of the powering
up processes. I have provided an exact of their battery connection process below.

2. Switch the breaker to the green position

3. Move the power switch to the horizontal position

4. Ensure the power supply is disconnected

5. Connect the batteries on each side

6. Hold the power switch in the up position for 5 seconds

7. Switch the breaker on (to the red position)

8. Switch the power switch to the down position

9. Make sure that the red E-Stop is deactivated and in the up position.

A.2.2 Homing the motors using the GUI

Before you can control the robot using ROS, you must home the twelve motors using the supplied GUI.
In order to do so, you must first ensure that the robot is completely supported in the air with enough
space to freely move it’s legs in all directions. You can then complete the following steps:

1. Make sure that the ROS dogbot hardware controller is not running, if it is, the following process
with fail and it will take you a long time to figure out why!

2. Connect the physical robot to the communication box using the grey communications cable.

3. Connect the communication box to the computer using the USB cable

4. Open up a terminal and navigate to the following directory: ∼/src/RR/DogBot/API/build

5. If the build directory does not exist, you will need to create it using the Setup Steps Manual.

6. Run ./dogBotServer

7. Open Qt Creator and run DogBotUI

8. Click the connect button

9. Navigate to the Overview tab at the top of the GUI

10. Click the Standby tab at the bottom of the GUI, the status of all items should be green and read
”ok”

11. Click the Power On tab at the bottom of the GUI

12. You will now need to click Home all tab, several times, until all of the motors have been homed.

13. In order to ensure the motors are correctly homed, navigate to the Animation tab at the top of
the GUI and select Run Animation

14. If you experience any problems with any of the aforementioned steps, complete a full power cycle,
disconnect connections where possible and wait about a minute.

36

https://github.com/craftit/DogBotSoftware/blob/master/resources/poweringup.md
https://github.com/craftit/DogBotSoftware/blob/master/README.md


A.2.3 Controlling the physical robot using ROS

Once you have homed the twelve motors and have the DogBot server running you will be able to control
the robot using ROS.

1. Open up a terminal and navigate to the following directory: ∼/src/RR/DogBot/ROS

2. Run: catkin build

3. Run: source devel/setup.bash

4. Run: roslaunch dogbot control dogbot hardware.launch

5. You now need to run a controller script in a new terminal, using a launch file

6. Run: roslaunch dogbot control current controller.launch

37



Appendix B

Additional information

B.1 State estimator

With the future improvement of the controller in mind, a state estimator was developed. The state
estimator uses forward kinematics to calculate the current Cartesian coordinates of each foot relative to
the hip of the respective leg. The state estimator outputs the feet positions in a 3x4 array in the following
way:





FRx BRx FLx BLx
FRy BRy FLy BLy
FRz BRz FLz BLz





This information can be combined with the information from the IMU to predict a number of scenarios.
For example, the height of the four legs could be used to calculate theoretical roll and pitch angles which
could be compared to the roll and pitch angle from the IMU in order to determine whether the robot is
stepping on an object. The state estimator can be found in the following directory:
∼/src/RR/DogBot/ROS/src/dogbot control/scripts/StateEstimator

B.2 Additional flow diagrams

38



Figure B.1: Software implementation of the Step and Rotation Function

39


	Introduction
	Methods
	Individual leg control
	Two-dimensional piecewise cycloid step trajectory
	Three-dimensional trajectory generator and inverse kinematics

	Gait generation
	Rotation and translation step vector mapping
	Yaw feed forward term
	Step interpolation
	Attitude control
	Yaw controller
	Roll and pitch controller

	Push recovery
	Bayesian optimization hyper-parameter search
	Overview of complete controller

	Results
	Gait generation
	Rotation, translation and manoeuvrability
	Step interpolation
	Yaw controller
	Roll and pitch controller
	Push recovery
	Bayesian Optimization

	Discussion
	Gait generation
	Manoeuvrability
	Yaw controller
	Roll and pitch controller
	Push recovery
	Bayesian optimization
	Overall controller

	Conclusion
	Appendices
	Operational instructions
	Getting started with the Gazebo simulation
	Getting started with the physical robot
	Connecting the batteries of the physical robot
	Homing the motors using the GUI
	Controlling the physical robot using ROS


	Additional information
	State estimator
	Additional flow diagrams


