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Preface  
 

 
 

 

The section called “Keep your Redshirt on: A Bayesian Exploration” was originally 

published at 

www.significancemagazine.com 

and “If you Don’t Understand your Statistics, they can Become a Liability” was 

published by StatsLife. Much of the meaning material was originally published by 

the Minitab Blog. What all of the sections have in common is that they were written 

to communicate basic statistical concepts in an easy to understand way. 

Statistics is a serious subject, but that does not mean it always needs to be presented 

in a dry and technical way. This material was writing using simple, and occasionally 

ridicules, examples so that people of various backgrounds can follow them and apply 

the concepts. This material is intended to teach statistical methods using Minitab 

Statistical Software and if you occasionally find reason to laugh while doing so, then 

even better. 

The data sets used can be found at the following link if you would like to follow 

along in Minitab: 

Dataset 

 

https://drive.google.com/file/d/1y6iQPJrUpVe-PvNbF78Ih-eIMRyghnxI/view?usp=sharing


 
 

 

 

 
 

Introduction 
 

 
 

 

Chapter one introduces both Minitab(R) Statistical Software and statistics. Basic 

concepts and the history of statistics are also explained. Charter two explains 

Exploratory Data Analysis and the use of graphs. Chapter three presents hypothesis 

testing and chapter four explains how to perform a regression analysis.  

The fifth chapter describes how to perform a capability study and the seventh chapter 

introduces Statistical Process Control. The next covers Design of Experiments and 

the final chapter is the conclusion. 

There are three appendixes. The first one explains how to build a catapult for Design 

of Experiments and the next one explains how to construct a paper helicopter. The 

final appendix explains how to create random data in Minitab for practicing statistical 

methods using Minitab. 

 





 
 

 

 

 
 

CHAPTER 1 
 

Introduction to Minitab 
and Statistics 

 
 

 

 

This chapter describes the use of statistics as well as a providing a brief history of 

the field. People often make jokes when I tell them of my interest in statistics; these 

people may be failing to appreciate the seriousness of statistics. An improperly 

performed study or misinterpreted result could result in a financial loss when 

defective parts are produced or even loss of life if a dangerous medicine is brought 

on the market. 

Statistical practitioners should understand statistical methods and where these 

methods came from. There are also statistical methods used primarily in industry; 

these include Statistical Process Control and Response Surface Methodology. An 

overview of the many options in Minitab is also provided in this chapter. 

An improperly defined variable of interest or a poorly executed study could lead to 

the wrong conclusion. Therefore, forming an operational definition to properly 

describe the variable of interest is also presented as well as commentary on proper 

data collection for carrying out a statistical study.  

1.1 Statistics: No Laughing Matter 

I told a friend about my interest in statistics, and he immediately told me a joke about 

broiled chicken and statistics. 

The punch line involved my friend getting to eat all the chicken. Unfortunately, I 

forgot the rest of the joke. I can, however, assure you it was a very funny statistics-

related joke. 
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People often make jokes when I mention my interest in statistics, and I don't think 

they make the jokes just because there are so many great statistics-related jokes 

available. There might be some good jokes about statistics, but I only know two and 

can only remember one. 

I also don't think people make jokes about statistics because it is an inherently 

hilarious subject. It can be an interesting subject, but it is seldom a funny subject. 

In fact, the subject can be deadly serious. In public health, statistics can be used to 

identify cancer clusters and to validate the effectiveness of medical test (Greenhalagh 

1997). Failing to identify a cancer cluster or the presence of a disease or disorder in 

an individual could result in a medical problem going untreated. 

There is also the opposite risk—falsely identifying a cancer cluster in a community 

or a disease in an individual. This would mean resources are wasted on healthy 

people, as well as the negative consequences which could result when a healthy 

person is given an incorrect terminal diagnosis. Being falsely diagnosed with 

terminal cancer is more than just statistics; it is a life-changing, personal tragedy for 

the person who was misdiagnosed (Holt 2013). 

For those of us using statistics in manufacturing, the consequences of improper use 

of statistics may not be as severe as in the medical field. It is still a serious subject. 

An improperly performed or simply flawed study could result in a product that angers 

formerly loyal customers, as the Coca-Cola Company learned when they introduced 

New Coke in 1985 (Coca-Cola Company 2012). The correct use of statistics can have 

series consequences for the safety of consumers and a company's financial well-

being if a statistical study fails to identify a serious hazard in a product. There can 

also be financial consequences if a study incorrectly identifies a safety hazard where 

none exists. 

Statistics are used in medical testing to determine both whether or not potential new 

medicines work, and to determine if they have unwanted side effects. Statistics are 

also used to determine if the benefits of some medicines outweigh the risks of using 

them. Here, an incorrect interpretation of statistical data could result in harming 

people with medicine that that was intended to help them. 

The consequences of making a mistake when using statistics in business are not 

always severe; however, they could be. An improperly analyzed Student’s t-test may 

result in an implementing an expensive improvement that actually does not change 

anything about the product. Or it could result in the product unknowingly becoming 

less safe than it was before the improvement was implemented. 

We may not even realize when the consequences of a statistical mistake could be 

severe. 
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For those of us who use statistics, but are not trained statisticians, fortunately there 

are resources available to help us in correctly selecting and applying statistical 

methods. The National Institute of Standards and Technology collaborated with the 

semiconductor industry's SEMATECH to produce a free online statistics handbook 

(NIST/SEMATECH 2017). Statistical practitioners can also attend training by 

universities, professional societies and industry. Practitioners can also attend training 

offered by Minitab. 

To make up for the seriousness of this subject—as well as my inability to remember 

the statistics joke, I mentioned at the start—I'll finish with this classic statistics joke: 

Three statisticians went duck hunting. A duck flew out and the first statistician 

took a shot, the shot went a foot too high. The second statistician took his shot 

and the shot went a foot too low. The third statistician said, "We got it!" 

1.2 A Brief Illustrated History of Statistics for Industry2  

The field of statistics has a long history and many people have made contributions 

over the years. Many contributors to the field were educated as statisticians, such as 

Karl Pearson and his son Egon Pearson. Others were people with problems that 

needed solving, and they developed statistical methods to solve these problems. 

The Standard Normal Distribution One example is Karl Gauss and the standard 

normal distribution, which is a key element in statistics. The distribution was used 

by Gauss to analyze astronomical data in the early nineteenth century and is also 

known as the Gaussian distribution or more simply, the bell curve. 

Any normal distribution can easily be converted into the standard normal distribution 

based on a Z score table. The standard normal distribution is often used when 

comparing the means of either large samples or populations. For example, an 

engineer may perform hypothesis testing using the standard normal distribution to 

compare before-and-after results when attempting to increase the mean of a 

manufacturing process. 

Student's t Distribution The well-known Student’s t distribution was created by a 

Guinness brewery employee named William Sealy Gosset, who published in the 

journal Biometrika under the name Student (Student 1908). Guinness did not permit 

its employees to publish because of fear of the competition learning about what they 

were doing, hence Gosset published under a pseudonym (Salsburg 2001). 

Gosset created Student's t distribution because previous formulas for estimating the 

error of samples required a large sample size and Gosset had found that there were 

often only small samples available. Student’s t distribution is used for small sample 
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sizes and approaches the standard normal distribution as sample size increases (see 

Fig. 1.1). 

 

Figure 1.1: t distribution 

This aspect permitted Gosset to perform experiments with small sample sizes, and 

this distribution is just as useful in industry today as it was when Gosset created it. 

For example, small sample sizes are more economical if a manufacturer wanted to 

perform experiments on expensive products and the experiments required destructive 

testing. 

Shewhart and Control Charts In 1924, Walter A. Shewhart presented the 

management of Western Electric’s Hawthorne plant with his concept of Statistical 

Process Control (SPC). In his 1931 book Economic Control of Quality of 

Manufactured Product, Shewhart explained that eliminating assignable causes of 

variation would lead to a reduced level of inspection and therefore both higher quality 

and lower costs (1980).  

Using control charts such as an Xbar-R chart, a manufacturer can quickly tell when 

a process is at risk of producing defective parts without needing to individually 

inspect every item after production. Control charts can also detect a problem before 

hundreds or thousands of defective parts have been produced (see Fig. 1.2). 
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Figure 1.2: Xbar-R chart 

Design of Experiments Four years after Shewhart published Economic Control of 

Quality of Manufactured Product, Ronald A. Fisher published his classic work The 

Design of Experiments. Fisher explained the proper methodology for performing 

Design of Experiments (DoE) (1971). 

Today, DoE is frequently used in industry for performing experiments and is a key 

part of the Six Sigma quality improvement methodology. One of the great advantages 

of DoE is the ability to reduce the number of experimental runs required to get usable 

results. An experiment performed using DoE can provide the experimenter with 

information on the main effects of varying the levels of the experimental factors, as 

well as the interactions between the factors when the levels are varied (see Fig. 1.3 

and Fig. 1.4). 
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Figure 1.3: Main effects plot 

 

Figure 1.4: Interaction plot 

Fisher’s future son-in-law George E. P. Box, with K. B. Wilson, further advanced 

DoE. They introduced the concept of Response Surface Methodology (RSM) in 1951 

(1951). This variation on DoE is used to determine the relationship between multiple 

factors and one or more output variables in order to determine an optimal response. 

It can be used for process improvement, troubleshooting, and for making a product 

more robust to outside influences. Response surface methods can be used to produce 

both surface and contour plots for analyzing the effects of varying influence factors 

on a product or process (see Fig. 1.5 and Fig. 1.6). 
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Figure 1.5: Surface plot 

 

Figure 1.6: Contour plot 

The Weibull Distribution The Weibull distribution is named for E. H. Waloddi 

Weibull and is frequently used in the field of reliability engineering. Weibull was not 

the first to discover the distribution that bears his name; however, he brought the 

Weibull distribution to prominence when he introduced in to the American Society 

of Mechanical Engineers (ASME) in 1951 (see Fig. 1.7) (O’connor and Kleyner). 
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Figure 1.7: Weibull distribution 

This distribution is used to determine the time-to-failure for parts or systems. The 

Weibull distribution changes shape as parameters change and it can even approach 

the shape of the standard normal distribution.     

The Common Factor in These Methods This brief discussion can't cover all 

statistical methods used in industry, nor all of the discoverers who have contributed 

to statistical methods. There are, however, commonalities amongst the statistical 

methods presented here. These breakthroughs in statistics were not discovered by 

people seeking a breakthrough in statistics; rather, they were found by people who 

had a problem to solve. 

Much of Gauss’ work was done in the field of astronomy, and Gosset was trying to 

brew good beer at a low cost. Shewhart was at an industrial research laboratory, and 

Fisher was made his contributions to experimental design when he was attempting 

to interpret massive quantities of data resulting from years of agricultural 

experimentation. 

Box was a chemist by education, but was confronted with a statistical problem and 

learned statistics because no other statistician was available to help him. In addition 

to publishing his namesake distribution, Weibull frequently published on practical 

engineering-related subjects, such as material strength and material fatigue. 

2.52.01 .51 .00.50.0

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0.0

D
e
n

si
ty

Distribution Plot
Weibull; Shape=2; Scale=1 ; Thresh=0



IMPROVING PRODUCTS, SERVICES AND PROCESSES 

 

 

9 

The field of statistics has progressed over the past two centuries and we can expect 

that it will continue to give us new practical methods to find solutions to real-world 

problems. Statistics is now an essential part of the modern quality engineer’s body 

of knowledge. 

Perhaps somewhere, right now, an engineer facing a problem on the production floor 

is creating yet another new statistical method for solving a real-world problem. 

1.3 Practical Statistical Problem Solving Using Minitab to Explore the Problem 

A problem must be understood before it can be properly addressed. A thorough 

understanding of the problem is critical when performing a root cause analysis 

(RCA) and an RCA is necessary if an organization wants to implement corrective 

actions that truly address the root cause of the problem (Rooney & Heuvel 2004). An 

RCA may also be necessary for process improvement projects; it is necessary to 

understand the cause of the current level performance before attempts are made to 

improve the performance. 

There are many problem solving related statistical tests that can be performed using 

the Minitab Statistical Software Program for exploring a problem in the early stages 

of an investigation. However, the actual test selected should be based upon the type 

of data and what needs to be understood. Figure 1.8 depicts various statistical options 

structured in a cause-and-effects diagram with the main branches based on 

characteristics that describe what the tests and methods are used for.  

 

Figure 1.8: Statistical methods for problem solving 
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The main branch labeled “differences” is split into two high-level sub-branches; 

hypothesis tests that have an assumption of normality and non-parametric tests of 

medians. The hypothesis tests assume data is normally distributed and can be used 

to compare means, variances, or proportions to either a given value or to the value of 

a second sample. An ANOVA can be performed to compare the means of two or 

more samples. The non-parametric tests listed in the cause-and-effect diagram are 

used to compare medians; either to a specified value, or two or more medians, 

depending upon which test is selected. The non-parametric test provide an option 

when data is too skewed to use other options such as a Z test. 

Time may also be of interest when exploring a problem. A time series plot can be 

created to show each value at the time it was produced; this may give insights into 

potential changes in a process. A tend analysis is much like the time series plot; 

however, Minitab tests for potential tends in the data such as increasing or decreasing 

values over time. Exponential smoothing options are available to assign 

exponentially decreasing weights to the values over time when attempting to predict 

future outcomes.  

Relationships can be explored using various types of regression analysis to identify 

potential correlations in the data such as the relationship between the hardness of 

steel and the quenching time of the steel. This can be helpful when attempting to 

identify the factors that influence a process. Another option for understanding 

relationships is Design of Experiments (DoE), where experiments are planed 

specifically to economically explore the effects and interactions between multiple 

factors and a response variable. 

Another main branch is for capability and stability assessments. There are two main 

sub-branches here; one is for measures of process capability and performance and 

the other is for Statistical Process Control (SPC), which can assess the stability of a 

process. The measures of process performance and capability can be useful for 

establishing the baseline performance of a process; this can be helpful in determining 

of process improvement activities have actually improved the process. The SPC sub-

branch is split into three lower-level sub-branches; these are control charts for 

attribute data such as number of defective units, control charts for continues data 

such as diameters, and time-weighted charts that don’t give all values equal weights. 

Control charts can be used for both assessing the current performance of a process 

such as by using an individual’s chart to determine if the process is in a state of 

statistical control, or for monitoring the performance of a process such as after 

improvements have been implemented. 

Exploratory Data Analysis (EDA) can be useful for gaining insights to the problem 

using graphical methods (Tukey 1977). The individual values plot is useful for 
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simply observing the position of each value relative to the other values in a data set. 

For example, a box plot can be helpful when comparing the means, medians and 

spread of data from multiple processes. The purpose of EDA is not to form 

conclusions, but to gain insights that can be helpful in forming tentative hypotheses 

or in deciding which type of statistical test to perform. 

The tests and methods presented here do not cover all available statistical tests and 

methods in Minitab; however, they do provide a large selection of basic options to 

choose from. The tools and methods presented here are helpful when exploring a 

problem, but their use should not be limited to problem exploration. They can also 

be helpful for planning and verifying improvements. For example, an individual 

values plot may indicate one process performs better than a comparable process and 

this can be confirmed using a two sample t test. The settings of the better process can 

be used to plan a DoE to identify the optimal settings for the two processes and the 

improvements can be monitored using an xBar and S chart for the two processes.   

1.4 Operational Definitions: The First Step in a Statistical Analysis 

(Even after the Apocalypse) 

Minitab Statistical Software can assist us in our analysis of data, but we must make 

judgments when selecting the data for an analysis. A good operational definition can 

be invaluable for ensuring the data we collect can be effectively analyzed using 

software. 

Dr. W. Edwards Deming explains in Out of the Crisis (1989), “An operational 

definition of safe, round, reliable, or any other quality must be communicable, with 

the same meaning to vendor as to purchaser, same meaning yesterday and today to 

the production worker.” Deming goes onto to tell us an operational definition 

requires a specific test, a judgment criterion, and a decision criterion to determine if 

something met the criteria. 

The concept of operational definitions crossed my mind when I read Todd 

VanDerWerff’s review of Mad Max: Fury Road at Vox (2015). 

VonDerWerff presented an illustration of the percent of time individual Mad Max 

movies contained a chase scene based on data from the Internet Movie Data Base. I 

have recreated the illustration below as a bar chart using Minitab. 

I first typed the data into a Minitab worksheet as shown in Figure 1.9. 
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Figure 1.9: Minitab worksheet 

I then stacked the data by going to Data > Stack > Columns and selecting columns 

C1-C4 (see Fig. 1.10). Next, I relabeled column C1-T as Film and column C2 as % 

Chase. 

 

Figure 1.10: Minitab worksheet with stacked data 

Then I went to Graph > Bar Chart and selected “Values from a table” and a 

“Simple” bar chart. The graph variables were % Chase and the categorical variable 

was Film. I clicked on the resulting bar chart and then right clicked and selected Add 

> Data labels and selected “Use labels from column” and selected % Chase. The 

resulting bar chart is shown in Figure 1.11. 
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Figure 1.11: Bar chart 

As a connoisseur of the Mad Max series, I was rather shocked to see that Mad Max: 

Fury Road consisted of only 32% chase scenes. I would have estimated 90-95% 

chase scenes! VanDerWreff explains “We're skewing toward the conservative side 

here and only counting scenes where the characters are in the thick of a really 

contentious chase, where either side might prevail.” Obviously, we are using 

different criteria to identify a chase scene. VanDerWreff is close to an operational 

definition; however, “where either side might prevail” could still be open to 

interpretation and therefore, inadequate as an operational definition.  

In Twenty Things you Need to Know (2009), Wheeler lists three questions that can 

serve as a framework for an operational definition: 

1. What do you want to accomplish? 

2. By what method will you accomplish your objective? 

3. How will you know you have accomplished your objective? 

Answering Wheeler’s three questions can help us to define an operational definition 

for chase scenes in the latest Mad Max movie: We want to identify chase scenes in a 

Mad Max: Fury Road. We will use a calibrated stop watch capable of differentiating 

down to 1/100th of a second to identify the start and stop time of a chase where a 

chase is defined as “the time from when a chasing party first appears on screen at a 
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range of 1,800 meters or less away from the chased party and the time will stop at 

the point where the chasing party is seen to be more than 1,800 meters away from 

the chased party or the last scene in which the chasing party appears.” The total chase 

time is to be divided by the total length of the movie and multiplied by 100. The 

objective will be accomplished after the last credit appears on the screen at the end 

of the movie. 

Such a simple operational definition makes it clear what should be considered a chase 

scene. Notices that the operational definition refers to “chased parties” and not 

“chased vehicles”? This operational definition would include foot chases as chase 

time. Without an operational definition, one evaluator may include foot chases while 

another ignores them. 

Tina Turner tells us, “We don’t need another hero” (1985). Perhaps, but what we do 

need is a good operational definition if we want to correctly collect data for a 

statistical analysis. 

1.5 Don't Forget to Look at How You Collect Data (Whether You're 

Hunting Quality or Ghosts)! 

In Jim Frost’s article “How to Be a Ghost Hunter with a Statistical Mindset,” he 

correctly pointed out the difficulties in distinguishing small effects from natural 

variation (2012). However, he did not mention the benefits of doing measurement 

system analysis (MSA) in both ghost hunting as depicted by his example and in the 

statistical study using Minitab. 

In industrial settings, testing equipment is evaluated to determine if the device used 

to assess the factor being studied is taking accurate measurements. In other words, 

are you collecting data that you can trust? 

By doing a statistical study without assessing your measurement tools first, you risk 

using a measuring device that may not be sensitive enough to measure the 

phenomenon under investigation (Barsalou 2015). For example, in industry this 

could mean measuring machined metal blocks with a variation of thousandths of a 

milliliter with calipers that can only measure hundredths of a millimeter. The 

resulting measurements might show the variation due to the calipers, but not the 

variation of the blocks being measured. 

The same principle applies to ghost hunting with electromagnetic field (EMF) 

detectors. Are the EMF results due to a ghost or background EMF readings? As 

ghosts are not known to exist, it would be premature to conclude that they give off 

EMF readings. 
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Just as you’d want to assess the ability of the caliper to measure the metal block, an 

analysis should be performed on EMF detectors. A simple approach would be 

randomly selecting 10 houses not known to be haunted and 10 houses thought to be 

haunted. Naturally, each group of 10 houses should be approximately the same as 

each other in all factors, except that 10 are thought to be haunted. A statistical 

analysis could be performed using Minitab to determine if a statistically significant 

difference exists between EMF readings from suspected haunted houses and those 

from randomly selected houses. 

The experimental conditions of a ghost hunt should also be considered. Ghost 

hunting is often done with “lights out” to increase the sensitivity of the ghost hunter's 

senses. But does it actually increase the sensitivity of the ghost hunter's senses? This 

should be empirically verified before the start of the ghost hunting. People may be 

more sensitive to unusual observations when in the dark in a place thought to be 

haunted. However, a person may just be subconsciously more susceptible to unusual 

observations because they believe they are in a haunted house. 

As part of the measurement system analysis (MSA) often performed in industry, we 

try to ensure that there is no unacceptable operator error in our measurement results 

(Breyfogle 2008). The same principle could be applied to ghost hunting. Potential 

ghost hunters can be sent to investigate the 20 houses used to assess our EMF 

detectors. 

Blinding and randomization should be used to increase accuracy. An experimenter 

should randomly select the order in which the 20 houses would be investigated and 

a second person who is unaware of the status of each house should give the ghost 

hunter the list of addresses and a check list to identify any unusual observations that 

are made in the houses. This ensures the second experimenter does not inadvertently 

give the ghost hunter clues about the status of the houses. The houses should all be 

investigated at the same time of night and in the dark. 

At the end of the study the checklist from the ghost hunters would be analyzed using 

statistical software to determine if a statistically significant difference exists between 

unusual observations made in suspected haunted houses and those in randomly 

selected houses. 

If the results show no difference between unusual observations from known haunted 

houses and randomly selected houses, it could be an indication that the methodology 

for ghost hunting should be revised. The results of EMF detectors in haunted houses 

should also be called into question if the analysis shows no difference in results 

between known haunted houses and randomly selected houses. 
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To sum up, just like as do in industry, ghost hunters should confirm their 

methodology works before gathering their data. Then they can improve their 

methodology if it is not sufficient, or be more open to Frost's null hypothesis: Ghosts 

do not exist. 

 



 
 

 

 

 
 

CHAPTER 2 
 

Exploring Data Graphically 
 

 

 

 

This chapter covers graphical methods and Exploratory Data Analysis, which is used 

to explore a problem or dataset graphically. The first section presents an idea and 

then uses graphs of data to determine if further study is warranted. The concept of 

Star Trek characters in redshirts dying more often is investigated using Bayes 

theorem to determine if they really die more often or if it is because there are more 

of them; along the way, the use of various types of graphs in Minitab is explained.  

Various statistical distributions are presented and explained. In addition to 

introducing the distributions, this chapter also describes how to use Minitab to 

identify the distribution of a data set. Creating a probability plot by hand is also 

explained. The probability plot is used to determine if data follows the normal 

distribution; which is often a requirement for many statistical methods. Assessing the 

normality of data using Minitab is also presented.  

2.1 Exploratory Data Analysis: The First (and Sometimes Last) Step 

A good way to begin researching a topic is with Exploratory Data Analysis (EDA). 

In his 1977 book Exploratory Data Analysis, John Tukey suggested using EDA to 

collect and analyze data—not to confirm a hypothesis, but to form a hypothesis that 

could later be confirmed through other methods (1977). 

In some cases, EDA can even eliminate the need for a more in-depth hypothesis test. 

Here's a case in point.  

When I heard about the new Star Trek movie, I had started to complain to anybody 

who would listen (which was not many people) that director J. J. Abrams had used 

such a young cast in the 2009 Star Trek film. 
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With a tentative hypothesis of “the new Star Trek films use very young actors and 

actresses compared to the older Star Trek series,” I decided to look into this further. 

The first thing I did was collect data to use later in boxplots, which are a part of 

Tukey’s EDA. 

Collecting Data for the Exploratory Analysis I needed to determine the ages at 

which each main Star Trek actor first appeared; however, before I started looking for 

ages, I needed a method to determine whom I should consider as a main character in 

each series. To select the actors to consider I went to www.StarTrek.com (2017) and 

observed which characters were listed for each Star Trek series. This way I avoided 

biasing my results by selecting older or younger crewmembers who may not have 

had as much relevance as others. 

The tables below list the characters and the episode or movie in which they first 

appeared. The name of the actor playing each character is then listed, and their year 

of birth as determined by viewing their entry at the Internet Movie Database (2017). 

To determine the person’s age, the date of birth was subtracted from the year of first 

appearance. This resulted in rough calculations which could be wrong by a year, 

because month of birth and month of first appearance were not considered. The 

results are shown in Tables 2.1 through 2.6. 

Name Character First 

Appeared 

in 

Birth 

Year 

1st 

Appearance 

Age 

+/- 1 

year 

William 

Shatner 

James T. Kirk The Man 

Trap 

1931 1966 35 

Leonard 

Nimoy 

Spock The Man 

Trap 

1931 1966 35 

DeForest 

Kelley 

Leonard 

“Bones” 

McCoy 

The Man 

Trap 

1920 1966 46 

James 

Doohan 

Montgomery 

“Scotty” Scott 

The Man 

Trap 

1920 1966 46 

George 

Takei 

Sulu The Man 

Trap 

1937 1966 29 

Nichelle 

Nichols 

Uhura The Man 

Trap 

1932 1966 34 
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Walter 

Koenig 

Pavel 

Andreievich 

Checkov 

Amok Time 1936 1967 31 

Table 2.1: Star Trek: The Original Series 

Name Character First 

appeared in 

Birth 

Year 

1st 

Appearance 

Age 

+/- 1 

year 

Patrick 

Stewart 

Jean-Luc 

Picard 

Encounter at 

Farpoint 

1940 1987 47 

Jonathan 

Frakes 

Will Riker Encounter at 

Farpoint 

1952 1987 35 

Brent Spiner Data Encounter at 

Farpoint 

1949 1987 38 

Levar Burton Geordi La 

Forge 

Encounter at 

Farpoint 

1957 1987 30 

Michael Dorn Worf Encounter at 

Farpoint 

1952 1987 35 

Marina Sirtits Deana Troi Encounter at 

Farpoint 

1955 1987 32 

Gates 

McFadden 

Beverly 

Crusher 

Encounter at 

Farpoint 

1949 1987 38 

Wil Wheaton Wesley 

Crusher 

Encounter at 

Farpoint 

1972 1987 15 

Table 2.2: Star Trek: The Next Generation 

Name Character First 

appeared 

in 

Birth 

Year 

1st 

Appearance 

Age 

+/- 1 

year 

Avery Brooks Benjamin 

Sisko 

Emissary 1948 1993 45 

Nan Visitor Kira Nerys Emissary 1957 1993 36 

Rene 

Auberjonois 

Odo Emissary 1940 1993 53 

Alexander 

Siddig 

Julian Bashir Emissary 1965 1993 28 

Colm Meany Miles 

O’Brien 

Emissary 1953 1993 40 

Terry Farrell Jadzia Dax Emissary 1963 1993 30 
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Armin 

Shimerman 

Quark Emissary 1949 1993 44 

Cirroc Lofton Jake Sisko Emissary 1978 1993 15 

Michael Dorn Worf The Way of 

the Warrior 

1952 1995 46 

Nicole de 

Boer 

Ezri Dax Image in 

the Sand 

1970 1998 28 

Table 2.3: Star Trek: Deep Space Nine 

Name Character First 

appeared in 

Birth 

Year 

1st Appearance Age 

+/- 1 

year 

Kate 

Mulgrew 

Kathryn 

Janeway 

Caretaker 1955 1995 40 

Robert 

Beltran 

Chakotay Caretaker 1953 1995 42 

Tim Russ Tuvok Caretaker 1956 1995 39 

Robert 

Duncan 

McNeill 

Tom Paris Caretaker 1964 1995 31 

Roxann 

Dawson 

B’Elanna 

Torres 

Caretaker 1958 1995 37 

Garrett 

Wang 

Harry Kim Caretaker 1968 1995 27 

Robert 

Picardo 

The Doctor Caretaker 1953 1995 42 

Ethan 

Phillips 

Neelix Caretaker 1955 1995 40 

Jennifer 

Lien 

Kes Caretaker 1974 1995 21 

Jerry Ryan Seven of Nine Scorpion: 

Part 2 

1968 1997 29 

Table 2.4: Star Trek: Voyager 

Name Character First 

appeared 

in 

Birth 

Year 

1st 

Appearance 

Age 

+/- 1 

year 

Scott Bakula Jonathan 

Archer 

Broken 

Bow: Part 1 

1954 2001 47 



IMPROVING PRODUCTS, SERVICES AND PROCESSES 

 

 

21 

Jolene Blalock T’pol Broken 

Bow: Part 1 

1975 2001 26 

Connor 

Trinneer 

Charles 

“Trip” Tucker 

III 

Broken 

Bow: Part 1 

1969 2001 32 

Dominic 

Keating 

Malcom Reed Broken 

Bow: Part 1 

1962 2001 39 

John 

Billingsley 

Phlox Broken 

Bow: Part 1 

1960 2001 41 

Linda Park Hoshi Sato Broken 

Bow: Part 1 

1978 2001 23 

Anthony 

Montgomery 

Travis 

Mayweather 

Broken 

Bow: Part 1 

1971 2001 30 

Table 2.5: Star Trek: Enterprise 

Name Character First 

appeared in 

Birth 

Year 

1st Appearance Age 

+/- 1 

year 

Chris Pine James T. kirk Star Trek 

(2009) 

1980 2009 29 

Zachary 

Quinto 

Spock Star Trek 

(2009) 

1977 2009 32 

Karl 

Urban 

Leonard 

“Bones” 

McCoy 

Star Trek 

(2009) 

1972 2009 37 

Zoe 

Saldana 

Nyota Uhura Star Trek 

(2009) 

1978 2009 31 

Simon 

Pegg 

Montgomery 

“Scotty” Scott 

Star Trek 

(2009) 

1970 2009 39 

John Cho Hukaru Sulu Star Trek 

(2009) 

1972 2009 37 

Anton 

Yelchin 

Pavel 

Andreievich 

Checkov 

Star Trek 

(2009) 

1989 2009 20 

Table 2.6: Star Trek (2009) 

I then took the data from tables 1-6 and made Table 2.7, which I coped into Minitab. 
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Star 

Trek:  

TOS 

Star 

Trek:  

TNG 

Star 

Trek:  

DS9 

Star Trek:  

Voyager 

Star Trek:  

Enterprise 

Star Trek  

(2009) 

35 47 45 40 47 29 

35 35 36 42 26 32 

46 38 53 39 32 37 

46 30 28 31 39 31 

29 35 40 37 41 39 

34 32 30 27 23 37 

31 38 44 42 30 20 

  

  

  

15 15 40   

  

  

  

  

  

  

  

46 21 

28 29 
 

Table 2.7: Age and series/film of first appearance 

EDA: Interpreting the Data with a Boxplot Simply looking at the results in tables 

1 through 6 led to me suspect my hypothesis may have been incorrect, but I still 

proceeded to create a Minitab boxplot with the data. I created a box plot by going to 

Graph > Boxplot and selecting Multiple Y’s Simple. I entered the columns 

containing the data then right-clicked on the resulting boxplot. I selected Add > Data 

display and then placed a checkmark next to “Mean symbol” so I could observe the 

means. The resulting boxplot is shown in Fig. 2.1. 

 

Figure 2.1: Boxplots 
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The boxplot depicts the ages of the actors and actresses in each Star Trek series as 

well as in the 2009 reboot. The rectangular boxes represent the middle 50% of each 

data set and the vertical lines on top of the rectangular boxes represent the upper 25% 

of the data. The vertical lines on the bottom of the rectangular boxes represent the 

lower 25% of the data—except in the case of outliers. Outliers are unusually large or 

small observations and are represented by an asterisk. There is only one outlier in 

this boxplot, and that is Will Wheaton as Wesley Crusher in Star Trek: TNG. 

The symbol that looks like a plus sign inside of a small circle is used to represent the 

average of the data set. The average age of actors and actresses in the 2009 reboot is 

33.57 years, and this is just slightly lower than Star Trek: TNG, which had an average 

of 33.75 years of age. The highest average age was for Star Trek: TOS with an 

average of 36.57. 

What truly stands out is that the highest value of every boxplot is higher than the 

highest value of the 2009 reboot. The mean of the 2009 film seems to be lower than 

any of the others, but I would need to perform a hypothesis test to determine if it is 

statistically significant. Lower ages in the reboot would make sense as it would not 

be plausible to use actors or actresses in their 50s or 60s to portray people who are 

still attending Star Fleet Academy. 

The hypothesis that originally started this was “the new Star Trek films use very 

young actors and actresses compared to the older Star Trek series,” and a look at the 

boxplots in Figure one show that this may be the case, but it is unclear so I should 

proceed on to confirmation testing to look into this further. So far, I don’t owe 

director J. J. Abrams an apology. 

Exploratory Data Analysis Raises New Questions Even a hypothesis that was 

discarded after performing EDA can lead to the...um...next generation of hypotheses, 

and new insights. For example, my new hypothesis could be, “The actors and 

actresses in Star Trek are not getting younger; I am getting older.” The new 

hypothesis could also be explored with EDA prior to moving on to more robust 

methods. However, in such a case, I would not investigate my new hypothesis. I 

would rather just change the subject. 

In the actual example I would move onto an ANOVA to determine if one or more 

means differs from the others.  

2.2 Keep your Redshirt on: A Bayesian Exploration 

The idea of red-shirted characters being frequently killed in Star Trek: The Original 

Series has become a pop culture cliché. But is wearing a redshirt in Star Trek as 

hazardous as it is thought to be? To find out, casualty figures for the Starship 



PRACTICAL STATISTICAL METHODS FOR QUALITY 

 

 

24 

Enterprise were compiled using the casualty list provided by Memory Alpha (2017) 

(see Table 2.8). 

Uniform 

Color 

Color's 

Meaning 

Casualties Comments on the Data 

Blue Science and 

medical 

7  

Gold Command and 

helm 

9 Includes Lee Kelso and 

Gary Mitchell who wore the 

old style chartreuse 

command and helm uniform. 

Also includes O’Neil, whose 

uniform was not listed, but 

can be observed in the 

episode The Galileo Seven. 

Red Operations, 

engineering and 

security 

24  

Unknown n/a 15 Includes nine killed by the 

galactic barrier in Where no 

Man has Gone Before, three 

Rigelian fever victims from 

Requiem for Methuselah, 

and one unknown casualty 

of the dikironium cloud 

creature in Obsession. Also 

includes Sam and Barnhart 

who were not in standard 

uniforms when they died. 

Table 2.8: Enterprise NCC 1701 casualties from episodes aired between 

September 8, 1966 and June 03, 1969 based on casualty figures from Memory 

Alpha.  

Note: Table does not contain casualties from the Mirror Universe or anybody killed 

and resurrected during an episode 

A pie chart was created using Minitab to graphically view the data. It is obvious from 

the pie chart in Figure 1 that redshirts suffer most of the casualties. However, raw 

casualty figures are not very informative without knowing how many people were in 

each uniform. According to the a set of Enterprise blueprints endorsed by Paramount 

Pictures, the Enterprise’s 430 crew members consisted of 55 command and helm 

personnel, 136 science and medical personnel and 239 engineering, operations and 
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security personnel (Franz Joseph Designs 1975). This means 16.4% of casualties 

were in command and helm, 5.4% were in science and medical and 10.0% were in 

operations, engineering and security. Of the remaining 27.3% of casualties, 12 were 

killed by contact with the galactic barrier or Rigelian fever, which could have 

affected personnel regardless of duty assignments (see Table 2.9). 

 

Uniform 

Color Casualties 

Total 

Population 

Casualties as Percent of 

Population 

Blue 7 136 5.1 

Gold 9 55 13.4 

Red 24 239 10 

Unknown 15 n/a n/a 

Total 55 430 12.8 

Table 2.9: Enterprise NCC 1701 casualties by uniform color.  

Note: There were 18 security department casualties out of the total of 24 redshirt 

casualties. This means the security department with 90 people lost 20% of its 

members 

Go to Graph > Pie Chart and select “Chart values from a table.” Use Uniform Color 

as the “Categorical variable” and Casualties as the “Summary variable.” Right click 

on the resulting pie chart (see Fig. 2.2) and select Add > Slice Labels. Place a 

checkmark next to “Category name” and “Frequency.” 

 

Figure 2.2: Casualties by Uniform Color 
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Go to Graph > Bar Chart and select “Values from a table” and One column of 

values > Simple. Enter Casualties and Total Population as the “Graph variables” and 

Uniform Color as the “Categorical variable.” Click on “Chart options” and select 

“Increasing Y” and “Show Y as percent” and click OK one time. Then click on 

“Multiple Graphs” and select “In separate panels of the same graph.” The resulting 

graph is depicted in Figure 2.3. 

 

Figure 2.3: Chart of Casualties and Populations 

Go to Graph > Bar Chart and select Values from a table < Simple and then select 

Casualties as % of Population with Uniform Color as the “Categorical variable.” 

Click on “Chart Options” and select “Increasing Y” and Show Y as Percent. Click 

on “Labels,” “Data Labels,” and select “Use y-value labels.” The result is shown in 

Figure 2.4. 
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Figure 2.4: Chart of Casualties as a Percentage of Each department 

Based on an analysis of casualties that considers the overall total number of personnel 

in each color of uniform, wearing a redshirt may not be the automatic death sentence 

that it is popularly considered to be. On the other hand, 18 of the redshirt casualties 

were security personnel out of a total population of 90; 20% of the security 

department were casualties. Although wearing a redshirt may not of itself be 

particularly hazardous, personnel in a redshirt who are members of the security 

department should expect to pay a high premium on their life insurance. 

Using what is known about Enterprise crew and casualty figures, suppose an 

Enterprise crew member has been killed. Discarding the 15 unknown casualties, 

redshirts consist of 60.0% of all fatalities where the uniform color is known; blue and 

gold uniforms are the remaining 40.0% of casualties. Redshirts are only 52.0% of the 

entire crew, but 60.0% of casualties, so what is the probability that the latest casualty 

was wearing a redshirt? The Enterprise often visits Starbases and takes on new crew 

members, so we assume sampling with replacement. Otherwise, the population size 

would change every time a crew member is killed. 

Bayes’ theorem, also known as Bayes’ rule, can be used to solve this. Bayes’ theorem 

solves for P(A|B), where P(A|B) is the probability of A given the B has happened 

(Larson and Marx 1990). In this situation, that would be the probability that 

somebody is wearing a red shirt (A) if they are a casualty (B). 
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The formula is set up using what is known about the crew composition and the known 

casualty figures. 

P(A)= Percent of redshirts in crew = 52.0% 

P(~A) = Percent of crew that don’t wear a redshirt = 48.0% 

P(B|~A) = Casualties not in a redshirt = 40.0% 

P(B|A)= Redshirt casualties = 60.0% 

The percentages are then converted into probabilities using decimal notation and 

plugged into the formula: 

 

There is a 61.9% chance that any given casualty is wearing a redshirt. This really 

does not help the insurance premiums of operations, engineering and security 

personnel. Three departments wear redshirts so it may be worthwhile to take a deeper 

look at the data to determine if a wearing a redshirt is as hazardous as it appears to 

be. According to table 2, the security department suffered 18 out of the 24 red shirt 

deaths. What does Bayes’ theorem say about this? 

Suppose a crew member finds a casualty with a redshirt. This may or may not be a 

member of security. Redshirts in security are 75.0% of all redshirt casualties and 

other redshirts are only 25%. However, security is only 37.7% of all people in a 

redshirt. How likely is the casualty to be a member of security? 

P(A) = Percentage of redshirts in security = 37.7% 

P(~A) = Redshirts that are not in security= 62.3% 

P(B|~A) = Redshirt casualties not in security = 25.0% 

P(B|A)= Redshirts casualties in security = 75.0% 

The probabilities are then entered into the formula: 

 

There is a 64.5% chance that any given casualty in a redshirt is a member of security. 

We can also conclude there is only a 35.5% chance that any casualty in a redshirt is 

not a member of security. This is in spite of security being only 37.7% of the entire 

population of redshirts. So what does this mean for red-shirted crew members not in 
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security? Remember, security, operations and engineering wear redshirts. The 15 

unknown crew members are not included in this calculation. 

P(A) = Percentage of crew members in operations and engineering (redshirt, but not 

in security) = 34.7% 

P(~A) = Percentage of crew members not in operations or engineering = 65.3% 

P(B|~A) = Casualties not in operations and engineering = 85.0% 

P(B|A)= Casualties in operation and engineering = 15.0% 

The probabilities are plugged into the formula: 

 

In spite of wearing a redshirt, there is only an 8.6% chance of a member of the 

operations or engineering departments becoming a casualty. These personnel should 

ensure that their life insurance plans are based on their departments and not their 

uniform color. 

Although Enterprise crew members in redshirts suffer many more casualties than 

crew members in other uniforms, they suffer fewer casualties than crew members in 

gold uniforms when the entire population size is considered. Only 10% of the entire 

redshirt population was lost during the three year run of Star Trek. This is less than 

the 13.4% of goldshirts, but more than the 5.1% of blueshirts. What is truly hazardous 

is not wearing a redshirt, but being a member of the security department. The red-

shirted members of security were only 20.9% of the entire crew, but there is a 61.9% 

chance that the next casualty is in a redshirt and 64.5% chance this red-shirted victim 

is a member of the security department. The remaining redshirts, operations and 

engineering make up the largest single population, but only have an 8.6% chance of 

being a casualty. 

Red uniform shirts are safe, as long as the wearer is not in the security department. 

2.3 A Field Guide to Statistical Distributions 

The old saying “if it walks like a duck, quacks like a duck and looks like a duck, then 

it must be a duck” may be appropriate in bird watching; however, the same idea can’t 

be applied when observing a statistical distribution. The dedicated ornithologist is 

often armed with binoculars and a field guide to the local birds and this should be 

sufficient. A statologist (I just made the word up, feel free to use it) on the other hand, 

is ill-equipped for the visual identification of his or her targets. 
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Normal, Student's t, Chi-Square, and F Distributions Notice the upper two 

distributions in figure 1. The normal distribution and student’s t distribution may 

appear similar. However, the standard normal distribution is calculated using n and 

student’s t distribution is calculated using n-1. This may appear to be a minor 

difference, but when n is small, student’s t distribution displays much more 

peakedness. Student’s t distribution approaches the normal distribution as the sample 

size increases, but it never truly matches the shape of the normal distribution 

(Freedman, Pisani, and Purves 1978). 

Observe the Chi-square and F distribution in the lower half of Figure 2.5. The shapes 

of the distributions can vary and even the most astute observer will not be able to 

differentiate between them by eye. Many distributions can be sneaky like that. It is a 

part of their nature that we must accept as we can’t change it. 

 
Figure 2.5: Normal, Student's t, Chi-Square, and F Distributions 

 

Binomial, Hypergeometric, Poisson, and Laplace Distributions Notice the 

distributions illustrated in Figure 2.6. A bird watcher may suddenly encounter four 

birds sitting in a tree; a quick check of a reference book may help to determine that 

they are all of a different species. The same can’t always be said for statistical 

distributions. Observe the binomial distribution, hypergeometric distribution and 

Poisson distribution; we can’t even be sure the three are not the same distribution! If 

they are together with a Laplace distribution, an observer may conclude “one of these 

does not appear to be the same as the others.” But they are all different, which our 

eyes alone may fail to tell us. 
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Figure 2.6: Binomial, Hypergeometric, Poisson, and Laplace Distributions 

 

Weibull, Cauchy, Loglogistic, and Logistic Distributions Suppose we observe the 

four distributions in Figure 2.7. What are they? Could you tell if they were not 

labeled? We must identify them correctly before we can do anything with them. One 

is a Weibull distribution, but all four could conceivably be various Weibull 

distributions. The shape of the Weibull distribution varies based upon the shape 

parameter (κ) and scale parameter (λ) (O’Connor and Kleyner 2012). The Weibull 

distribution is a useful, but potentially devious distribution that can be much like the 

double-barred finch, which may be mistaken for an owl upon first glance. 

 

Figure 2.7: Weibull, Cauchy, Loglogistic, and Logistic Distributions 
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Attempting to visually identify a statistical distribution can be very risky. Many 

distributions such as the Chi-Square and F distribution change shape drastically 

based on the number of degrees of freedom (Meek, Taylor, Dunning, and Klafehn 

1987). Figure 2.8 shows various shapes for the Chi-Square, F distribution and the 

Weibull distribution. Figure 2.8 also compares a standard normal distribution with a 

standard deviation of one to a t distribution with 27 degrees of freedom; notices how 

the shapes overlap to the point where it is no longer possible to tell the two 

distributions apart. 

 

Figure 2.8: Examples of distributions changing shape 

 

Although there is no definitive Field Guide to Statistical Distributions to guide us, 

there are formulas available to correctly identify statistical distributions. We can also 

use statistical software to identify our distribution. This example uses the data in 

Table 2.10. 

Data 

5.48 

8.42 

8.59 

7.13 

9.4 

4.8 
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8.27 

3.3 

5.63 

3.28 

2.71 

9.96 

14.28 

6.78 

6.68 

1.23 

11.4 

4.05 

9.37 

9.76 

2.7 

5.41 

8.7 

7.97 

8.95 

Table 2.10: Data 

Go to Stat > Quality Tools > Individual Distribution Identification and enter the 

column containing the data and the subgroup size; use subgroup size 1 if the data 

was not collected in subgroups. The results can be observed in either the session 

window (see Fig. 2.9) or the graphical outputs shown in Figures 2.10 through 2.13 

were we would reject the distributions with low p-scores. In this case, we can 

conclude we are observing a Normal distribution based on the p value of 0.595. 
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Figure 2.9: Minitab session window for individual distribution identification 
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Figure 2.10: Probability plot of Normal, transformed, lognormal, and 3-

parameter lognormal distributions 

 

Figure 2.11: Exponential, 2-parameter exponential, Weibull, and 3-parameter 

Weibull distributions 
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Figure 2.12: Smallest extreme value, largest extreme values, Gama, and 3-

parameter Gama distributions 

 

Figure 2.13: Logistic, loglogistic, and 3-parameter loglogistic distributions 
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2.4 Pencils and Plots: Assessing the Normality of Data 

Many statistical tests assume the data being tested came from a normal distribution. 

Violating the assumption of normality can result in incorrect conclusions. For 

example, a Z test may indicate a new process is more efficient than an older process 

when this is not true. This could result in a capital investment for equipment that 

actually results in higher costs in the long run. 

Capability studies require either normally distributed data or a transformation must 

be performed on the data (Borror 2009). It would be very risky to accept a capability 

value with data that violated the assumption of normality. 

What can we do if the assumption of normality is critical to so many statistical 

methods? We can construct a probability plot to test this assumption. 

Those of us who are a bit old-fashioned can construct a probability plot by hand, by 

plotting the order values (j) against the observed cumulative frequency (j- 0.5/n) 

(Montgomery, Runger, and Hubele 2001). Using the numbers 16, 21, 20, 19, 18 and 

15, we would construct a normal probability plot by first creating the table shown 

below in Table 2.11. 

j Xj (j – 0.5)/6 

1 15 0.158 

2 16 0.325 

3 18 0.492 

4 19 0.658 

5 20 0.825 

6 21 0.992 

Table 2.11: Probability plot data 

We then plot the results as shown in the Figure 2.14. 
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Figure 2.14: Probability plot 

That's fine for a small data set, but nobody wants to plot hundreds or thousands of 

data points by hand. Fortunately, we can also use Minitab Statistical Software to 

assess the normality of data. Minitab uses the Anderson-Darling test, which 

compares the actual distribution to a theoretical normal distribution. Anderson-

Darling test’s null hypothesis is “The distribution is normal.” 

Anderson-Darling test: 

H0: The data follow a normal distribution. 

Ha: The data don’t follow a normal distribution. 

Test statistic: A2 = - N – S, where 
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and F is the cumulative distribution function of the specified distribution. We can 

assess the results by looking at the resulting p value. 

Figure 2.15 shows a normal distribution with a sample size of 27. The same data is 

shown in a histogram, probability plot, dot plot and a box blot. 

 

Figure 2.15: Comparison of 27 normally distributed data in a histogram, 

probability plot, and a dotplot 

Figure 2.16 shows a normal distribution with sample a size of 208. Notice how the 

data is concentrated in the center of the histogram, probability plot, dot plot, and box 

plot. 
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Figure 2.16: Comparison of 208 normally distributed data in a histogram, 

probability plot, and a dotplot 

A Laplace distribution with a sample size of 208 is shown in Figure 2.17. Visually, 

this data almost resembles a normal distribution; however, the Minitab generated P 

value of < 0.05 tells us that this distribution is not normally distributed.  

 

Figure 2.17: Comparison of 208 non-normally distributed data in a histogram, 

probability plot, and a dotplot 
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Figure 2.18 below shows a uniform distribution with a sample size of 270. Even 

without looking at the P value we can quickly see that the data is not normally 

distributed. 

 

Figure 2.18: Comparison of 270 non-normally distributed data in a histogram, 

probability plot, and a dotplot 

Back in the days of hand-drawn probability plots, the “fat pencil test” was often used 

to evaluate normality. The data was plotted and the distribution was considered 

normal if all of the data points could be covered by a thick pencil ah shown in Figure 

2.19 and 2.20. The fat pencil test was quick and easy. Unfortunately, it is not as 

accurate as the Anderson-Darling test and is not a substitution for an actual test. 
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Figure 2.19: Fat pencil test with normally distributed data 

 

Figure 2.20: Fat pencil test with non-normally distributed data 
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The proper identification of a statistical distribution is critical for properly 

performing many types of hypothesis tests or for control charting as some methods 

require data to be normally distributed. Fortunately, we can now asses our data 

without having to rely on hand-drawn tests and a large diameter pencil. 

To test for normality using the data in Table 2.12 to create a probability plot, go to 

the Graph > Probability Plot click on “Single.” Then, enter the column containing 

the data. Minitab will generate a probability plot of your data as shown in Figure 

2.21. Notice the P-value is 0.719. We would fail to reject the null hypothesis that the 

distribution of our data is equal to a normal distribution when we use a P-value of 

0.05. 

Data 

26.93 

25.18 

26.62 

25.95 

27.05 

26.01 

25.17 

27.46 

26.21 

25.93 

28.09 

26.08 

25.74 

27.28 

25.08 

26.14 

25.78 

24.84 

26.6 

27.08 

Table 2.12: Data for a probability plot, histogram, and dotplot 
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Figure 2.21: Probability plot 

To create a histogram, go to Graph > Histogram and select “Simple” and select the 

column contain the data. The resulting histogram is shown in Figure 2.22. 

 

Figure 2.22: Histogram 
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To create a dotplot, go to Graph > Dotplot and Select One Y > Simple and then 

enter the data and Minitab creates the dotplot depicted in Figure 2.23. 

 

Figure 2.23: Dotplot 

Previous examples have shown histograms probability plots, and dotplots combined 

into one graph. This can easily be done by clicking on any graph and then going to 

Editor > Layout Tool and selecting the desired graphs. Previous example used graphs 

in one column and that can be achieved by changing the number of rows and 

columns. The default version is shown below in Figure 2.24. 
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Figure 2.24: Graphs form the layout tool 

Data can be tested for normality using a pencil and paper, but using Minitab to test 

data for normality is far more reliable than a fat pencil test and generally quicker and 

easier in addition to offering many ways to graphically depict the data. However, the 

fat pencil test may still be a viable option if you absolutely must analyze your data 

during a power outage. 
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CHAPTER 3 
 

Hypothesis Testing 
 

 

 

 

Chapter three begins with a discussion of hypothesis testing and P-values. Often, a 

P-value of 0.05 is used in hypothesis testing; however, the risk of an incorrect result 

increases as multiple tests are performed. The chapter then describes performing a 

two sample t-test using Minitab to test the means of two samples. The example also 

demonstrates creating an individual value plots and boxplots for simultaneously 

displaying multiple data sets. 

Performing a two proportion test is also described. Here, an example based on a 

famous historical study is used to explain how to plan a statistical study and how to 

perform the actual test using Minitab. The concept of the gamblers fallacy is used to 

illustrate a test of two proportions. An unrealistic hypothetical example is then used 

to show a situation comparable to real-world industrial situations in which multiple 

statistical methods are required and statistics alone can’t give the right answer; the 

person performing the study must make decisions. Another hypothetical example is 

then used to show how to perform an ANOVA to test multiple means. 

3.1 Hypothesis Testing and P Values 

Programs such as the Minitab Statistical Software make hypothesis testing easier; 

but no program can think for the experimenter. Anybody performing a statistical 

hypothesis test must understand what p values mean in regards to their statistical 

results as well as potential limitations of statistical hypothesis testing. 

A p value of 0.05 is frequently used during statistical hypothesis testing. This p value 

indicates that if there is no effect (or if the null hypothesis is true), you’d obtain the 

observed difference or more in 5% of studies due to random sampling error. 
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However, performing multiple hypothesis tests with p > 0.05 increases the chance of 

a false positive. 

This is well illustrated by the online comic XKCD, which depicted somebody stating 

that jelly beans cause acne (see Figure 3.1) (XKCD 2017). 
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Figure 3.1: p-values comic. xkcd.com comic from http://xkcd.com/882/ used 

under Creative Commons Attribution- NonCommercial 2.5 License. 

http://xkcd.com/license.html 
 

Scientists investigated and found no link, so the person made the claim that it is only 

a certain color jelly bean that caused acne. The scientists then test 20 different colors 

of jelly beans with p > 0.05. Only the green jelly bean had a p value less than 0.05. 

The comic ends with a newspaper reporting a link between green jelly beans and 

acne. The newspaper points out there is 95% confidence with only a 5% chance of 

coincidence. What is wrong with the conclusion? 

We can determine the chance that there will be no false conclusions by using the 

binomial formula. 

 

This means that we have a 35.8% chance of performing 20 hypothesis tests without 

getting a false positive (or, as statisticians refer to it, the family error rate) when using 

an alpha level of 0.05. We can also calculate the probability that we have at least one 

incorrect result due to random chance. 
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The chance that at least one result will be a false positive when performing 20 

hypothesis tests using an alpha level of 0.05 is 64.2%. 

So the press release in the XKCD comic may have been a bit premature. 

Suppose I had 14 samples with a mean of 87.2 and I wanted to know if the mean is 

actually 85.2. The data is shown in Table 3.1. 

Data 

81.11 

91.46 

86.87 

86.6 

89.19 

89.59 

84.67 

86.71 

83.97 

90.59 

88.4 

88.71 

85.19 

83.7 

Table 3.1: Data 

I performed a One-Sample T-test using Minitab by going to Stat > Basic 

Statistics  >  1 Sample t and I entered the summarized data. I checked the “Perform 

hypothesis test box” and then selected “Options” and used the default confidence 

level of 95.0. This corresponds to an alpha of 0.05. The resulting session window is 

shown in Figure 3.2. 
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Figure 3.2: Minitab session window for a One-Sample T-Test 

I performed the test and the resulting p value was 0.049, which is close to but still 

below 0.05, so I can reject my null hypothesis. If I performed the test repeatedly, as 

in the XKCD example, I might have failed to reject the null hypothesis, because the 

5% probability adds up with additional tests. 

There are alternatives to statistical hypothesis testing (Ziliak and McCloskey 2012); 

for example, Bayesian inference could be used in place of hypothesis testing with p 

values. But alternative methods have their own weaknesses, and they may be difficult 

for non-statisticians to use. 

Instead of avoiding the use of hypothesis testing, we should account for its 

limitations. For example, by realizing that each repeat of the test increases the chance 

of a false positive, as illustrated by XKCD's jelly bean example. 

We can’t simply retest over and over using the same p value and then conclude that 

we have results with statistical significance. For situations such as in the XKCD 

example, Simons, Nelson and Simonsohn recommend disclosing the total number of 

tests that were performed (2011). Had we known that 20 tests had been performed 

with p > 0.05 we could realize that we may not need to avoid green jellybeans after 

all. 
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3.2 A Minitab Holiday Tale: Featuring the Two Sample t-Test 

Aaron and Billy are two very competitive—and not always well-behaved—eight-

year-old twin brothers. They constantly strive to outdo each other, no matter what 

the subject. If the boys are given a piece of pie for dessert, they each automatically 

want to make sure that their own piece of pie is bigger than the other’s piece of pie. 

This causes much exasperation, aggravation and annoyance for their parents. 

Especially when it happens in a restaurant (although the restaurant situation has 

improved, since they have been asked not to return to most local restaurants). 

Sending the boys to their rooms never helped. The two would just compete to see 

who could stay in their room longer. This Christmas their parents were at wits' ends, 

and they decided the boys needed to be taught a lesson so they could grow up to be 

upstanding citizens. Instead of the new bicycles the boys were going to get—and 

probably just race till they crashed anyway—their parents decided to give them each 

a bag of coal. 

An astute reader might ask, “But what does this have to do with Minitab?” Well, dear 

reader, the boys need to figure out who got the most coal. Immediately upon opening 

their packages, the boys carefully weighed each piece of coal and entered the data 

(see Table 3.2) into Minitab. 

Aaron Billy 

6.9 7.5 

8.8 7 

6.6 7.5 

8.8 8.8 

6.7 8.7 

8.3 8.8 

7.0 8.5 

7.1 9.3 

10.4 5.7 

6.7 6.9 

7.1 7.8 

7.7 6.7 

9.6 8.7 

7.9 8.6 

5.2 7.3 

8.7 8.8 

6.6 9.6 

7.1 6.8 

7.6 9.1 

8.5 6.9 

6.5 7.6 

7.8 8.8 

6.8 7.6 

9.2 8.8 
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8 7.9 

6.7 7.8 

10.1 7.4 

6.7 5.7 

8.0 8.1 

7.7 7.7 

9.5 9.8 

8.4 7.4 

8.1 8.4 

7.9 9.8 

8.4 7.4 

Table 3.2: The weight of coal for Aaron and Billy 

Then they selected Stat > Basic Statistics > Display Descriptive Statistics and used 

the "Statistics" options dialog to select the items they wanted, including the sum of 

the weights they'd entered. The resulting session window is shown in Figure 3.3. 

 

Figure 3.3: Session window for descriptive statistics 

Billy quickly saw that he had the most coal, and yelled, “I have 279.383 ounces and 

you only have 272.896 ounces, and the mean of my pieces of coal is more than the 

mean of yours. Mine weigh more, so our parents must love me more.”  

“Not so fast,” said Aaron. “You may have a higher mean value, but is the difference 

statistically significant?”  There was only one thing left for the boys to do: perform 

a two sample t-test. A two sample t-test is used to determine if there is a statistically 

significant difference between two means (Lawson and Erjavec 2001). 

In Minitab, Aaron selected Stat > Basic Statistics > 2-Sample t and then selected 

“Each sample in its own column” and entered the columns containing the data. 

The boys left the default values at a confidence level of 95.0 and a hypothesized 

difference of 0. The alternative hypothesis was “Difference ≠ hypothesized 

difference” because the only question they were asking was “Is there a statistically 

significant difference?” between the two data sets. 
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The two troublemakers also selected “Graphs” and checked the options to display an 

individual value plot and a boxplot. They knew they should look at their data. Having 

the graphs available would also make it easier for them to communicate their results 

to higher authorities, in this case, their poor parents. 

Both the individual value plots in Figure 3.4) and boxplots in Figure 3.5 showed that 

Aaron's bag of coal had pieces with the highest individual weights. But he also had 

the pieces with the least weight. So the values for his Christmas coal were scattered 

across a wider range than the values for Billy‘s Christmas coal. But was there really 

a difference? 

 

Figure 3.4: Individual value plots 
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Figure 3.5: Boxplots 

Billy went running for his tables of Student‘s t-scores so he could interpret the 

resulting t-value of -0.71. Aaron simply looked at the resulting p-value of 0.481 in 

the Minitab session widow as shown in Figure 3.6. The p-value was greater than 0.05 

so the boys could not conclude there was a difference in the means of the weights of 

their Christmas "presents." 

 

Figure 3.6: Minitab session window for Two-Sample T-Test 
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The boys dutifully reported the results, with illustrative graphs, each demanding that 

they get a little more to best the other. Clearly, receiving coal for Christmas had done 

nothing to reduce their level of competitiveness. Their parents realized the boys were 

probably not going to grow up to be upstanding citizens, but they may at least become 

good statisticians. 

Happy Holidays. 

3.3 The Gentleman Tasting Coffee: A Variation on Fisher’s Famous 

Experiment 

In the 1935 book The Design of Experiments, Ronald A. Fisher used the example of 

a lady tasting tea to demonstrate basic principles of statistical experiments. In 

Fisher’s example, a lady made the claim that she could taste whether milk or tea was 

poured first into her cup, so Fisher did what any good statistician would do—he 

performed an experiment (1971). 

The lady in question, Dr. Muriel Bristol, was given eight random combinations of 

cups of tea with either the tea poured first or the milk poured first. She was required 

to divide the cups into two groups based on whether the milk or tea was poured in 

first. Fisher’s presentation of the experiment was not about the tasting of tea; rather, 

it was a method to explain the proper use of statistical methods. 

Understanding how to properly perform a statistical experiment is critical, whether 

you're using a data analysis tool such as statistical software or performing the 

calculations by hand. 

The Experiment A poorly performed experiment can do worse than just provide bad 

data; it could lead to misleading statistical results and incorrect conclusions. A 

variation on Fisher’s experiment could be used for illustrating how to properly 

perform a statistical experiment. Statistical experiments require more than just an 

understanding of statistics. An experimenter must also know how to plan and carry 

out an experiment. 

A possible variation on Fisher’s original experiment could be performed using a man 

tasting coffee made with or without the addition of sugar. The objective is not 

actually to determine if the hypothetical test subject could indeed determine if there 

is sugar in the coffee, but to present the statistical experiment in a way that is both 

practical and easy to understand.  

We decide to perform 44 trials; therefore, we would need 22 cups of coffee with 

sugar and 22 cups of coffee without sugar.  That is a lot of coffee so the cup size will 

be 10 ml each. There is a risk that different pots of coffee will not be the same as 

each other due to differences such as the amount of coffee grain used or the cooling 
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of the coffee over time. To counter this, the experimenter would brew one large pot 

of coffee and then separate it into two containers; one container would receive the 

sugar. 

A table is then created to plan the experiment and record the results. The first 22 

samples would contain sugar and the next 22 would not. Simply providing the test 

subject with the cups in the order they are listed would risk the subject realizing the 

sugar is in the first half so randomization will be required to ensure the test subject 

is unaware of which cups contain sugar.  Fisher referred to randomization as an 

“essential safeguard” (1971). A random integer generator can used to assign the run 

order to the samples. 

The accuracy of the results could be increased by using blinding. The experimenter 

may subconsciously give the test subject signals that could indicate the actual 

condition of the coffee. This could be avoided by having the cups of coffee delivered 

by a second person who is unaware of the status of the cups. The use of blinding adds 

an additional layer of protection to the experiment. 

Figure 3.7 contains the data collection sheet; however, the first half of the experiment 

is with sugar and the second half is without. It is possible that somebody may notice 

the sudden change so the test order should be randomized. Right click on column 

C3-T and select “Insert columns.” Go to Calc > Random Data > Integer and enter 

44as the number of rows to generate. Store the results in Randomized order and list 

1 as “Minimum value” and 44 as the “Maximum value.” 
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Figure 3.7: Minitab worksheet for data collection 
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Next, the order needs to be randomized so go to Data > Sort and Enter Randomized 

order in “Columns to sort by.” Change “Storage location for the sorted columns” to 

“In the original columns.” For “Columns to sort,” select the samles, randomized 

order and with or without sugar. 

The Analysis Suppose the test subject correctly identified 38 out of 44 samples, 

which results in a proportion of 38/44 or 0.86. This could have been the result of 

random chance and not actually correctly identifying the samples so a one sample 

proportion test could be used to evaluate the results. We can perform the analysis 

using statistical software; however, we can either use summarized data or we can 

enter the date in Table 3.3 into Minitab. 

Samples Randomized order With or without 

sugar 

Correct 

1 1 With sugar Yes 

2 2 With sugar Yes 

23 3 Without sugar Yes 

3 4 With sugar Yes 

24 5 Without sugar Yes 

4 6 With sugar No 

5 7 With sugar Yes 

25 8 Without sugar Yes 

26 9 Without sugar Yes 

27 10 Without sugar Yes 

6 11 With sugar Yes 

28 12 Without sugar Yes 

7 13 With sugar Yes 

8 14 With sugar No 

29 15 Without sugar Yes 

9 16 With sugar No 

10 17 With sugar Yes 

30 18 Without sugar Yes 

31 19 Without sugar Yes 

32 20 Without sugar Yes 

11 21 With sugar No 

12 22 With sugar Yes 

33 23 Without sugar Yes 

13 24 With sugar Yes 

34 25 Without sugar Yes 

35 26 Without sugar No 

36 27 Without sugar Yes 

14 28 With sugar Yes 
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37 29 Without sugar Yes 

15 30 With sugar Yes 

16 31 With sugar Yes 

38 32 Without sugar Yes 

17 33 With sugar Yes 

18 34 With sugar Yes 

39 35 Without sugar Yes 

40 36 Without sugar Yes 

19 37 With sugar Yes 

20 38 With sugar Yes 

41 39 Without sugar Yes 

42 40 Without sugar Yes 

43 41 Without sugar Yes 

21 42 With sugar No 

22 43 With sugar Yes 

44 44 Without sugar Yes 

Table 3.3: The results of the experiment 

To use summarized data in Minitab, select Stat > Basic Statistics > 1 Proportion 

and enter 38 and the “Number of events” and 44 as the “Number of trials.” Select 

“Perform hypothesis test,” enter 0.5 as the “Hypothesized proportion” and then click 

on “Options.” Under “Method,” select “Normal approximation.” The Minitab default 

setting is the exact method; however, the normal approximation is what we used 

when we did the calculations by hand. The Minitab results are shown in Figure 3.8. 

 

Figure 3.8: Session window for One Proportion test using summarized data 
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Minitab gives us a p-value, which in this case is 0.00 And as a wise statistician once 

said, "If the P-value's low, the null must go." 

The same analysis could be performed using data in the Minitab worksheet. Go to 

Stat > Basic Statistics > 1 Proportion and select “One or more samples, each in a 

column” from the dropdown menu. Then select the column containing the data and 

again click on “Options.” Under “Method,” select “Normal approximation.” The new 

Minitab results are shown in Figure 3.9. 

 

Figure 3.9: Session window for One Proportion test using actual data 

It is important to note that rejecting the null hypothesis does not automatically mean 

we accept the alternative hypothesis. Accepting the alternative hypothesis is a strong 

conclusion; we can only conclude there is insufficient evidence to reject it when 

compared against the null hypothesis and the null hypothesis only used as a 

comparison with the alternative hypothesis. Fisher himself, in The Design of 

Experiments, tells us “the null hypothesis is never proved or established, but is 

possibly disproved, in the course of experimentation” (1971). 

Fisher’s Results As for the original experiment, Fisher’s son-in-law the statistician 

George E.P. Box informs us in the lady in question was Dr. Muriel Bristol and her 

future husband reported she got almost all choices correct (1976). Salsburg also 

confirms the lady in question could indeed taste the difference; he was so informed 

by Professor Hugh Smith, who was present while the lady tasted her tea (2001). 

Fisher never actually reported the results; however, what mattered in Fisher’s tale is 

not whether or not somebody could taste a difference in a drink, but using the proper 

methodology when performing a statistical experiment. 
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3.4 Birds Versus Statisticians: Testing the Gambler's Fallacy 

The statistician Joel Smith posted a blog about an incident in which he was pooped 

on by a bird. Twice (2015). I suspect many people would assume the odds of it 

happening twice are very low, so they would incorrectly assume they are safer after 

such a rare event happens. 

I don’t have data on how often birds poop on one person, and I assume Joel is 

unwilling to stand under a flock of berry-fed birds waiting to collect data for me, so 

I’ll simply make up some numbers for illustration purposes only. 

Suppose there is a 5% chance of being pooped on by a bird during a vacation. That 

means the probability of being pooped on is 0.05. The probability of being pooped 

on twice during the vacation is 0.0025 (0.05 x 0.05) or 0.25%, and the probability of 

being pooped on three times is 0.000125 (0.05. x 0.05 x 0.05). 

Joel has already been pooped on twice. So, what is the probability of our intrepid 

statistician being pooped on a third time? 

The probability is 0.05. If you said 0.000125, then you may have made a mistake 

known as the Gambler’s Fallacy or the Monte Carlo Fallacy. This fallacy is named 

after the mistaken belief that things will average out in the short-term. A gambler 

who has suffered repeated losses may incorrectly assume that the recent losses mean 

a win is due soon (Mlodinow 2008). Things will balance out in the long term, but the 

odds do not reset after each event. Joel could correctly conclude the probability of a 

bird pooping on him during his vacation are low and the odds of being pooped on 

twice are much lower. But being pooped on one time does not affect the probability 

of it happening a second time. 

There is a caveat here. The probabilities only apply if the meeting of poop and Joel 

are random events. Perhaps birds, for reasons understood only by birds, have an 

inordinate fondness for Joel. Our probability calculations would no longer apply in 

such a situation. This would be like calculating the probabilities of a coin toss when 

there is some characteristic that causes the coin to land more on one side than on the 

other. 

We can perform an experiment to determine if Joel is just a victim of the odds or if 

there is something that makes the birds target him. The generally low occurrence rate 

would make it difficult to collect data in a reasonable amount of time so we should 

perform an experiment to collect data. We could send Joel to a bird sanctuary for two 

weeks and record the number of times he is pooped on. Somebody of approximately 

the same size and appearance as Joel could be used as a control. Both Joel and the 

control should be dressed the same to ensure that birds are not targeting a particular 
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color or clothing brand. Table 3.4 shows the hypothetical results of our little 

experiment. 

Day Joel Control Day 

1 13 8 1 

2 8 6 2 

3 11 7 3 

4 4 8 4 

5 6 5 5 

6 9 9 6 

7 12 2 7 

8 6 2 8 

9 6 5 9 

10 5 6 10 

11 7 6 11 

12 3 1 12 

13 4 6 13 

14 5 9 14 

Table 3.4: Results of the experiment 

We can see that Joel was hit 99 times, while the control was only hit 80 times. But 

does this difference mean anything? To find out, we can determine if there is a 

statistically significant difference between the number of times Joel was hit and the 

number of times the control was hit. We can use the Poisson distribution for 

evaluating the occurrence of events within a given interval (Vinning and Kowalski 

2006). 

Enter the data into Minitab and then go to Stat > Basic Statistics > 2-Sample 

Poisson Rate and select “Each sample is in its own column.” Go to “Options” and 

select “Difference > hypothesized difference” as the alternative hypothesis for a one-

tailed upper tailed test. The resulting Minitab session windows (see Fig. 3.10) shows 

two P-values; one for the Exact method and one for the Normal approximation.  Both 

are greater than the alpha of 0.05 so we fail to reject the null hypothesis. Although 

there was a higher occurrence rate for Joel, we have no reason to think that birds are 

especially attracted to him. 
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Figure 3.10: Minitab session window for Two-Sample Poisson Rates 

Joel is well aware of the Gambler’s Fallacy, so we can be assured that he is not 

under a false sense of security. He must know the probability of him getting struck 

a third time has not changed. But has he considered that these may not be random 

events? The experiment described here was only hypothetical. Perhaps Joel should 

consider wearing a sou’wester and rain coat the next time he takes a vacation in the 

sun. 

3.5 Statistics: Another Weapon in the Galactic Patrol’s Arsenal 

E. E. Doc Smith, one of the greatest authors ever, wrote many classic books such as 

The Skylark of Space (Smith 1966a) and his Lensman series (Smith 1966b. Doc 

Smith’s imagination knew no limits; his Galactic Patrol had millions of combat fleets 

under its command and possessed planets turned into movable, armored weapons 

platforms. Some of the Galactic Patrol’s weapons may be well known. For example, 

there is the sunbeam, which concentrated the entire output of a sun’s energy into one 

beam. 

The Galactic Patrol also created the negasphere, a planet-sized dark matter/dark 

energy bomb that could eat through anything. I’ll go out on a limb and assume that 

they first created a container that could contain such a substance, at least briefly. 

When I read about such technology, I always have to wonder “How did they test it?” 

I can see where Minitab Statistical Software could be very helpful to the Galactic 
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Patrol. How could the Galactic Patrol evaluate smaller, torpedo-sized units of 

negasphere? Suppose negasphere was created at the time of firing in a space torpedo 

and needed to be contained for the first 30 seconds after being fired, lest it break 

containment early and damage the ship that is firing it or rupture the torpedo before 

it reaches a space pirate. 

Table 3.5 shows data collected from fifteen samples each of two materials that could 

be used for negasphere containment. Material 1 has a mean containment time of 

33.951 seconds and Material 2 has a mean of 32.018 seconds. But is this difference 

statically significant? Does it even matter? 

Material 1 Material 2 

34.5207 32.1227 

33.0061 31.9836 

32.9733 31.9975 

32.4381 31.9997 

34.1364 31.9414 

36.1568 32.0403 

34.6487 32.1153 

36.6436 31.9661 

35.3177 32.067 

32.4043 31.961 

31.3107 32.0303 

34.0913 32.0146 

33.204 31.9865 

32.5601 32.0079 

35.8556 32.0328 

Table 3.5: Material 1 and 2 

The questions we're asking and the type and distribution of the data we have should 

determine the types of statistical test we perform. Many statistical tests for 

continuous data require an assumption of normality, and this can easily be tested in 

our statistical software by going to Graphs > Probability Plot and entering the 

columns containing the data. The resulting probability plots are shown in Figures 

3.11 and 3.12 
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Figure 3.11: Probability plot for Material 1 

 

Figure 3.12: Probability plot for Material 2 

The null hypothesis is “the data are normally distributed,” and the resulting P-values 

are greater 0.05, so we fail to reject the null hypothesis. That means we can evaluate 

the data using tests that require the data to be normally distributed. 
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To determine if the mean of Material 1 is indeed greater than the mean of Material 

2, we perform a two sample t-test: go to Stat > Basic Statistics > 2 Sample t and 

select “Each sample in its own column.” We then choose “Options” and select 

“Difference > hypothesized difference.” The resulting session window is shown in 

Figure 3.13. 

 

Figure 3.13: Session window for a Two-Sample T-Test 

The P-value for the two sample t-test is less than 0.05, so we can conclude there is a 

statistically significant difference between the materials. But the two sample t-test 

does not give us a complete picture of the situation, so we should look at the data by 

going to Graph > Individual Value Plot and selecting Simple graph > Multiple 

Y’s (see Fig. 3.14). 
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Figure 3.14: Individual value plot for Material 1 and Material 2 

The mean of Material 1 may be higher, but our biggest concern is identifying a 

material that does not fail in 30 seconds or less. Material 2 appears to have far less 

variation and we can assess this by performing an F-test (Stephens 2004): go to Stat 

> Basic Statistics > 2 Variances and select “Each sample in its own column.” Then 

choose “Options” and select “Ratio > hypothesized ratio.” The data is normally 

distributed, so put a checkmark next to “Use test and confidence intervals based on 

normal distribution.” The session window is shown in Figure 3.15 and the test and 

confidence interval is shown in Figure 3.16. 
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Figure 3.15: Session window for a Test of Two Variances 

 

Figure 3.16: Graph for a Test of Two Variances 
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The P-value is less than 0.05, so we can conclude the evidence does supports the 

alternative hypothesis that the variance of the first material is greater than the 

variance of the second material. Having already looked at a graph of the data, this 

should come as no surprise 

No statistical software program can tell us which material to choose, but Minitab can 

provide us with the information needed to make an informed decision. The objective 

is to exceed a lower specification limit of 30 seconds and the lower variability of 

Material 2 will achieve this better than the higher mean value for Material 1. Material 

2 looks good, but the penalty for a wrong decision could be lost space ships if the 

negasphere breaches its containment too soon, so we must be certain.  

The Galactic Patrol has millions of ships so a failure rate of even one per million 

would be unacceptably high so we should perform a capability study by going to 

Quality Tools > Capability Analysis > Normal. Enter the column containing the 

data for Material 1 and use the same column for the subgroup size and then enter a 

lower specification of 30 (see Fig. 3.17). This would then be repeated for Material 2 

(see Fig. 3.18). 

 

Figure 3.17: Capability report for Material 1 
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Figure 3.18: Capability report for Material 2 

The sample size of 30 was low for a capability study; there should be at least 100 

values. However, in spite of the low sample size, looking at the Minitab generated 

capability studies, we can see that Material 1 can be expected to fail thousands of 

times per million uses while Material 2 would is not expected to fail at all. In spite 

of the higher mean, the Galactic Patrol should use Material 2 for the negaspehere 

torpedoes.  

3.6 ANOVA and the Zombie Apocalypse 

Zombies have been showing up in the news with actual researchers studying 

hypothetical zombie outbreaks (Dhar 2013). The mathematical modeling of a 

fictional zombie outbreak is relevant to actual disease outbreaks and it is probably 

more interesting to many readers than a paper on reproduction thresholds in modeling 

infectious diseases (Heathcote 2000). I won’t criticize anybody who uses zombies as 

a ploy to attract readers as I am about to do the same here. 

Mathematical models on zombie outbreaks may incorrect be if the researchers fail to 

consider the speed at which zombies move. Consider the slow and lumbering 

zombies of the classic film Night of the Living dead in contrast with sprinters of 28 

Days Later (Levin 2017); the speed at which the zombie moves may have a relevance 

to the rate at which an infection spreads as faster zombies could be more difficult to 
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stop, resulting in more time to infect people. Fast zombies may also infect more 

people simply because they are better able to catch people. 

Suppose we have data on the number of days it takes a zombie hunter to stop zombies 

from three separate zombie outbreaks under comparable conditions, with the only 

difference being the speed of the zombies as shown in Table 3.6.  

Slow Normal Fast 

7.9 10.6 11.9 

8.7 11.1 8.2 

9.6 9.8 17.6 

10.3 14.6 14.6 

9.3 15.3 13.7 

10.6 10.4 16.2 

8.8 14.9 10.6 

9.3 9.3 15.8 

7.1 13.1 13.5 

11.5 12.7 15.3 

7.6 8.8 11.6 

8.9 13.6 11.5 

9.8 9.3 15.6 

9.7 11.2 13.7 

8.1 12.3 8.6 

9.0 10.7 13.0 

 14.0 12.2 

13.2 15.7 

9.3 13.7 

15.8  

14.7 

13.0 

Table 3.6: Day from creation till being stopped 

We could perform a 2-sample t-test if we were only comparing two means; however, 

we have three means to compare so we need to do an ANOVA. An ANOVA is much 

like a 2-sample t-test for more than 2 samples (Witte 1993). The name ANOVA 

stands for analysis of variance (McClave and Sincich 2009); however, it is a test of 

sample means and not sample variances.  

To analyze the data, we got to ANOVA > One-Way and change the dropdown to 

“Response data are in a separate column for each factor level” and select the columns 

containing the data. Then click on Graphs and Select “Three in one.” The resulting 
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graph is shown in Figure 3.19. We check the probability plot to ensure the residuals 

are normally distributed and we observe the graphs to identify an unusual data points 

as they could strongly influence the results. In this case, the residuals plots look good. 

 

Figure 3.19: Residuals plot 

Figure 3.20 shows the Minitab session widow for an ANOIVA. The P-value is less 

than 0.05 so we can conclude one or more means differs from the others. We know 

that there is a statistically significant difference between means, but we don’t know 

where so we look at the interval lot in Figure 3.21.  
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Figure 3.20: Session window for ANOVA 
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Figure 3.21: Interval plot 

We see can see that the confidence interval for slow zombies does not overlap with 

the mean for normal or fast zombies. It seems that any academic study of zombies 

should take into consideration the speed at which the zombies move; otherwise, their 

conclusions may be incorrect. 

This has been a hypothetical study. In the event of an actual zombie outbreak, we 

will either get actual data to do a real study, or all be turned into zombies, in which 

case we will no longer care about doing statistical studies. Think of it as a win-win 

situation.  
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CHAPTER 4 
 

Regression Analysis 
 

 

 

 

The proper way to perform a regression analysis is explained here using actual data 

from two case studies. The first example described a planned move in which data is 

used to determine if there is a potential relationship between estimated moving costs 

and the estimated number of boxes to move. The next example used a table of turkey 

weights and cooking times to determine the correct cooking time for a bird that was 

too small to be in the model. The hazards of extrapolating beyond the data set are 

also explained. The creation of a scatter plot is demonstrated. 

The first example is of a regression analysis performed the usual way in Minitab; the 

second example shows how to use the Minitab assistant to perform the regression. 

The Minitab assistant guidance in interpreting results of a regression analysis for 

those who are not confident in their ability to perform a regression analysis. Using 

the Minitab assistant is a safer way to do things as the assistant helps with interpreting 

the results; however, the reader should not become dependent upon the assistant.  

4.1 Regression Analysis: Moving On with Minitab 

I recently moved, and right after finishing the less-than-joyous task of unpacking I 

decided to take and break and relax by playing with Minitab Statistical Software.   

As a data source I used the many quotes I received from moving companies. I'd 

invited many companies to look around my previous home, and then they would 

provide me an estimate with the price in Euros as well as an estimate on the amount 

of goods that would need to be transported. The "amount of goods" estimate was 

given in boxes. I don’t know what size boxes were referred to, but all the moving 

companies used boxes as a standard estimate of cubic area. 



PRACTICAL STATISTICAL METHODS FOR QUALITY 

 

 

78 

I had planned on using 35 boxes; most companies told me it would be 110-120 boxes. 

Since I was not even finished packing books when I had used up the first 50 boxes, 

I think I can safely assume the movers proved to be generally better at estimating 

shipping volume than I am. 

Using Regression to Predict the Cost of Moving Let’s suppose I wanted to 

determine the regression line for the cost of moving and the number of boxes that 

need to be moved. I rounded the estimates to the nearest 25 and changed the moving 

company names. Table 4.1 contains the estimates I received for cost and amount of 

goods. 

Moving Company Cost Estimate (in Euro) Material Estimate (in 

Boxes) 

Company A 1700 115 

Company B 1850 120 

Company C 3400 145 

Company D 1650 80 

Company E 1675 90 

Company F 2000 110 

Company G 1950 115 

Table 4.1: Cost and material estimates 

 I was a bit suspicious of the estimate from Company C. The young man who gave 

me that estimate may not have even been born at a time when many of the other 

estimators where already working in the moving industry, so I wondered about his 

experience. Had the estimate been different, it may not have stood out, but his 

estimates were far higher than the others. Part of the reason this estimate was so high 

may be because he included extra costs for using a conveyor outside my window as 

a labor-saving device. 

I would be happy to pay for a labor-saving device that lowers my overall costs, but I 

was not so happy with extra costs for an expensive labor saving device that actually 

raised the overall expense. 

A Quick Visual Check of the Data I suspected Company C was an outlier, so to get 

a quick look at the situation I entered my data into a Minitab worksheet created a 

scatterplot by going to Graph > Scatterplot and selecting “Simple.” I entered the 

column containing the cost estimate as the Y variable and the column containing the 

material estimate as the X variable. The resulting scatter plot is shown in Figure 4.1. 

The dot in the upper right hand corner is the result for Company C. 
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Figure 4.1: Scatter plot of cost versus material estimates 

I am generally hesitant to discard potential outliers because I may be inadvertently 

throwing away valuable data, but in this case I decided that the estimates from 

Company C were just wrong and could throw off my regression model. Therefore, I 

was tempted to remove them from the data set, but decided to wait and see the results 

of the regression analysis. 

Creating the Regression Model Regression analysis “involves predicting the value 

of one variable from one or more other variables. The dependent variable is 

sometimes called the response variable and the independent variable is called the 

predictor variable” (Weimer 1993 p. 622). In this example, the response variable is 

cost and the predictor variable is material. 

Go to Stat > Regression > Regression > Fit Regression Model and entered Cost as 

the “Response” and Material as the “Continuous predictor.” Then click on “Options” 

and select “Four in One” to view a graph with a: 

 Histogram if residuals 

 Normal probability plot of residuals 

 Residuals versus firs 

 Residuals versus order 

The graph of residual plots shown in Figure 4.2 include a value that stands out as odd 

and the Minitab session window in Figure 4.3 shows a large residual for observation 

number 3, which is Comapyn C. I then removed company C and reran the regression.  
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Figure 4.2: Graph of residual plots for cost 

 

Figure 4.3: Session window for regression analysis 

The session window for the next regression analysis are shown in Figure 4.4. The 

residual plots in Figure X looked better and there were no unusual observations (see 

Fig. 4.5.); however, the P-value 0.163 and this indicates that the relationship between 

cost and material is not statistically significant.  
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Figure 4.4: Session window for regression analysis without Company C 

 

Figure 4.5: Graph of residual plots for cost without Company 
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the residuals are normally distributed. In this case, they appear to be, but the results 
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were not statistically significant. However, this could change with more data, but I’m 

not willing to move again just to collect more data. 

Cautions about Prediction with Regression Models There are some things to keep 

in mind when performing regression. This is a statistical calculation based on the 

available data. If my data set (the moving companies) is not be as inclusive as I think 

it is, the next moving company I contact may not match my sample. For example, 

two movers with an almost-falling-apart truck would generally charge much less than 

a luxury moving company that offers far more than just a transportation service. 

We also need to be aware of the hazards of extrapolating beyond the data set (Keller, 

Warrack, and Bartel 1994). Suppose I bought an entire library full of books on 

statistics. I now have 400 boxes to transport and may be able to get a discount from 

a moving company that is happy to have such a large, but easy contract. The move 

may take a few trucks, but pre-packed books are faster to move than boxes full of 

fine china or large furniture items that need to be disassembled, and the price estimate 

would reflect this. 

I am rather certain that this regression model will fall apart on the low side. The cost 

should go down as the number of boxes to transport is decreased; however, contrary 

to what the regression model may indicate, I find it improbable that a moving 

company would give the same proportional rate to transport just one box. The 

regression equation is: 1,168 + 60.6 (material). Therefore, according to the regression 

model, the cost for just one box is 1,168 + 60.6(1) = 1,228.6 Euro. There is far less 

labor involved in the transport of only one box and the moving company does not 

need to supply a driver and four people for carrying boxes, so the estimate may 

actually be much lower. 

Thinking Outside the Model Unfortunately, Minitab can’t tell us that the biggest 

expense in the transportation of one box would be the moving trucks’ fuel, so a 

moving company is not the type of company to use when transporting only one 

box!  This is an example of why process knowledge is so important: if you didn't 

know alternative types of transport were available, you wouldn't know the moving 

company was a poor choice for shipping one box!  

Who knows, maybe someday Minitab will be able to do the all of the thinking for 

us!  For now, whether calculating a regression model for costs/boxes or sales 

price/units, some knowledge of statistics and its limitations is still needed. 

Regression is an excellent way to make predictions and Minitab makes this easier; 

but it does not remove the need to have an understanding of the statistics being used. 

4.2 A Six Sigma Master Black Belt in the Kitchen 
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I know that Thanksgiving is always on the last Thursday in November, but somehow, 

I failed to notice it was fast approaching until the Monday before Thanksgiving. This 

led to frantically sending a last-minute invitation, and a hunt for a turkey. 

I live in Germany and this greatly complicated the matter. Not only is Thanksgiving 

not celebrated, but also actual turkeys are rather difficult to find. 

I looked at a large grocery store’s website and found 15 types of cat and dog food 

that contain turkey, but the only human food I could find was one jar of baby food. 

Close, but not close enough. I wanted a whole turkey, not turkey puree. 

The situation was even more complicated due to language: Germans have one word 

for a male turkey and a different word for a female turkey. I did not realize there was 

a difference, so I wound up only looking for a male turkey. My conversation with 

the store clerk would sound like this if it were translated into English, where there is 

only one word commonly used for turkey: 

Me: Do you carry turkey? 

Clerk: No. We only have turkey. 

Me: I don’t need turkey. I’m looking for turkey. 

Clerk: Sorry, we don’t carry turkey, but we have turkey if you want it. 

Me: No thank you. I need turkey, not turkey. 

Eventually, I figured out what happened and returned to buy the biggest female 

turkey they had. It weighed 5 pounds. 

This was not the first time I cooked a turkey, but my first attempt resulted in The 

Great Turkey Fireball of 1998. (Cooking tip: Don’t spray turkey juice onto the oven 

burner). My second attempt resulted in a turkey that still had ice in it after five hours 

in the oven. (Life hack: The inside of a turkey is a good place to keep ice from 

melting.) 

This year, to be safe, I contacted an old friend who explained how to properly cook 

a turkey, but I was told I would need to figure out the cooking time on my own. This 

was not a problem...or so I thought. I looked online and found turkey cooking times 

for a stuffed turkey (Filippone 2017), but my turkey was too light to be included in 

the table. 

Graphing the Data, I may not know much about cooking, but I do know statistics, 

so I decided to run a regression analysis to determine the correct cooking time for 

my bird. The weights and times were in a table (see Table 4.2) for ranges so I selected 
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the times that corresponded to the low and high weight ranges and entered the data 

into a Minitab. 

 

 

Weight Time 

6 3 

8 3.5 

12 4.5 

16 5.5 

20 6 

24 6.5 

Table 4.2: Weight and times 

I like to look at my data before I analyze it so I created a scatterplot to see how time 

compares to weight. Go to Graph > Scatter Plot and select Simple. Enter Time as 

the “Y variable” and Weight as the “X variable.” Visually (see Fig. 4.6), it looks as 

if there may be a relationship between weight and cooking time, so I then performed 

a regression analysis. 

 

Figure 4.6: Scatter plot of weight and times 

Performing Regression Analysis Go to Stat > Regression > Regression > Fit 

Regression Model. and select Time for the “Response” and Weight as the 

“Continuous predictor.” Click on “Graphs” and select “Four in One.” 

The P-value is < 0.05 and the adjusted r-squared (adjusted) is 97.04% so it looks like 

I have a good model for time versus weight (See Fig. 4.7). 
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Figure 4.7: Session window for regression analysis for time versus weight 

The residual plots for time shown in Figure 4.8 include a normal probability plot with 

residuals that look like they are normally distributed. My data did not need to follow 

the normal distribution, but the residuals should. But something seemed odd to me 

when I looked at the other three plots. Suddenly, I was not so sure my model was as 

good as I thought it was. 



PRACTICAL STATISTICAL METHODS FOR QUALITY 

 

 

86 

 

Figure 4.8: Residual plots for time 

Regression Analysis with the Assistant I then used the Minitab Assistant to perform 

another regression analysis. Since I was uncertain about my first model, I could use 

the reports generated by the Assistant to better assess my data and the resulting 

analysis. 

Go to Assistant > Regression and select “Simple Regression.” Select Time for the 

“Y column” and Weight for the “X column” and select OK. 

The first report provided by the Minitab Assistant is the summary report, shown in 

Figure 4.9. The report indicates a statistically significant relationship between time 

and weight using an Alpha of 0.05. It also tells me that 99.8% of the variability in 

time is caused by weight. This does not match my previous results and I can see why: 

I previously performed linear regression and the Minitab Assistant identified a 

quadratic model for the data. 

The regression equation is Y = 0.9281 +0.3738X -0.005902(X2). 

Time = 0.9281 +0.3738(5) -0.005902(52) = 

0.9281 + 1.869 – 1.8692 = 

2.7971 – 0.0008708401 = 2.796 hours 
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That means the cooking time is 2 hours and 48 minutes. 

 

Figure 4.9: Summary report for time versus weight 

Figure 4.10 depicts the model selection report, which includes a plot of the quadratic 

model and the r-squared (adjusted) for both the quadratic model and a linear model. 
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Figure 4.10: Model Selection report for time versus weight 

The diagnostic report in Figure 4.11 is used to assess the residuals and guidance on 

the interpretation of the report is provided on the right side. 

 

Figure 4.11: Diagnostic report for time versus weight 

R-squared (adjusted) 99.67% 97.04%
P-value, model <0.005* <0.005*
P-value, linear term 0.001* <0.005*

P-value, quadratic term 0.011* —
Residual standard deviation 0.081 0.241
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The prediction report in Figure 4.12 shows the prediction plot with the 95% 

prediction interval. 

 

Figure 4.12: Prediction report for time versus weight 

The report card shown in Figure 4.13 helps us to assess the suitability of the data. 

Here, I saw a problem: my sample size was only six. Minitab still provided me with 

results, but it warned me that the estimate for the strength of the relationship may not 

be very precise due to the low number if values I used. Minitab recommended I use 

40 or more values. My data did not include any unusual data points, but using less 

than 15 values means the P-value could be incorrect if my results were not normally 

distributed. 

 

Figure 4.13: Report card for time versus weight 
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It looks like my calculated cooking time may not be as accurate as I’d like it to be, 

but I don’t think it will be too far off since the relationship between weights and 

cooking time is so strong. 

It is important to remember not to extrapolate beyond the data set when taking actions 

based on a regression model. My turkey weighs less than the lowest value used in 

the model, but I’m going to need to risk it. In such a situation, statistics alone will 

not provide us an answer on a platter (with stuffing and side items such as cranberry 

sauce and candied yams), but we can use the knowledge gained from the study to 

help us when making judgment calls based on expert knowledge or previous 

experience. I expect my turkey to be finished in around two and a half to three hours, 

but I plan to use a thermometer to help ensure I achieve the correct cooking time. 

But first, it looks like I am going to need to perform a Type 1 Gage Study analysis, 

once I figure out how to use my kitchen thermometer. 



 
 

 

 

 
 

CHAPTER 5 
 

Capability Studies 
 

 

 

 

This chapter explains how to perform a capability study to determine if a process is 

statistically capable. Data created by using a model catapult was used to generate 

data to simulate manufacturing data. In place of measurements from parts, the 

distance of a projectile was measured and recorded. Multiple cycles of capability 

assessment are shown to simulate a process that is being optimized after each study. 

In addition to catapult study data, a hypothetical manufacturing example is presented. 

The concepts of process capability and process performance are also explained. 

Minitab generates graphs when performing a capability and performance study. 

These graphs are shown and explained.  

Simply entering values in Minitab and looking at the resulting capability value is not 

sufficient when performing a capability study. This chapter also explains how to 

assess the suitability of the data by ensuring the values are normally distributed, there 

is sufficient data available, and the process is in a state of statistical control.  

5.1 Learning Process Capability Analysis with a Catapult 

We can use a simple catapult to teach process capability analysis using 

Minitab Statistical Software’s Capability SixpackTM. Here's how. 

A process capability analysis is performed to determine if a process is statistically 

capable. Based on the results of the capability study, we can estimate the amount of 

defective components the process would produce. 

However, a process must be in statistical control and have a normal distribution 

(Borror 2009). A process that is not in statistical control must be brought in control 

before the capability analysis is performed. In addition, data that does not fit the 
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normal distribution will need to be normalized using a transformation such as the 

Box-Cox transformation. 

The Catapult Setup and First Run A process and a specification are needed to 

demonstrate process capability analysis; we used a simple catapult. A rough idea of 

the catapult’s range and precision was required for determining what the 

specification should be, so we fired five catapult shots and recorded the distance the 

projectile traveled. Based on the results, we determined the catapult should be able 

to consistently land projectiles within a range of one meter. This was just a rough 

figure used to get started. 

We set the specification at 700 cm from the end of a hallway to the point where the 

projectiles should land. The tolerance was set as +/- 50 cm, which might or might 

not be a specification that the catapult could meet. The purpose of the study was to 

determine if the catapult is capable, so the uncertainty was not a problem. 

The catapult was then set up 400 cm away from the target of 700 cm. 

The First Run and Capability Analysis The catapult has a rubber band that hooks 

onto the front of the catapult and then goes over a wire guide that causes additional 

stretching before the rubber band is mounted onto the catapult arm. The wire guide 

was replaced with a thin wire that was bent and distorted. Ten shots were fired and 

the results were recorded. The wire was rotated 22.5° after each shot; rotating a weak 

and bent wire simulated a cause of variation in the process. The data was entered into 

a data collection sheet set up for the data to be entered into Minitab in subgroups of 

5 as shown in Table 5.1. 

SG1 642 721 663 687 673 

SG2 741 658 672 749 726 

SG3 656 737 662 650 682 

SG4 701 753 663 686 729 

SG5 676 668 674 643 651 

SG6 725 650 694 723 698 

SG7 654 660 658 703 651 

SG8 723 660 705 649 652 

SG9 725 646 658 696 735 

SG10 646 674 679 643 683 

SG11 757 714 661 657 746 

SG12 670 648 751 637 748 

SG13 715 690 724 724 682 

SG14 673 783 637 637 728 

SG15 748 640 771 668 700 

SG16 641 709 731 751 684 
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SG17 657 654 710 658 678 

SG18 649 706 671 674 680 

SG19 691 691 637 706 748 

SG20 697 661 709 702 677 

Table 5.1: Weak wire data 

Go to Quality Tools > Capability Sixpack > Normal and select “Subgroups across 

rows of” and then select the columns containing the data. Then, enter the lower 

specification of 650 and the upper specification of 750. 

The Minitab Capability Sixpack results for the run using a thin wire are depicted in 

Figure 5.1. Minitab's Capability Sixpack provides an Xbar chart, an R chart, a view 

of the last five subgroups, a capability histogram, a normal probability plot and a 

capability plot with capability indices. 

 

Figure 5.1: Process capability Sixpack for weak wire 

The Xbar chart and R chart were automatically calculated by Minitab using the run 

data that was entered. The specified subgroup size was five, so each dot in the Xbar 

chart represents the average of five catapult shots. The average of the averages is 

688.3 cm. This is short of the target of 700 cm, but still within specification. 
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Unfortunately, while the mean was within the specification limits, many values were 

not. 

Minitab has calculated the upper control limit (UCL) and lower control limit (LCL). 

The control limits are 3σ above or below the mean. The UCL is 735.2 cm and the 

lower control limit is 641.5 cm. The average was within the specification; however, 

the control limits are +/- 3σ of the process mean and 99.7% of the sample means will 

be within the control limits. Unfortunately, the catapult process will result in shots 

that will be out of specification because the LCL is below the LSL. 

Reading the Process Capability Charts The R chart calculates the average of the 

ranges in each subgroup of sample size five. The UCL and LCL for the range can be 

calculated using the average of the ranges and a table; however, Minitab 

automatically performs the calculations. Here, we can observe a large amount of 

variation in the catapult results. The actual results of the last 20 subgroups are also 

given. The difference between the first and second shot fired was almost 80 cm; 

hence, the large range for the first subgroup in the R chart. Subgroup 14 had a range 

of 146! 

The capability histogram presents a histogram of the results with the shape of the 

distribution overlaid. The capability histogram also visually depicts the process 

output compared to the lower specification limit (LSL) and the upper specification 

limit (USL). 

The normal probability plot depicts an Anderson-Darling goodness-of-fit test; this is 

used to determine if the data follows a normal distribution. The H0 is “data fits the 

normal distribution” and the Ha is “data does not fit the normal distribution.” The 

test statistic is automatically calculated by Minitab. Using an alpha of 0.05, we reject 

the null hypothesis because the calculated P value was less than 0.005. This run not 

only had a large amount of variability; it violated the assumption of normality needed 

for the calculations.    

What's Next in this Capability Analysis? I collected data from a first run of 

catapult results and found that the run not only had a large amount of variability, it 

also violated the assumption of normality. Then it was time to implement a quality 

improvement and do a second run. I performed a second run using thicker and more 

robust wire to stretch the rubber band. Since this wire will not have the variation that 

the thin one did, it was used to simulate a process improvement. We should see a 

reduction in variability as a result.    

The Second Run and Capability Analysis A second run was performed using 

thicker and more robust wire to stretch the rubber band; this wire did not have the 
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variation that the first one did, so it simulates a process improvement that should 

reduce variability. The new results are shown in Table 5.2. 

SG1 644 680 687 693 676 

SG2 688 655 666 680 697 

SG3 684 701 667 642 669 

SG4 723 668 680 678 721 

SG5 678 687 651 670 687 

SG6 663 673 692 664 650 

SG7 669 671 656 688 685 

SG8 679 716 680 670 691 

SG9 655 687 678 681 683 

SG10 681 666 661 713 664 

SG11 701 655 679 671 669 

SG12 685 687 689 672 688 

SG13 677 675 692 679 694 

SG14 649 699 658 696 680 

SG15 665 681 659 666 684 

SG16 705 654 643 662 667 

SG17 641 673 662 686 712 

SG18 691 689 665 678 685 

SG19 659 681 655 680 698 

SG20 667 643 680 667 688 

Table 5.2: Strong wire data 

The results are depicted in the Capability Sixpack shown in Figure 5.1. The Xbar 

chart for this run shows the UCL is below the USL; unfortunately, although the LCL 

is now above the LSL, there are still shots that landed below the lower specification 

limit. Also, the capability histogram indicates the normal distribution for this run is 

wider than the specification limits. 
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Figure 5.2: Process capability Sixpack for strong wire 

The normal probability plot has a P value of 0.432 so we fail to reject the null 

hypothesis, which we stated as “data fits the normal distribution.” The normal 

probability plot indicates the data fits the assumption of normality so we move on to 

the capability plot. 

Differences Between Within and Overall Indices in a Capability Analysis There 

are results for “within” and “overall” indices. The difference between within and 

overall is the way in which the process variation is estimated. Within variation only 

common cause variation in subgroups in the calculation and overall variation 

includes both common cause and special cause variation for the entire set of data 

from the process study. Common cause variation results from the system and special 

cause variation results from an assignable cause (Durivage 2015). The manipulation 

of the weak wire would be an example of a special cause. 

The within indices are the capability indices Cp and Cpk and they can be thought of 

as what the process is capable of producing. The overall indices are Pp and Ppk and 

they are the processes’ actual performance with the possible presence of variation 

due to special cause. 
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A Cp is a process capability index used to determine if a process is capable of meeting 

a specification. It is determined by dividing the tolerance range by six times the 

standard deviation. 

 

Ideally, a Cp should be 1.33 or greater as this would mean the spread of the data is 

only 75% of the tolerance range; this leaves room for slight variations in the process 

without generating out-of-specification parts. However, the Cp index does not tell us 

if the process would produce parts that are within specification. A process could have 

a Cp of 2.00 due to very little variation, but still be producing out of specification 

parts because the process mean is at the edge of a specification limit. 

A more complete picture is provided by also using the Cpk index, which is based on 

two calculations. The first calculation is USL minus the process mean divided by 

three times the process standard deviation, and the second calculation is the process 

mean minus LSL divided by three times the process standard deviation. 

 

The lower of the two results is used to identify the process capability in regards to 

the centering of the process in comparison to the specification limits. Like Cp, a 

Cpk should generally be 1.33 or greater.   

The formulas for Pp and Ppk are somewhat similar to the Cp and Cpk formulas; 

however, calculations for Pp and Ppk use the process variation in place of the standard 

deviation. 

 

The Minitab Capability Sixpack results for the second run indicate a Pp of 0.0.96 and 

a Ppk of 0.51 and a Cp of 0.93 and a Cpk of 0.50. These results are much lower than 

the ideal of 1.33. Minitab has determined the process would result in a parts per 

million (PPM) of 68,376.80. This means that over 68,000 out-of-specification 

catapult shots can be expected for every 1,000,000 shots. This corresponds to a defect 

rate of 6.8%. 
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Even if none of the shots we made were out of specification, the process is still not 

capable and would need improvement.    

The Third Run and Process Capability Analysis 

The means of the previous run were spread around a mean of 677 cm so the catapult 

process was adjusted by moving the catapult 20 centimeters closer to the target area. 

Another 100 shots were fired the new data was analyzed (see Table 5.3).  

SG1 716 712 706 

SG2 715 678 696 

SG3 685 698 716 

SG4 703 716 685 

SG5 684 682 713 

SG6 700 716 675 

SG7 714 692 695 

SG8 691 701 724 

SG9 720 685 703 

SG10 713 687 677 

SG11 714 691 727 

SG12 711 712 674 

SG13 682 711 673 

SG14 718 688 690 

SG15 715 680 700 

SG16 661 709 677 

SG17 691 714 708 

SG18 707 692 707 

SG19 663 695 681 

SG20 702 707 701 

Table 5.3: Process improvement data 

The results show an improvement as depicted in Figure 5.3. The Xbar control limits 

are now within the range of the specification limits and both Pp and Ppk have 

improved. The PPMs indicate a defect rate of only 0.3%; this is an improvement, but 

still not acceptable for ensuring a product that conforms to specification in a mass-

production environment. A manufacturing company with a Cp of 1.00 and a 

production run of 10,000 units should anticipate around 30 units out of specification. 

The catapult process needs further improvements to reduce variation; fortunately, 

there are quality tools available to help with this. 
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Figure 5.3: Process capability Sixpack for process improvement 

5.2 Using a Catapult as a Minitab Capability Sixpack Training Aid 

Teaching process performance and capability studies is easier when actual process 

data is available for the student or trainee to practice with and a catapult can be used 

to generate data for a capability study. The catapult is can be used in various 

configurations, but here the settings will stay constant to simulate a manufacturing 

process.  

The Catapult Study The catapult used a 120 mm diameter heavy-duty rubber band 

originally intended for use in model airplanes. The rubber band guide was set at 4 

cm and the arm stopper was set at 1 cm. The starting point was set at 8 cm and these 

settings were held constant for the duration of the study. Three operators each 

performed 2 runs of 20 shots each to simulate two days of production with three 

shifts per day. Each run was used a separate subgroup in the capability and 

performance study. The catapult data is shown in Table 5.4. 
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SG4 105.5 107.1 106.1 105.2 105.6 

SG5 106.7 105.3 104.2 104.9 105.4 

SG6 105.0 107.4 104.8 103.6 105.2 

SG7 106.2 105.9 105.9 104.2 104.7 

SG8 104.6 105.3 105.3 105.9 106.3 

SG9 105.1 103.1 104.5 106.4 103.6 

SG10 105.3 105.7 103.7 103.2 105.3 

SG11 104.1 107.3 105.1 103.4 104.9 

SG12 104.9 104.0 104.4 104.6 105.2 

SG13 104.9 103.2 105.9 103.6 103.4 

SG14 103.5 106.3 104.6 106.1 105.2 

SG15 103.9 103.2 104.5 104.4 104.4 

SG16 103.5 104.5 105.4 105.1 105.5 

SG17 103.6 105.1 103.8 102.2 103.3 

SG18 104.8 105.5 103.5 106.6 104.7 

SG19 105.9 103.9 105.0 105.0 106.6 

SG20 103.8 104.9 105.4 104.8 105.4 
 

Table 5.4: Data from the catapult 

The capability indices Cp and Cpk use short-term data to tell us what the process sis 

capable of doing and the performance indices Pp and Ppk use long-term data to tell 

us what the process is actually doing. The capability indices use “within” variation 

in the formula and performance indexes use “overall” variation; within variation is 

based on the pooled standard deviations of the subgroups and overall variation is 

based on the standard deviation of the entire data set.  

There are requirements that must be met to perform a capability or performance 

study. The data must be normally distributed and the process needs to be in a state of 

statistical control. The data must also be randomly selected and it needs to represent 

the population (Gryna 2001). There should be at least 100 values in the data set; 

otherwise, there will be a very wide confidence interval for the resulting capability 

and performance values (Breyfogle 2003). The person planning the study must 

ensure there is sufficient data and the data represents the values in the population; 

however, the Capability Sixpack can be used to ensure the other requirements are 

fulfilled.  

Go to Quality Tools > Capability Sixpack > Normal and select “Subgroups across 

rows of” and then select the columns containing the data. Then, enter the lower 

specification of 95 and the upper specification of 110. Click on Options and add a 

Target of 104. The resulting Capability Sixpack graph is shown in Figure 5.4. 
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Figure 5.4: Catapult study Capability Sixpack 

The Capability Sixpack The Capability Sixpack provides an I chart when the data 

consists of individual values; i.e. the subgroup size is 1. An Xbar chart is provided 

when the data is entered as subgroups. Either control chart can be used to assess the 

stability of the process. The process will need improvement to achieve stability if out 

of control values are seen in a control chart. The source of the variability in the 

process should be sought out and removed and then the study should be repeated. 

A moving range chart is given when the subgroup sizes is 1 and an R chart is given 

when the subgroup size is greater than 1. The values in the moving range chart should 

be compared to the values in the I chart to ensure no patterns are present. The same 

should be done for the Xbar and R chart if they are used. This is done to help ensure 

the data are truly random. Either the last 25 observations or the last 20 subgroups 

will be shown. The last 25 observations are shown if the data is entered as 1 subgroup 

and the last 20 subgroups are shown if the data are entered as subgroups. The values 

should appear random and without trends or shifts if the process is stable. 

A capability histogram is shown to compare the histogram of the data to the 

specification limits. The data should approximate the standard normal distribution. 

The line for overall shows the shape of a histogram using the overall standard 
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deviation. The within line shows the shape of the histogram using the pooled standard 

deviation of the subgroups. 

A normal probability plot is provided to assess the normality of the data. A p value 

of less than 0.05 indicates the data is not normally distributed. Data that is not 

normally distributed can't be used in a capability study. Transform non-normal data 

or identify and remove the cause of the lack of normality. The better option is to 

improve the process so that the data is normally distributed. The Capability Sixpack 

can’t be used if the data hits a boundary such as 0 or an upper or lower limit; however, 

the regular capability study option can still be used is a checkmark is placed next to 

the boundary indicator beside the specification limit. 

The capability plot displays the capability and performance of the process. The 

capability of a process is measured using Cp and CpK and both tell us what the 

process is capable of. They are intended for use with short-term data and use the 

pooled standard deviation of rational subgroups to tell us what the process is capable 

of. Rational subgroups use homogenous data so that only common cause variation is 

present. For example, parts may have all been produced on the same machine, using 

the same batch of raw material, by the same operator. The Cp compares the spread 

of the process to the specification limits; a process with a high Cp value may produce 

parts out of specification if the process is off-center. The Cpk considers position of 

the process mean relative to specification limits and there are actually two values for 

Cpk, the Cpk of the upper speciation limit and the Cp of the lower specification limit. 

The Capability Sixpack lists the value of the worse performing of the two Cp values. 

The performance of a process is measured using Pp and Ppk with long-term data. 

Generally, more than 30-days' worth of production data should be used for Pp and 

Ppk. Unlike the capability indices Cp and Cpk, Pp and Ppk calculations are 

performed using the total standard deviation, which is the same as the formula for a 

sample standard deviation. The Pp compares the spread of the process to the upper 

and lower specification limits and only the worse performing value is given. The Ppk 

considers position of the process mean relative to specification limits. 

The process capability index of the mean is the Cpm, which uses a target value to 

account for the process mean relative to the target. However, this is only given if a 

target value is entered in Minitab. 

Conclusion The Minitab Capability Sixpack will quickly and easily provide a 

capability study; however, it will not tell you if the data is unstable for a capability 

study. It does however provide methods for assessing the suitability of the data and 

they should be used every time a capability study is performed. 
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5.3 Strangest Capability Study: Super-Zooper-Flooper-Do Broom Boom  

The great Dr. Seuss tells of Mr. Plunger, who is the custodian at Diffendoofer School 

on the corner of Dinkzoober and Dinzott in the town of Dinkerville. The good Mr. 

Plunger “keeps the whole school clean” using a supper-zooper-flooper-do (Dr. Seuss, 

Prelutsky, and Smith 1998). 

Unfortunately, Dr. Seuss fails to tell us where the supper-zooper-flooper-do came 

from and if the production process was capable. 

Let’s assume the broom boom length was the most critical dimension on the supper-

zooper-flooper-do. The broom boom length drawing calls for a length of 55.0 mm 

with a tolerance of +/- 0.5 mm. The quality engineer has checked three supper-

zooper-flooper-do broom booms and all were in specification, so he concludes that 

there is no reason to worry about the process producing out of specification parts. 

But we know this not true. Perhaps the fourth supper-zooper-flooper-do broom boom 

will be out of specification. Or maybe the 1,000th. 

It’s time for a capability study, but don’t fire up your Minitab Statistical Software 

just yet. First we need to plan the capability study. Each day the supper-zooper-

flooper-do factory produces supper-zooper-flooper-do broom booms with a change 

in broom boom material batch every 50th part. A capability study should have a 

minimum of 100 values (Hare 2007) and 25 subgroups. The subgroups should be 

rational: that means the variability within each subgroup should be less than the 

variability between subgroups. We can anticipate more variation between material 

batches than within a material batch so we will use the batches as subgroups, with a 

sample size of four. The results are shown in Table 5.5. 
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1 55.0

8 

21 55.1

2 

41 55.2

6 

61 54.9

4 

81 55.1

5 

2 55.1

9 

22 55.3

5 

42 55.1

8 

62 55.2

9 

82 55.1

7 

3 55.2

5 

23 55.1
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43 55.0
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63 55.1
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83 55.2

3 
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6 

24 55.2
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44 55.2
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64 55.1
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84 55.2

3 
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45 54.9
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65 55.1

9 

85 55.2
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3 

26 55.0
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46 55.0

9 

66 55.1

3 

86 55.2

3 

7 55.2
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67 55.1
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87 55.0
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8 55.0
8 

28 54.9
6 

48 55.0
2 

68 55.2
3 

88 55.1
8 

9 55.1
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29 54.9

9 

49 55.2
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9 
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9 

30 55.2
7 

50 55.2
2 

70 55.1
2 

90 55.1
1 

11 55.2

5 

31 55.2

5 

51 55.1

3 

71 55.2

1 

91 55.2

5 

12 55.0
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1 

Table 5.5: Broom boom length measurements 

Once the data has been collected, we can crank up our Minitab and perform a 

capability study by going to Stat > Quality Tools > Capability Analysis > Normal. 

Enter the column containing the measurement values. Then either enter the column 

containing the subgroup or type the size of the subgroup; in this case, the subgroup 

size was 4. Enter the lower specification limit and the upper specification limit, and 

click OK. The resulting graph is shown in Figure 5.5. 
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Figure 5.5: Capability analysis for the broom boom length 

We now have the results for the supper-zooper-flooper-do broom boom lengths, but 

can we trust our results? A capability study has requirements that must be met. We 

should have a minimum of 100 values and 25 subgroups, which we have. But the 

data should also be normally distributed and in a state of statistical control; otherwise, 

we either need to transform the data, or identify the distribution of the data and 

perform capability study for nonnormal data. 

Dr. Seuss has never discussed transforming data so perhaps we should be hesitant if 

the data do not fit a distribution. Before performing a transformation, we should 

determine if there is a reason the data do not fit any distribution. 

We can use the Minitab Capability Sixpack to determine if the data is normally 

distributed and in a state of statistical control. Go to Stat > Quality Tools > 

Capability Sixpack > Normal. Enter the column containing the measurement 

values. Then either enter the column containing the subgroup or type the size of the 

subgroup. Enter the lower specification limit and the upper specification limit and 

click OK. The resulting graph is shown in Figure 5.6. 
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Figure 5.6: Capability Sixpack for the broom boom length 

There are no out-of-control points in the control chart and the normal probability plot 

follows a straight line, and has a P value is greater than 0.05, so we fail to reject the 

null hypothesis that the data follow a normal distribution. The data is suitable for a 

capability study. 

The within subgroup variation is also known as short term capability and is indicated 

by Cp and Cpk. The between subgroup variability is also known as long term 

capability is given as Pp and Ppk. The Cp and Cpk fail to account for the variability 

that will occur between batches; Pp and Ppk tell us what we can expect from the 

process over time. 

Both Cp and Pp tell us how well the process conforms to the specification limits. In 

this case, a Cp of 1.63 tells us the spread of the data is much narrower than the width 

of the specification limits, and that is a good thing. But Cp and Pp alone are not 

sufficient. The Cpk and Ppk indicate how spread out the data is relative to the center 

of the specification limits. There is an upper and lower Cpk and Ppk; however, we 

are generally only concerned with the lower of the two values. 

In the supper-zooper-flooper-do broom boom length example, a Cpk of 1.10 is an 

indication that the process is off center. The Cp is 1.63, so we can reduce the number 

of potentially out-of-specification supper-zooper-flooper-do broom booms if we 
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shift the process mean down to center the process while maintaining the current 

variation. This is a fortunate situation as it is often easier to shift the process mean 

than to reduce the process variation. 

Once improvements are implemented and verified, we can be sure that the next 

supper-zooper-flooper-do the Diffendoofer School purchases for Mr. Plunger will 

have a broom boom that is in specification if only common cause variation is present. 





 
 

 

 

 
 

CHAPTER 6 
 

Statistical Process Control  
 

 

 

 

Statistical Process Control is introduced. The critical concepts of common cause 

variability and special cause variability are introduced along with an explanation of 

the consequences of confusing the two. Creating an individuals chart is shown; this 

is followed by an introduction of the Nelson rules for control charts. The Nelson rules 

are used to identify out of control points on a control chart; however, activating all 

of them at the same time increases the risk of falsely identifying values as out of 

statistical control. Guidance on activating the various Nelson rules in Minitab is 

provided. 

The various types of control charts are presented and guidance is given for selecting 

the correct type of control chart for an intended use. The concepts of variable and 

attribute data are also described as this must be understood to correctly select a 

control chart for a given type of data.  

6.1 Using the Nelson Rules for Control Charts in Minitab 

Control charts plot your process data to identify and distinguish between common 

cause and special cause variation. This is important, because identifying the different 

causes of variation lets you take action to make improvements in your process 

without over-controlling it. Unneeded process changes, such as treating common 

cause variation as special cause variation, is knowing as tampering and it could lead 

to a process going out of control (Kubiak and Benbow 2009). 

When you create a control chart, the software you're using should make it easy to see 

where you may have variation that requires your attention. For example, Minitab 

Statistical Software automatically flags any control chart data point that is more than 

three standard deviations above the centerline, as shown in the I chart in Figure X. 
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To create the I chart using the data in Table X, go to Control Charts > Variables 

Control Charts for Individuals > Individuals and enter the column containing the 

data. The data in Table 6.1 was used to create the control chart shown in Figure 6.1. 

Data 

15.48 

15.58 

15.45 

15.29 

15.18 

15.22 

15.20 

15.33 

15.39 

15.34 

15.43 

15.53 

15.29 

15.31 

15.32 

15.33 

15.36 

15.38 

15.39 

15.60 

15.41 

15.51 

15.49 

15.29 

15.43 

15.72 

15.38 

15.35 

15.41 

15.36 

Table 6.1: I chart data 
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Figure 6.1: I chart example with one out-of-control point 

A data point that more than three standard deviations from the centerline is one 

indicator for detecting special-cause variation in a process. There are additional 

control chart rules introduced by Dr. Lloyd S. Nelson in his April 1984 Journal of 

Quality Technology column (1984). There are eight Nelson Rules and if you're 

interested in using them, they can be activated in Minitab. 

To activate the Nelson rules, go to Control Charts > Variables Charts for 

Individuals > Individuals and then click on "I Chart Options." Go to the “Tests” tab 

and place a check mark next to the test you would like to select—or simply use the 

drop-down menu and select “Perform all tests for special causes,” as shown in Figure 

6.2. 
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Figure 6.2: The resulting session window explains which tests failed 

The session window (see Fig. 6.3) shows the tests which have failed and the out of 

control points are identified in the I chart as a square box with the number of the test 

that was failed as shown in Figure 6.4. 

 

Figure 6.3: Session window for an I chart 



IMPROVING PRODUCTS, SERVICES AND PROCESSES 

 

 

113 

 

Figure 6.4: I chart with many out of control points 

Wheeler warns us “As the number of detection rules increases, the likelihood of a 

false alarm will also increase” (Wheeler 1995 p. 139). Simply activating all of the 

rules is not recommended—the false positive rate goes up as each additional rule is 

activated. At some point the control chart will become more sensitive than it needs 

to be and corrective actions for special causes of variation may be implemented when 

only common cause is variation present. 

Minitab, together with the Nelson rules, can be very helpful, but neither can replace 

or remove the need for the analyst's judgment when assessing a control chart. These 

rules can, however, assist the analyst in making the proper decision.  

6.2 Selecting a Control Does not Need to be Scary 

For the inexperienced, selecting a control chart can be scary and intimidating, but 

that does not need to be the case. The correct type of control chart should be selected 

based upon the data. Suppose we needed to set up a control chart for a production 

line producing hard candies for Halloween. Which type of control chart should we 

use? 

Charts for Variable Data If we are dealing with measurements such as length, 

weight, diameter, or angle, we would use a control chart for variable data (see Table 

6.2), which is also known as continuous data. The exact chart will depend upon the 

subgroup size. An I-MR chart is used for data that was not collected in subgroups, 

an Xbar-R chart is used for subgroup sizes equal to or less than 8, and an Xbar-S 

chart is used when the subgroup is size greater than 8. 
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Subgroup size Control chart 

Not applicable I-MR 

Less than or equal to 8 Xbar-R 

Greater than 8 Xbar-S 
 

Table 6.2: Control charts for variable data 

The centerline of an I-MR chart is based on the mean of all values and the MR chart 

is based on the moving range, which is the difference between consecutive values. 

The mean of an Xbar chart is based on the mean of the subgroups. The R chart shows 

the range within a subgroup and the S chart uses the standard deviation of the 

subgroups. 

Data should be collected in rational subgroups, which include only common cause 

variation and not special cause variation (Montgomery, Runger and Hubele 2001). 

In our example we select five hard candies produced from the same batch of raw 

material and measure the diameter in millimeters. We do this once very hour for 5 

hours. The results are shown in Table 6.3 

Subrgoup 1st sample 2nd 

sample 

3rd 

sample 

4th 

sample 

5th 

sample 

SG1 16.98 17.07 17.04 17.01 17.09 

SG2 17.15 16.99 17.14 17.15 16.93 

SG3 17.06 17.07 16.99 16.88 16.89 

SG4 17.12 17.03 17.07 17.03 17.11 

SG5 17.00 16.92 16.94 17.01 17.06 
 

Table 6.3: Data in subgroups 

We select an Xbar-R chart since we have variable data and a subgroup size of 5. Go 

to Control Charts > Variables Charts for Subgroups > Xbar-R and select 

“Observations for a subgroup are in one row of columns” and select the columns 

containing data and the subgroups. If the subgroups had all been in one column, we 

would have selected “All observations for a chart are in one column” and then either 

select the column containing the subgroup identifier or would have entered the size 

of the subgroup. The resulting Xbar-R chart is shown in Figure 6.5. 
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Figure 6.5: Xbar-R chart 

Charts for Attribute Data Instead of measuring a dimension, we could have 

assessed the quality of the individual hard candies and created a control chart of 

attribute data (see Table 6.4). Attribute data pertains to “A characteristic or property 

that is apprised in terms of whether it does or does not exist (e.g. Go or NoGO) with 

respect to a given requirement” (Griffith 2003 p. 567).  

Used for Control chart 

Proportion defective P chart 

Defective items per subgroup NP chart 

Defects per unit U chart 

Defects in subgroup C chart 
 

Table 6.4: Control charts for attribute data 

Suppose we pulled a large sample of hard candies and found quality problems such 

as cracked candies, porosity, and measurement deviations. We would use the U chart 

for defects per unit such as one candy with two separate problems. An alternative 

would be to total the number of defects in the subgroup and use the C chart. But in 

this case, it may not make sense to count each individual defect on a candy. Instead, 

we could count any candy with 1 or more defects as 1 defective and use the P chart 

to monitor the proportion of candies defective in every subgroup. We’ll create an NP 
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chart for the number of defective candies in each subgroup using the data in Table 

6.5. 

Total checked n.OK 

60 12 

62 14 

60 11 

70 15 

68 13 

Table 6.5: Defectives in subgroups 

Go to Control Charts > Attributes Charts > NP and select “Observations for a 

subgroup are in one row of columns” and select the column containing the number 

of defectives as the “Variables” and the column containing the total number checked 

for the “Subgroup sizes.” The resulting control chart is displayed in Figure 6.7. 

 

Figure 6.7: NP chart 

Conclusion Although there are many types of control charts to choose from, the 

decision does not need to be difficult as the correct type of control chart will be 

determined by the type of data that results from what we decide to monitor.  
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CHAPTER 7 
 

Design of Experiments 
 

 

 

 

Design of Experiments is as an economical way of performing experiments; a study 

that requires hundreds of tests can be reduced to a manageable number while 

delivering useful information. The related terminology is illustrated using the 

example of experiments performed using a catapult. The reader is walked through 

the experiment to show both how to plan and conduct the experiment and how to 

analyze it using Minitab. A second example uses experiments performed using a 

paper helicopter. The paper helicopter study did not have sufficient degrees of 

freedom to calculate P-values; therefore, removing factors to reduce the model and 

increase the available degrees of freedom is covered. 

In addition to describing how to analyze the experiment using Minitab, reducing 

variability in conducting the experiment is covered. Selecting the required resolution 

and interpreting main effects plots and interaction plots is described. Using the 

Minitab response optimizer to identify the optimal settings is explained. 

7.1 Experiment for a DIY DoE Catapult  

Learning to perform DoE (Design of Experiments) is much easier if there is 

something to practice on. Along with paper helicopters, catapults are a common DoE 

training aid. The biggest disadvantage of the catapult is the space required to perform 

the experiment and the cost of purchasing a catapult (Woody and Einwalter 1997); 

however, the cost problem can be eliminated by building a catapult from scratch. 

Here, fractional factorial DoE using a homemade catapult will be explained. A 

fractional factorial does not evaluate every possible combination and catapult setting; 

however, it is more economical to perform than a general full factorial, which 

evaluates every possible combination. Another alternative could be a full factorial, 
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which evaluates every possible combination, but only using the highest and lowest 

catapult settings; however, performing a full factorial may still be uneconomical 

Planning the Designed Experiment: Possible Factors and Levels In DoE, each 

experiment performed is a run and the response variable is what is evaluated after 

each run. The response for the catapult experiment is the distance traveled by a 

projectile. The potential influences that are used in the DoE and varied between runs 

are the factors (Lawson and Erjavec 2001). The settings of the factors are called 

levels.  

The catapult has 6 factors with three possible levels each. The factors are: 

1. rubber band guide 

2. arm stopper 

3. starting point 

4. rubber band 

5. rubber band attachment on arm 

6. projectile 

The rubber band guide increases the distance the rubber band must travel and thereby 

stretches the rubber band. The rubber band guide can be set at one of three possible 

heights by moving the metal rod to the screw eye at the required height. The levels 

are the distance from the top of the base of the catapult to the center of the screw eye 

for the guide. 

The arm stopper stops the catapults arm after lunch and the factors are the distance 

from the beginning of the support connector to the center of the screw eye for the 

stopper. 

The starting point is the lowest point at which the catapult arm can be pushed down 

to prior to launching the projectile. The levels are the distances from the top of the 

base to the middle of the screw eyes used for the starting points. 

The rubber band factors are the diameters of the rubber bands, and the projectile 

factors are the weight of the bags of rice used as a projectile. The final factor is the 

point where the rubber band is attached to the catapult arm; the three levels are the 

distances from the end of the arm to the attachment point. 

The table below shows the factors and their possible levels are shown in Table 7.1. 

Factor First level Second level Third level 

Rubber band guide 4 cm 9 cm 14 cm 

Arm stopper 5 cm 10 cm 15 cm 

Starting point 3 cm 8 cm 13 cm 
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Rubber band 90 mm 100 mm 130 mm 

Projectile 25 g 37.5 g 50 g 

Attachment on arm 14 cm 18 cm 22 cm 

Table 7.1: Factors and levels 

Additional levels are possible. There is enough room on the catapult to add more 

levels to the rubber band guide, arm stopper and starting point. There are also more 

rubber band sizes available and the weight of the projectiles is not infinite, but limited 

only by the upper limit of what the catapult can throw. For most DoE trials six factors 

with three levels should be sufficient. This results in 36 possible combinations. That 

means 729 combinations. Adding an extra level to each factor would result in 4,096 

combinations and a fifth level would result in 15,625 combinations. Doubling the 

number of levels to six would result in 46,656 different combinations. 

The catapult may be large enough to accommodate six levels for each of the six 

possible factors; however, DoE would be needed to find the optimal settings without 

running all possible combinations. 

The DoE Experiment I had to put the catapult to use after finishing with the 

assembly. The first experiment performed using the catapult was a 23 full factorial 

with no replicates. This means that three factors were evaluated, each at two levels, 

and each treatment was run only one time. To create a DoE worksheet, go to DOE > 

Factorial > Create Factorial Design and select “2-level factor (default generators)” 

under “Type of Design” and select 3 as the “Number of factors” using the dropdown 

menu. Click on Designs and select Full factorial. Run the experiment and enter the 

results into Minitab. Then go to DOE > Factorial > Analyze Factorial Design. 

Alternatively, the factors and levels for the experiments well as the results shown in 

Table 7.2 can be copied into a new Minitab worksheet. Go to DOE > Factorial > 

Analyze Factorial Design and Minitab will ask for the factors, levels, and response.  

Projectile Rubber band Starting point Response 

10 90 3 500.7 

10 90 13 418.3 

10 130 3 374.3 

10 130 13 285 

20 90 3 512 

20 90 13 398.7 

20 130 3 334.3 

20 130 13 261.3 

Table 7.2: Factors, levels, and results 
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The resulting Minitab worksheet showed asterisks in place of P-values; this is an 

indication that there was not enough variability in the study. More replicates may 

have been necessary. Figure 7.1 shows a Pareto chart of effects; only the rubber band 

and starting pints were statistically significant. 

 

Figure 7.1: Pareto chart of effects 

Each run was performed at a high and low value for the factors. Run order was 

determined at random to ensure randomization. This was essential to ensure that the 

results were indeed the results of the factors and levels evaluated, and not changes in 

the system as the testing progressed. For example, the rubber bands used may stretch 

during testing. Randomization helps to ensure the test results of such uncontrollable 

factors are spread across the test result, and Minitab Statistical Software's DoE tools 

provide a randomized run order by default. 

The experiment was performed the runs in the order determined by the software and 

recorded the results. Next, generate a main effects plot and an interaction plot for the 

response variable, distance traveled by the projectile by going to DOE > Factorial 

> Factorial Plots. The main effects plot is shown in Figure 7.2 and the interaction 

plot is shown in Figure 7.3. 
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Figure 7.2: Main effects plot 

 

Figure 7.3: Interaction plot 

The results indicate that the interactions were not significant. However, the analysis 

results shown in the main effects plot indicate a large difference between the high 

and low settings for both rubber band and starting point. This makes sense, since the 

smaller rubber band should provide more force than the larger rubber band. The 

lower starting point for the catapult arm results in a greater distance of travel between 

the release point of the arm and the stopping point where the arm releases the 

projectile. 

The effect of the projectile weight was not as important as the other factors. This may 

be due to the very light weight of the projectiles. The higher setting was twice the 

weight of the low setting; however, the lower setting was only the equivalent of 

approximately 4 quarters. Maybe a difference of a dollar’s worth of quarters is too 

little to result in a larger main effect for distance traveled? This could also be 

investigated using the catapult and Minitab. 
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7.2 Teaching DoE with Paper Helicopters and Minitab  

I once attempted to give several engineers a 30-second explanation of what Design 

of Experiments (DoE) is and what it could do. The results were what an experienced 

DoE practitioner might expect from such an exercise: a total failure. Perhaps a 30-

second introduction to DoE is unrealistic, but providing a short and concise 

explanation is possible. Having a paper helicopter on hand helps. 

The late statistician George E. P. Box, along with Soren Bisgaard and Conrad Fung, 

used a paper helicopter to teach statistics. The idea originated with Kip Rogers of 

Digital Equipment (Box 1992) and is useful for demonstrating fractional factorial 

designs. Decades after Box, Bisgaard and Fung’s publication, the DoE helicopter has 

become a useful staple of DoE training. 

The paper helicopter provides a way to quickly explain basic DoE concepts. It also 

offers an easy-to-do experiment you can analyze using Minitab. 

The Goal: Making a Better Paper Helicopter To perform a DoE with a paper 

helicopter we need to identify the desired output, which would be our response 

variable. We can’t just declare that we want a high quality helicopter; quality must 

be clearly defined. 

A good helicopter is one which stays in the air for a longer time, so the response 

variable would be flight time as measured from the time the helicopter is dropped 

from a height of 2 meters until the time it hits the floor. Without defining the test 

conditions, it could be possible that sample helicopters would be dropped from 

different heights, in which case our DoE results would be not be valid. 

Test factors that influence flight time must also be identified. For the helicopter 

experiment, the factors are paper type, rotor length, leg length, leg width and paper 

clip (see Table 7.3). The helicopter experiment levels are varied by using two 

different types of paper, using longer or shorter leg and rotor lengths and adding or 

removing a paper clip. 

Factor Low setting (-) High setting (+) Factor 

Paper type Light Heavy Paper type 

Rotor length 7.5 cm 8.5 cm Rotor length 

Leg length 7.5 cm 12.0 cm Leg length 

Leg width 3.2 cm 5.0 cm Leg width 

Paper clip on leg No Yes Paper clip on leg 

Table 7.3: Helicopter factors 
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Designing the Experiment Statisticians and Six Sigma black belts should know how 

to set up and perform the calculations in a designed experiment by hand; however, 

computer programs make DoE a much simpler task, particularly for people who need 

to perform experiments only occasionally. 

To create a fractional factorial design in Minitab Statistical Software, go to DoE > 

Factorial > Create Factorial Design and select the desired design. For this 

experiment, we will use a 2-level factorial which can handle from two to fifteen 

different factors. To select the desired design in Minitab, select 5 for the “Number of 

factors,” then click “Designs” to select the desired design and resolution level.  

Resolution is the degree to which effects are aliased with other effects. In other 

words, aliased effects are mixed together and can’t be estimated separately. This can 

also be referred to as confounding (Durivage 2016), and it results from not testing 

every possible combination of factors. This is a disadvantage of a fractional factorial 

design; however, not testing every possible combination can be a significant 

advantage in time and expense over a full factorial design.  

If you’re not sure what resolution you should use, click on “Display Available 

Design” to see a list of designs and resolutions. 

In the quality realm, we typically use three levels of resolution: resolution III, IV and 

V. There is no confounding of main effects with each other in these three resolution 

types; however, in a resolution III design, main effects will be confounded with 2-

factor interactions. Resolution IV designs do not have 2-factor confounding with 

main effects, but 2-factor interactions are aliased with other 2-factor interactions, and 

main effects are confounded with 3-factor interactions.  

We try to use resolution IV designs instead of resolution III designs when possible 

because they have less aliasing, but still require fewer experimental runs than higher 

resolution experiments.  

Resolution V designs have the added advantage that no 2-factor effects are 

confounded with other 2-factor effects; however, 2-factor effects are aliased with 3-

factor effects, and main effects are aliased with 4-factor effects.  

The confounding problem can be eliminated by performing a full factorial design; 

however, this requires more experimental runs, which might be prohibitive in terms 

of both time and money.  

Looking at “Display Available Designs” in Minitab, we can conduct a fractional 

factorial experiment using either a resolution III or a resolution V design for the 5 

factor helicopter experiment. A resolution III design would only need 8 runs, but the 
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resolution V design that requires 16 test runs is the better option. Click on “Designs” 

and select the desired design. 

As you set up the experiment, Minitab also asks for the number of blocks. Blocks are 

simply homogenous groupings of measurements that can be used to account for 

variation (Box, Hunter and Hunter 2005). The default value is one; ideally, 

everything is homogenous. 

The helicopter experiment will be set up so that there is only one experimental block: 

each type of paper will come from the same source; the helicopters will all be built 

by the same person using the same scissors and ruler. If we had a paper clip shortage 

that forced us to use paper clips from two manufacturers, then we would need blocks 

to account for potential variation in the paper clips. Fortunately, this is not the case. 

After you select your design, click the “Factors” button to enter the names and levels 

of the variables in your experiment. To change the name of a factor, simply type the 

name of the factor over the letter in the name field. The factor settings can also be 

renamed by replacing the default values of -1 and 1 with the actual factor levels. 

When you’ve completed the dialog box, Minitab creates the experimental design and 

displays it in a Minitab worksheet (see Figure 7.4). The session window above the 

worksheet provides a description of the selected design with the resulting alias 

structure (see Fig. 7.5). 

 

Figure 7.4: Minitab worksheet 
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Figure 7.5: Session window with alias structure 

In the resulting Minitab worksheet shown above, the experimental results are entered 

into column C10. We can name the column “Flight time” because that is our 

experimental response variable. 

A randomized run order is provided in the “RunOrder” column. Without 

randomization there is a risk that the experimental results will reflect unknown 

changes in the test system over time. For example, in the helicopter experiment, the 

scissors may become dull over time, resulting in slightly different cuts as each new 

helicopter is prepared.  

Minitab’s default setting for a designed experiment is one replicate. If you observe a 

lot of variation in the process or the resulting measurements, you can use Stat > DoE 

> Modify Design to add replicates to your design. Suppose the person making the 

helicopters had difficulty cutting a straight line so all edges are not uniform; the 

differences in results may reflect this variation. Replicating runs minimizes the 

effects of this kind of unanticipated variation.  

Gathering the Experimental Data Variability can have a major impact on 

experimental results, so take steps to reduce the variability. Have the same person 

make all of the helicopters using the same scissors and ruler. Drop the helicopters 

from a height of 2 meters, and identify the drop point clearly to ensure consistency. 

A higher or lower starting point would affect flight time, and this could throw off the 
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results. The helicopters must also be held and released the same way, or variation in 

our data might be the effect of the release method and not the design of the helicopter. 

Either run the helicopter experiment yourself and enter the data into Minitab, or copy 

the results from Table 7.4 into Minitab and go to DOE > Factorial > Analyze 

Factorial Design and Minitab will ask for the factors, levels, and response. 

Paper 

type 

Rotor 

length 

Leg length Leg width Paper clip 

on leg 

Flight time 

1 7.5 12 2 1 1.56 

2 8.5 12 3 2 1.65 

1 8.5 12 3 1 1.87 

2 7.5 12 2 2 1.27 

2 8.5 7.5 3 1 1.76 

2 8.5 7.5 2 2 1.64 

1 8.5 7.5 2 1 2.3 

1 7.5 12 3 2 1.61 

1 7.5 7.5 3 1 2.1 

2 7.5 7.5 2 1 1.58 

2 7.5 12 3 1 1.54 

1 7.5 7.5 2 2 1.98 

1 8.5 7.5 3 2 1.99 

2 8.5 12 2 1 1.62 

2 7.5 7.5 3 2 1.57 

1 8.5 12 2 2 1.8 
 

Table 7.4: Helicopter experiment results 

Analyzing the Data After running the experiment and entering the collected data in 

the Minitab worksheet, select DoE > Factorial > Analyze Factorial 

Design.  Significant factors are those that influence the response as they changed 

from one setting to another. When you click OK, Minitab provides a Pareto chart of 

effects (see Fig. 7.6), which makes it very easy to identify significant factors as well 

as an ANOVA table (See Fig. 7.7). 
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Figure 7.6: Pareto chart of effects 

In an ANOVA table, those factors with a P-value less than 0.05 are statistically 

significant. However, the ANOVA table for this model doesn’t include any P-values!  
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Figure 7.7: Session window with Analysis of Variance for the DoE 

This is because with all of our factors included in the model, we have no degrees of 

freedom left for Error, and you need at least 1 degree of freedom to calculate P-

values. But while we can’t accept this model based on the ANOVA results, we can 

use the normal plot or Pareto chart to identify factors and interactions that are not 

significant. 

At this point, the experimenter would typically begin eliminating these factors, 

rerunning the analysis until only significant factors and interactions are left. This is 

usually referred to as “reducing the model.” As factors are removed from the model, 

additional degrees of freedom become available for the calculation of P-values. The 

number of models you need to evaluate depends on the number of factors in your 

analysis. 

With the stepwise DoE tool in Minitab 17, reducing the model is a one-step process. 

To use this feature, return to the “Analyze Factorial Design” dialog box, select C10 

Flight time as the “Response, then press the “Stepwise” button.  

The stepwise regression feature makes it simple and fast to select the optimal model 

for your data by automatically removing factors to find the model that best fits your 

data. You can choose from three stepwise analysis methods: Stepwise, Forward 

selection, and Backward elimination. In Backward elimination, all factors are 

included in the initial analysis, and then non-significant factors are removed one-by-

one. Regardless of the stepwise method you use, the model Minitab selects contains 

the same significant factors shown in Figure 7.8. 

 

Figure 7.8: Pareto chart of standardized effects 
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To help you interpret your results, Minitab can also provide main effects and 

interaction plots. Select DoE > Factorial > Factorial Plots. Since we have already 

analyzed the results, Minitab automatically selects the factors used in our model. 

Clicking OK gives us plots of the significant main effects and interactions. The main 

effects plot in Figure 7.9 shows the results of changing from one setting to another 

for each factor. 

 

Figure 7.9: Main effects plot 

The interaction plot in Figure 7.10 shows the interactions between the factors. 

 

Figure 7.10: Interaction plot 

Finally, we can use the Response Optimizer to find the combination of factor settings 

that will give us the longest flight time. Select Stat > DoE > Factorial > Response 

Optimizer and change the Goal to “Maximize. The optimizer produces the graph in 

Figure 7.11 showing the optimal factor settings and the predicted response for 

helicopters made with those settings. 
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Figure 7.11: Response optimizer 

Conclusion For the data we collected, our analysis with Minitab indicates the 

optimal helicopter settings are lighter paper, longer rotor length, shorter leg length, 

slimmer leg width, and no paperclip on the leg. 

To design an even better helicopter, we could repeat the entire DoE using even lighter 

paper and longer helicopter blades. A 50 cm wing may be bigger, but that does not 

mean it will be better. You may be able to predict the ideal settings based on a DoE 

result, but you should always be cautious when extrapolating beyond the data set, or 

the result may be a crashing helicopter. 
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CHAPTER 8 
 

Conclusion 
 

 

 

 

Various statistical methods such as a two-sample t-test, regression analysis and test 

of two portions are performed. A mean and standard deviation is also found by using 

the Display Descriptive Statistics function in Minitab and the data is plotted in an 

individual value chart.  However, the main lesson is how to properly perform a 

statistical test such as selecting the variable that matters and not simply the data that 

is easily available. Statistics uses math, but it is not about the math, statistics is 

performed as a way to gain new knowledge or interpret data in a way that permits 

the correct decision to be made.  

This chapter concludes by reiterating why statistics matter and reminds readers that 

proper test selection is essential to getting results that help to make the correct 

decision. Statistics is not about simply determining if there is a statistically 

significant difference between two data sets; the test is performed to gain insights 

that can be used for better decision making. 

8.1 Flight of the Chickens: A Minitab Bedtime Story 

Once upon a time there was a farm with over a thousand chickens, two pigs, and a 

cow (see Figure 8.1). The chickens were well treated, but there were a few rabble 

rousers amongst them who got them worked up. These chickens looked almost like 

other chickens, but they were evil chickens.   



PRACTICAL STATISTICAL METHODS FOR QUALITY 

 

 

132 

 

Figure 8.1: Animals on the farm © Vanessa Friese. Used with permission 

Hidden among the good chickens and the evil chickens was Sid. Sid was not like 

other chickens. He was a secret spy for The Swan of the Lahn who ruled Wetzlar. 

Sid was also a duck. Yes, a duck. A duck disguised as a chicken. The duck spied for 

the Swan of the Lahn, who was concerned with the presence of all the evil chickens. 

Sid knew who the evil chickens were and sent regular reports on their activities.  

One stormy and dark night an evil chicken snuck out with an enormous basket of 

beautiful hand-painted eggs to throw at the two pigs and the cow. Sid snuck out into 

the pouring rain and took a sample of 18 eggs (see Table 8.1). The intrepid duck he 

knew that a previous study of 157 eggs showed that the mean of the eggs was 57.079 

grams with a standard deviation of 2.30 grams (Atwood 1925). Sid was determined 

to find out if his current samples had a statically significant difference when 

compared to the mean of the previous study. 

We will need to use summarized data since we only have actual values for the sample 

from the study and not the full data set. Using the data in Table 8.1, go to Stat > 

Basic Statistics > Display Descriptive Statistics and select the column containing 

the data as the “Variable.” Click on “Graphs” and select Individual value plot to view 

a graph of the data. Click OK twice and Minitab will create an individual value plot 

of the data (see Fig. 8.2) and the mean and standard deviation will appear in the 

session window with the rest of the descriptive statistics as shown in Figure 8.3. 

Eggs 
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Table 8.1:  Egg weights 

 

Figure 8.2: Individual value plot of eggs 
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Figure 8.3.: Session window for descriptive statistics for eggs 

We can see that the sample mean is 57.315 and the standard deviation is 2.439 so 

now we can perform a 2 sample t-test to compare the means by going to Stat > Basic 

Statistics > 2-Sample t and selecting Summarized data in the drop down menu. Enter 

the sample size of 18, sample mean of 57.315 and standard deviation of 2.439 under 

Sample 1 and enter the sample size of 157, mean of 57.079, and the population 

standard deviation of 2.30 under Sample 2. Then click OK and the results will appear 

in the session window as shown in Figure 8.4. 

 

Figure 8.4: Session window for a Two-Sample Test 
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The p -value is greater than 0.05 so we can conclude there is no statically significant 

difference in the means. Unfortunately, Sid made a critical mistake. His statistics 

were correct, but he asked the wrong question. His question was “Is the mean of the 

second sample different than the mean of the first sample with an alpha of 0.05?” 

What he should have asked was “What will happen if the pigs and cow get hit by 

eggs?” The first step in an analysis is to ask the right question. The weight of the 

eggs were irrelevant; the consequences of the pigs and cow being pummeled with 

eggs are what mattered. Management, in this case The Swan of the Lahn (see Figure 

8.5), reading such a report would conclude that the process has not changed. But, the 

correct conclusion would have been “trouble may be brewing.” 

The cow simply ate the eggs.  But the pigs rampaged and terrorized the poor chickens 

that night. By midnight, the muddy fields were full of pig prints and feathers were 

ruffled in the chicken coop.  One chicken, an evil chicken, demanded of the others 

“How can we live like this? The evil chickens convinced the other chickens they 

would all be happier if they moved to the high walled village of Wetzlar on the side 

of the Lahn River. The chickens began to march into the stormy night. 

The chickens marched through the night and arrived at Wetzlar on the Lahn as the 

sun came up. “Let us in!” demanded the chickens.” No” said the Swan. 

 

Figure 8.5: The Swan of the Lahn © Vanessa Friese. Used with permission 

The chickens spent the day trying to force open the gates of Wezlar while one chicken 

snuck off to meet with a goose known for dealing in antiques such as lamps, chairs, 

and main battle tanks. The chicken returned by early evening with a slightly used T-

55 tank as shown in Figure 8.6.  
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Figure 8.6: Chicken in a T-55 tank © Vanessa Friese. Used with permission 

Sid knew he must do something, so he looked up the amount of fuel used for the 

distance driven for 47 T-55s (see Table 8.2) and performed a regression analysis to 

determine how far this one could go if it had full fuel tanks. 

Observation Fuel Distance Observation Fuel Distance 

1 610.6 655.0 26 640.4 694.8 

2 620.0 665.6 27 641.0 696.2 

3 622.6 668.0 28 641.1 696.6 

4 624.4 670.4 29 641.4 696.6 

5 625.8 671.8 30 642.0 698.0 

6 626.3 675.6 31 644.9 698.2 

7 626.6 681.9 32 645.6 699.3 

8 627.7 682.3 33 645.7 699.3 

9 628.7 682.3 34 645.9 699.4 

10 629.3 683.1 35 648.6 702.5 

11 629.3 683.3 36 649.0 704.3 

12 629.7 683.8 37 649.2 704.6 

13 631.1 685.6 38 649.2 706.0 

14 633.5 687.5 39 649.6 709.5 

15 634.4 688.5 40 649.6 711.2 

16 634.8 688.7 41 651.7 715.0 

17 635.5 689.6 42 652.0 716.9 

18 636.3 690.4 43 652.2 717.4 

19 636.9 691.4 44 653.1 723.8 

20 637.8 691.9 45 654.0 725.5 

21 638.0 692.8 46 656.8 728.0 

22 638.1 693.9 47 659.2 729.9 

23 638.3 693.9 18 659.2 730.6 
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24 638.3 694.1  
 

Table 8.2: Distance traveled 

Go to Stat > Regression > Fit Regression Model and select Distance as the 

“Response” and Fuel as the “Continuous predictor.” Then click on “Graphs” and 

select “Four in one.” We can see that there is a statistically significant relationship 

between fuel used and distance traveled (see Figure 8.7). The amount of fuel used 

explains 95.28% of the variability in distance traveled. There seems to be something 

odd with the order of the data as seen in residual plots graph in Figure 8.8 and the 

session window shows us there are three unusual values, two of which have large 

residuals. This is an indication that our data is not perfect for a regression analysis; 

however, it would not matter here as the real question should have been “Can a T-55 

round penetrate the gates of Weztlar?”  

 

Figure 8.7: Session window for regression analysis 
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Figure 8.8: Residuals plots 

The chicken with the tank huffed and puffed and fired the main gun directly at the 

gates of Wetzlar, but the round simply bounced off. He fired again and again, but the 

rounds bounced off again and again. Eventually the T-55 broke down as they are 

known to do so the chickens gathered in force and attempted to knock the gates down 

by running into them. But a gate that can survive a tank’s main gun round will not 

budge when rammed by chickens, no matter how determined the chickens are. By 

this time The Swan of the Lahn had had enough so boiling chicken soup with noodles 

and vegetables was poured onto the chickens. This was too much for the chickens so 

they fled (see figure 8.9).  

 

Figure 8.9: Chickens fleeing Wetzlar © Vanessa Friese. Used with permission 
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Unfortunately, the road they had followed had washed out in the heavy rains so the 

only route home was through the Bird Mountains. The misnamed Bird Mountains. 

They should have been called Hungry Foxes Everywhere Mountains. The chickens 

fled into the forests of the Bird Mountains. 

The evil chickens knew of the foxes so they let the other chickens lead so that they 

would encounter the foxes first. The evil chickens failed to consider that foxes are, 

as they say, sly as foxes. The foxes of the misnamed Bird Mountains waited till the 

chickens were well into their range and then went after those in the rear; the evil 

chickens. Evil chickens taste like chicken and the foxes feasted (see Figure 8.10). 

 

Figure 8.10: A well-fed fox © Vanessa Friese. Used with permission 

Sid suspected the evil chickens had been decimated so he did a survey upon returning 

to the farm. Originaly, 647 out of the population of 1,541 of the chickens were evil 

so he randomly sampled 175 chickens and found only 22 of the chickens were evil. 

Sid wanted to know if the new proportion of evil chickens was less than the older 

portion so he did a one-tailed two proportion test. 
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Go to Stat > Basic Statistics > 2 Proportions and select “Summarized data” in the 

drop down menu. Enter 22 for the “Number of events” and 175 for the “Number of 

trials” under “Sample 1” and enter 647 for the number of events and 1,541 for the 

number of trials under “Sample 2.” Click on “Options” and select “Difference > 

hypothesized difference” and click OK twice. The resulting p-value (see Fig. 8.11) 

is less than 0.05 so Sid can conclude there is a statically significant difference in the 

samples.  

 

Figure 8.11: Session window for a two proportion test 

After returning home, the chickens were confused. Just days earlier all was well and 

suddenly they had found themselves in such an adventure. The evil chickens were 

not confused, they had instigated it all. But, they were understandably upset with 

how things had ended and they began to argue and blame each other for the failure. 

Both recriminations and feathers flew. 
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Evil chickens started turning each other into the farmer which resulted in a weight 

gain for the farmer and an even greater reduction in the number of evil chickens. But 

this was not enough to eliminate them so Sid arranged a few “accidents” for the 

remaining evil chickens. The pigs eventually forgave the chickens for the egg 

throwing and the remaining chickens lived happily ever after. The cow spent the rest 

of her life hoping for another dinner of eggs and as for Sid, his next assignment was 

the infiltration of a rabbit den. How a duck disguised himself as a rabbit is a tale for 

another time (see Figure 8.12). 

 

Figure 8.12: Duck hiding amongst rabbits © Vanessa Friese. Used with 

permission 

There is a moral to the bedtime story: If you need help with statistics, call a 

statistician, not a duck. 

8.2 Adventure at Sea with Hypothesis Testing of Two Samples 

A strong breeze blew from the south west as the ship plied through the choppy seas 

with the deck awash in blood. Actually, upon further inspection, spilled pomegranate 

juice washed across the deck from a dropped cup. “Opps,” said the old pirate who 

had dropped it in his haste after spotting a merchantman in the distance.  

A merchantman low in the water; a sure sign of cargo or plunder, depending upon 

one’s perspective. “Leander, turn us towards her and run her down,” cried the old 

pirate who then continued softly with “while I mop up this spill.” 
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Figure 8.12: Pirates © Vanessa Friese. Used with permission 

The pirate ship HMS (His Moron’s Ship) Las Vegas II (We don’t talk about what 

happened to the original HMS Las Vegas and Captain Marco; see Book VI of Plato’s 

Republic for a full accounting or the graphic rendering by Hieronymus Bosch) was 

a terrifying sight to behold; painted white with large wings hanging over the sides 

(they doubled as planks for walking unwanted prisoners and a place to dry laundry) 

and a swan’s head as a figurehead on the bow. Now one may wonder “How terrifying 

can a swan be?” Anybody who wonders has never encountered an angry swan. And 

also, the swan’s head figurehead looked angry. Angry like only a swan could be.   
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Figure 8.13: The pirate ship © Vanessa Friese. Used with permission 

With a topgallant breeze to the rear, the HMS Las Vegas closed quickly on the 

unsuspecting merchantman. Upon closing the distance, the merchantman realized 

they were being pursued and threw up extra sails to carry them to the safety of the 

port of Safeharbour. But it was not enough and upon closing, Leander observed “That 

ship is crewed by raccoons.”  

 

Figure 8.14: A raccoon © Vanessa Friese. Used with permission 

The crew of the raccoon ship consisted of 47 officer raccoons and 152 enlisted 

raccoons. The officers have a mean weight of 26.04 kilograms and a standard 

deviation of 1.16. The enlisted raccoons have a mean weight of 24.91 kilograms and 

a standard deviation of 1.89. Suppose the pirates wanted to know if there was a 

statistically significant difference in the weights. They would open Minitab and go 
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to Stat > Basic Statistics > 2-Sample t and change the dropdown to “Summarized 

data.” The sample size, mean, and standard deviation would be entered in the window 

shown in Figure 8.15.   

 

Figure 8.15: Session window for two-sample t for the mean with summarized 

data 

The resulting Minitab session window in Figure 8.16 shows a p value of 0.000; this 

means they can reject the null hypotheses of “no difference.”  

 

Figure 8.16: Minitab session window for a two-sample t-test 
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Upon closing closer, grappling hooks were thrown and the boarding action began. 

The intrepid and inexperienced buccaneers began the arduous climb into the rigging 

of their prey. “Papa.” said Leander. “Yes, Leander?” replied Leander’s Papa. “Why 

does that raccoon have a bazooka?”  

“It’s probably just an old family heirloom. No worries,” responded the old pirate as 

they climbed higher into the rigging. The old pirate pointed his flintlock at the 

bazooka carrying raccoon just prior to realizing his flintlock was in the other hand 

and he was pointing a cutlass at a bazooka-carrying raccoon. “Oops.” As the old 

pirate fumbled while trying not to fall out of the rigging as he switched his weapons 

between hands, Leander said “Papa.” Yes, Leander?” replied Leander’s Papa. “Why 

are there so many cannons behind the gunwale?” 

“They can’t have a full load of cargo and that many guns or the ship would be too 

heavy. No worries,” responded the old pirate as he realized the ship did indeed have 

so many guns, therefore it could not be so loaded with cargo, which in turn means 

the ship was not a cargo ship. Yet, it looked like merchantman. Upon further 

contemplation, the pirate realized it was a Q-ship. 

“Leander” said Leander’s Papa. “Yes, Papa?” replied Leander. “We need to go now. 

I left the coffee machine on at home,” said the pirate quietly prior top jumping to the 

deck of his ship. 

“Leander! Get to the helm and put us on a course to the south!” yelled the pirate as 

he fumbled a cannon into position. Leander stayed calm, took out his compass to find 

South, and then turned the helm as his Papa traded fire with the Q-ship.  

They had set out to impress The Dread Pirate King with a triumphant return, loaded 

down with plunder. Now, they raced to come under the protective guns of the shore 

battery on Pirate Island. The vessel was hammered by the raccoon’s guns.  
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Figure 8.17: The Dread Pirate King © Vanessa Friese. Used with permission 

The ship’s wings were shot off and a fire raged in the rope locker. Yet, the HMS Las 

Vegas II still sailed onward towards safety. The valiant rogues of the sea tried to give 

as they got and were not entirely without successes. A cannonball fired by the pirate 

vessel knocked over a plate of cookies on the Q-ship. Granted, the cannonball 

continued on and splashed down in the water on the far side of the pursuers. Still, 

one takes what victories one can in life.  

Victories in life can be few and far between; unlike the disguised warship’s 

cannonballs, which were raining down on our bandits like, well, rain.  

The pirates were outnumbered by the 47 officers and 152 enlisted. The mean weight 

of the officers was different than the mean weight of the 152 enlisted. But was there 

a statistically significant difference in the standard deviations? This could be 

determined by opening Minitab and going to Stat > Basic Statistics > 2 variances and 

changing the dropdown to “Sample standard deviations” as shown in Figure 8.18. 

The sample sizes and standard deviations are then entered into Minitab.  
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Figure 8.18: Two-Sample Variance screen 

The session window shown in Figure 8.19 shows a p value of 0.000 so the null 

hypotheses can be rejected.  

 

Figure 8.19: Session window for a Two-Variance test 
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Minitab also provides a graph with confidence intervals for the F-Test (see Figure 

8.20). Had the data deviated for normality, the F-test would not be reliable and the 

pirates would have needed to select “Options.” The check mark next to “Use test and 

confidence intervals based on normal distribution” would then need to be removed. 

Unfortunately, the F-test is the only option if summarized data is used, but it is at 

least more powerful than other options if the data is normally distributed. Meanwhile, 

our brave pirates had much bigger problems than deciding between options for 

testing standard deviations.  

 

Figure 8.20: Graph with confidence intervals 

“Papa.” said Leander. “Yes, Leander?” replied Leander’s Papa. “Should there be so 

much water in our ship?” “I don’t think that is a good thing,” replied the older pirate. 

Fortunately, fortune favored our adventurers and the warship broke off its pursuit as 

they approached Pirate Island with their Black Flag flapping in the breeze. Well, the 

half if it that had not burned away was flapping in the breeze. The fire itself was soon 

no longer a problem; the ship sank into the mud as they entered a lagoon.   

The two pirates trudged ashore and Leander said “Papa.” “Yes, Leander?” replied 

Leander’s Papa. “Is that rowboat full of navel infantry coming from the warship 

going to be a problem?”  
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“No. Not at all” said the old pirate as he decided it was a good time to go jogging. 

Ideally, straight into the jungle. They ran and ran and the raccoons stayed on them 

like a hound dog following a raccoon. Which is rather ironic if you think about it.  

After much running, by both the scoundrels of the sea and raccoons, the freebooter’s 

came upon two people at the side of a freshwater stream. “Leander,” said Leander’s 

Papa. “Yes, Papa?” replied Leander. “I think those are sea sirens. We should turn 

and face our pursuers. We’ll have a better chance,” said the father. “No, they’re not. 

No, we should not. And we won’t,” said Leander. “It’s just an old witch and young 

witch.” 

 

Figure 8.21: Two witches © Vanessa Friese. Used with permission 

“Who are you and what are you doing here?” inquired Leander? “We are witches” 

said the smaller of the two. “We’re collecting magic stones.” 
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“Magic stones?” asked Leander?” “Yes” replied the witch to which Leander asked 

“Do you have an invisibility stone that we could borrow for a moment?” 

Seconds later the raccoons dashed out of the jungle with both the buttons on their 

uniforms and their muskets gleaming in the sun. “I’m looking for two dastardly 

fellows!” bellowed the captain of naval infantry. The witch both truthfully and 

honestly answered “I don’t see any dastardly fellows around here.”  

The raccoons then took the witches prisoner while smoke from the remains of the 

HMS Las Vegas II rose above the jungle. The pirate ship lay in ruins, much like the 

two sea rogue’s dreams of impressing The Dread Pirate King.   

“Leander” said Leander’s Papa. “Yes, Papa?” replied Leander. “Perhaps we should 

try cattle rustling.”  

 

Figure 8.22: New career 

8.32 If you Don’t Understand your Statistics, they can Become a 

Liability 

The science writer Michael Shermer, has previously written about something he calls 

“Darwin’s dictum.” It's based on a letter Charles Darwin sent to his friend Henry 

Fawcett in which he stated “How odd it is that anyone should not see that all 

observation must be for or against some view if it is to be of any service!” Shermer 

applies this to science (2001), but it applies equally well to statistics, hence I propose 



IMPROVING PRODUCTS, SERVICES AND PROCESSES 

 

 

151 

a “statistics dictum:” all statistics must be for or against some view to be of any 

service and the underlying statistical concepts must be understood. 

Somebody recently said to me, “I am surprised that you are interested in statistics. I 

did not expect you to like math.” Actually, I found math classes to be pure drudgery. 

What is there to like about being forced to memorize formulas simply to get a good 

grade? I have nothing against pure math - only something against teaching math as a 

rote memorization activity. Statistics, like math, can be taught as merely a collection 

of formulas one must memorize under penalty of a failing grade, or it can be taught 

as useful formulas one must understand to accomplish things. 

A consultant once told me “Don’t bother learning statistics, there are programs that 

can do it for you.” That sounded to me like “Don’t bother learning how to write, there 

are programs that can do that for you.” I would not expect an illiterate person to type 

a letter and I would not want a statistically illiterate person to analyze my data, even 

if a program does it for them. 

A different consultant assisted in the investigation of a failed manufactured product 

and he was convinced he had identified the root cause because he found a statistically 

significant difference in a set of measurement data. Unfortunately, the data was from 

factors that had absolutely no relevance to the problem under investigation. It does 

not matter if the difference is statistically significant, the area measured could have 

been removed from the components and this would not have made a difference to the 

issue under consideration. 

Statistics must be used for drawing a conclusion to be of any use. George Box 

reminds us that “Statistics is, or should be, about scientific investigation and how to 

do it better, but many statisticians believe it is a branch of mathematics” (1990 

p.251). I believe statistics is a tool that engineers should apply to understand data, 

but many engineers think it has something to do with mats. 

An engineer investigating changes in a manufacturing process does not perform a 

statistical analysis merely to determine if the mean yield of process one is greater 

than the mean yield of process two with p < 0.05. The objective is to determine if 

there is a difference in the mean yields so that actions can be taken. 

Many, if not most, engineering and business degrees require at least one course on 

statistics and anybody certified as an ASQ Certified Quality Engineer or Six Sigma 

Black Belt must have some knowledge of statistics. Knowledge of statistics alone 

will not accomplish anything, only the proper application of statistics with the intent 

to understand the data will accomplish anything. 

In today’s industry, statistics are easily assessable to engineers and managers due to 

the rise in easy to use statistical software packages. This does not mean just anybody 
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can open a statistical software program and crunch numbers, an understanding of 

statistics is still needed. Conclusions reached through statistical test when the test’s 

assumptions have been violated are worse than no data at all. Changing a 

manufacturing process due to the results of a Student’s t test when the data did not 

represent the population or a Z test when the population was not normal could mean 

a large investment in a machine that lowers quality. 

Successful professionals in industry can apply the “statistics dictum” by using 

statistical thinking, which is a “philosophy of learning” consisting of understanding 

that “All work occurs in a system of interconnected processes,” “Variation exists in 

all processes,” and “Understanding and reducing variation are keys to success” 

(Hoerl and Snee 1995 p.3). 

To apply statistical thinking, engineers, technicians and managers must understand 

the statistical tests they use, as well as the assumptions and limitations of these tests. 

This requires more than just memorizing the formulas behind the tests. It requires an 

understanding and an appreciation for statistics. With statistical thinking, statistics 

can be for or against a view and therefore of service to us. Statistics may for example 

be of the view that the new process, under the given test conditions, is better than the 

old process with a specific degree of certainty. 

This is not to say that there is no room for studying statistics merely to work with 

statistics. New statistical methods must be developed and new applications for 

statistics should be identified. However, even new methods and uses must be for or 

against some view when they are applied in the real world, or they would serve no 

purpose. 

Statistics is not just a field for statisticians. Engineers and managers in industry must 

be able to understand and correctly apply statistical concepts as well as evaluate and 

interpret statistical data. Statistics is too important a topic to be left only to the 

experts. 

 



 
 

 

 

 
 

Appendix A: 
 

Build a DIY  
Catapult for Design of 

Experiments 
 

 
 

 

I needed to find a way to perform experiments to practice using Design of 

Experiments (DOE), so I built a simple do-it-yourself (DIY) catapult. The basic plan 

for the catapult is based on the table-top troll catapult, which is available from Will 

Kalif’s Storm the Castle at http://www.stormthecastle.com/catapult/catapult-

assembly1.htm. 

My catapult is not as attractive as the troll catapult; my goal was to build a catapult 

with multiple adjustable factors—and not to lay siege to a castle—so I don’t mind 

the rough appearance of my catapult. 

The frame consists of two pieces of 40 cm x 4 cm x 2 cm wood, two pieces of 24 cm 

x 4 cm x 2 cm wood, and eight pieces of 20 cm x 4 cm x 2 cm wood. I could have 

used other dimensions. The shorter pieces are 50% the length of the long pieces; 

however, if you use other dimensions, be sure that the wood is thick enough to avoid 

breaking under the stress of a launch. The catapult arm is made of a 45 cm x 2 cm x 

2 cm piece of wood. I could have used a thicker piece for the catapult arm, but wanted 

something light. Also needed are 16 wood screws. The four screws used to hold the 

supports to the base must be flathead so the catapult's wooden bottom can sit flat. 

I used eighteen small screw eyes to add adjustability and four screw hooks to attach 

the rubber bands that power the catapult arm. The rubber bands are heavy rubber 

bands intended for model building, although regular rubber bands could work with a 

smaller catapult. I used 60 mm diameter, 100 mm diameter and 130 mm diameter 
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rubber bands. The catapult cup can be an actual small cup; I used the bottom of a 

small plastic bottle. 

For projectiles, I could have used small balls—but I wanted a projectile that would 

not roll or slide much after landing, so I used three small bags of rice as the 

projectiles. I also used a metal rod cut into pieces for the pivot point on the catapult 

arm and for the rubber band guides, arm stoppers and arm starting points. 

The dimensions can be modified as needed. For example, two pieces of 1” x 2” x 

15.75” wood, two pieces of 1” x 2” x 9.5” wood, eight pieces of 1” x 2” x 8” and one 

piece of 1” x 2” x 18” wood could be used to build the catapult using standard sizes. 

The catapult can also be scaled-up or scaled-down; just be sure it is wide enough so 

that it will not tip over. 

 

Figure A1: Right-side view of the catapult, without the catapult arm 
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Figure A2:  View from the front, again without the catapult arm 

 

Figure A3: Right-side view of the catapult arm 
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Figure A4: Completed catapult 

Catapult Plans 

Part list: 

2 Pieces of wood: 40 cm x 4 cm x 2 cm 

2 Pieces of wood: 24 cm x 4 cm x 2 cm 

8 Pieces of wood: 20 cm x 4 cm x 2 cm 

1 Piece of wood: 45 cm x 2 cm x 2 cm 

18 eye screws 

4 screw hooks 

16 Flathead wood screws:  5.0 mm x 60 mm 

1 Rubber band: 60 mm diameter 

1 Rubber band: 100 mm diameter 
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1 Rubber band: 130 mm diameter 

1 plastic cup: small 

1 bag of rice: 25 g 

1 bag of rice: 37.5 g 

1 bag of rice: 50 g 

4 metal rods: 3 mm diameter by 25 cm long 

Assembly 

Step 1: Cut two pieces of wood to 40 cm x 4 cm x 2 cm to use as the base (part A). 

Step 2: Cut two pieces of wood to 24 cm x 4 cm x 2 cm (part B) to connect the 

supports (parts C and D). 

Step 3: Cut eight pieces of wood to 20 cm x 4 cm x 2 cm. The supports (parts C and 

D) will require 4 pieces; the reinforcement for the supports (part E) will require two 

pieces and the connectors (parts F and G) will use two pieces. 

Step 4: Take two of the 20 cm x 4 cm x 2 cm pieces and cut a 45° angle on each end 

to fit the support reinforcements (part 4) to the supports (Parts C and D) and base 

(Part A).  

Step 5: Attach the connectors (parts F and G) to the base (part A) using wood screws. 

NOTE: Predrill the screw holes and countersink if necessary. 

Step 6: Attach the supports (parts C and D) to the base (part A) using wood screws.  

Step 7: Attach the support reinforcement (part E) to the support (part D) and the base 

(part A) using wood screws. 

Step 8: Attach the support connector (part B) to the supports (parts C and D) using 

wood screws. 

Step 9: Assemble the opposite side by repeating steps 5 through 8 for the opposite 

side.  

Step 10: Drill a hole on each side of the base (part A) for the pivot arm rod. The 

holes should be slightly larger than the 3 mm metal rod. 

Step 11: Drill a hole in the catapult arm for the metal rod. 

Step 12: Attach hook for rubber band, screw eyes for rubber band guides, hook 

screws for arm stoppers and hook screws for starting points to the frame. 

Step 13: Attach the hooks for the rubber bands to the catapult arm. 
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Step 14: Attach the cup to the catapult arm using a wood screw. 

Step 15: Attach the catapults arm to the catapult body by first inserting the metal rod 

into the hole in the base and then pushing it through the hole in the catapult arm. 

Then push the metal rod all the way through till it comes out of the base on the 

opposite side. Bend the metal rod on both ends to ensure that it does not fall out of 

the catapult. 

Step 16: Bend the remaining three metal rods into an L shape to use for setting the 

catapult levels. 

 



 
 

 

 

 
 

Appendix B: 
 

Build a Paper Helicopter 
for Design of Experiments 

 
 

 

 

A Paper helicopter is often used for DoE training as it provides a response variable 

(flight time) and many easily changeable factors (leg length, leg width, rotor length, 

rotor width, paperclip on or off, and paper type). The same helicopter can be used 

for generating data for other types of statistical methods such as two sample t-tests 

of the means of the flight times of repeated runs of two different types of helicopters. 

Assembly Instructions 

Step 1: Cut the paper to a width of 5cm. 

Step 2: Cut the paper the length of paper rotor length plus leg length, and add 2 cm 

for the body. 

Step 3: Cut dotted lines at Leg A and Leg C. The length of each cut is 5 cm minus 

leg width divided by 2. 

Step 4: Fold leg A onto leg B. 

Step 5: Fold leg C onto leg B. 

Step 6: Fold rotor A and rotor B in opposite directions. They should form 90° to the 

body and be 180° away from each other. 

Step 7: For the paper clip version: Add a paper clip to the bottom of the leg 
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Figure B1: The helicopter plan 



IMPROVING PRODUCTS, SERVICES AND PROCESSES 

 

 

161 

 

Figure 2: The finished helicopter 

 





 
 

 

 

 
 

Appendix C: 
 

Generating Random Data 
in Minitab 

 
 

 

 

You can use Minitab’s random distribution generate to create data sets for practicing 

the various statistical methods in Minitab. Go to Calc > Random Data > Normal 

and enter the number or row to generate, the name of the column to store the data in, 

the mean, and the standard deviation. You can either select a column to store the data 

in or enter a name; however, spaces are viewed as a separate column name so the 

words must run together if you want a name consisting of more than one word. The 

same can be done for other types of distributions. Tables A3.1 to A3.7 contain 

examples that can be used as practice exercises.  

 

Distribution Normal Normal 

Number of rows 22 24 

Column label DiameterA DiameterB 

Mean 12.3 12.28 

Standard deviation 0.2 0.17 

Distribution Normal Normal 

Task: Compare using individual value plots and boxplots. Then compare the 

means using a 2-sample t-test 
 

Table A3.1: First graphs and 2-sample t-test exorcise 

 

 

Distribution Normal Normal 
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Number of rows 30 30 

Column label WeightA Weight2 

Mean 12.3 12.28 

Standard deviation 0.2 0.17 

Distribution Normal Normal 

Task: Compare using individual value plots and boxplots. Then compare the 

means using a 2-sample t-test 
 

Table A3.2: Second graphs and 2-sample t-test exercise 

 

Distribution Normal Normal Normal Normal 

Number of 

rows 

25 25 25 25 

Column label LengthA LengthB LengthC LengthD 

Mean 48.4 48 47.8 48.3 

Standard 

deviation 

0.9 0.7 0.8 0.9 

Task: Perform a One-Way ANOVA 
 

Table A3.3: ANOVA exercise 

 

Distribution Exponential  

Number of rows 30 

Column label WeightA 

Scale 1 

Threshold 5 

Task: Asses normality using a probability plot 
 

Table A3.4: Probability plot exercise with non-normally distributed data 

 

Distribution Normal 

Number of rows 30 

Column label WeightB 

Mean 78 

Standard deviation 2 

Task: Asses normality using a probability plot 
 

Table A3.5: Probability plot exercise with normally distributed data 
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Distribution Normal 

Number of rows 150 

Column label Supplier A 

Mean 14 

Standard deviation 0.2 

Task: Create an I-MR chart; then create an Xbar-R chart with subgroup size 5 
 

Table A3.6: Control chart exercise 

 

Distribution Normal 

Number of rows 100 

Column label Supplier B 

Mean 22.1 

Standard deviation 0.4 

Task: Asses the capability using a subgroup size of one and a specification of 

22.0 +/-1.5 
 

Table A3.7: Capability exercise 
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