ROBOT CONTROL LANGUAGE(tm) WITH SAVVY(R)

PROGRAMMER 'S MANUAL

GENERAL ROBOTICS CORPORATION Golden, Colorado
' 1904

Copyright 1986 General Robotics Cornoration
All Rights PReserved

No part of this publication mayv be reproduced, stored in a retrieval
svstem, or transmitted, in a form or by anv means, electronic, mechanical,

photacopy, recording, or otherwise, without the prior written permission
of the publisher.

GENERAL ROBOTICS CORPORATION
14618 W, 6th Avenue, Suite 150
Golden, CO 80401

(303) 277-1574 or 277-1575
(800) 422-4265

The following are registered trademarks of the companies indicated:

RB5X: GENERAL ROBOTICS CORPORATION

Robot Control Language and RCL: GENERAL ROBOTICS CORPORATION
Savvy: Excalibur Technologies Corporation

Tiny BASIC: National Semiconductor Corporation

Apple 11+, Apple Ile, and Apple DOS: Apnle Computer, Inc.
C/PM: Digital Research

TABLE OF CONTENTS

Section I

A - Introduction....... e e e e e et et A-1
- What you get when you order RCL with Savvy......A 1
- What you need to get started.................... A-2
— RBSX Options.t evicrcennenaens ceeearease-..A-3
- What exactly is RCL with Savvy.ct e ue.. A-3
- Some useful Definitions....... e e ce.e.A-D
— Savvy Definitions.....ovuiii ittt ennennes A-8
- Some Keyboard Preliminaries............. c......A-9
B - Getting Started................. et et e e ...B-1
- To Configure RCL for your System................B-1
- .Backing Up your Diskettes........ e e e e B-7
C - Sample Robot Task.........¢ e, ceseae..C-1
D - Appendices........ e s et e e m e e e e e ce..D-1

Appendix 1: RCL Robot Task "Party" and its Tiny
Basic Translation

Appendix 2: Primary Tasks used to compose Robot
Task "Party”

Appendix 3: Provided RCL Tasks

Appendix 4: Your own Applications

Section II

A — OVerview. ...ttt ier st aaraneas e e e e A-1
B — StrucCLUIE. & . i vt it i it ettt ottt et ot aa et ans e B-1
Action Commands.e e meensennsnenonscsnsnsnas B-1
Programming Commands.ttt B-1
Parameter Passing Functions...........ccovenciraon B-1
Error Checking and Compile Routines...... e B-1
Vocabulary Elements on Robot Tasks...........ce... B-2
RCL and its Relationship to Tiny BASIC............ 8-3
Compiling RCL into Tiny BASIC...... ...t i reanensn B-5
C -~ Implementation........ e e s e e e a e et c-1
Instructions for Keying in the Sample
Robot TasK....ver it iiitiiinetmesnteeneinansas c-1
Writing New Robot TasKks.........iiit i imennnnnn- c-3
Extending RCL and Defining New Actions............ c-5
Modifying Existing RCL Tasks........ ..o inunen. Cc-6
D - Debugging and Error Trapping.......vuviiineuinenns ..D-1
E - Miscellaneous Programmers Notes..........¢oiueeeenn- E-1
F - Appendices.............. f e h e e b e e et e e F-1
Appendix 1: Provided RCL Tasks
Appendix 2: Detail Provided RCL Tasks
Figures

1. Hardware and Language Relationships............ B-3

2. Language Structures and Relationships.......... B4

GETTING STARTED WITH IBM RCL

To Use IBM RCL you need and IBM PC, XT, AT or true compatible, DOS 2.0
or greater, 128K of RAM and at least one double-sided disk drive. You
can also use IBM RCL on two floppy disks or a hard disk.

To start using RCL with a floppy disk, boot DOS first, then place your
RCL disk in drive A* and type RCL.

When the computer displays the question "What Would You Like Me To Do
Now?", that is your ready message. You are ready to write Robot
programs. Turn to page A-3 in your RCL Tutorial. IBM users should
ignore section B or the Tutorial. All other sections of the RCL
Manual are applicable..

* Be sure you have made copies of your RCL disk following the disk
copying instructions for your computer before you begin programming.

TROUBLE SHOOTING

If the computer does not seem to be communicating with the robot when
downloading a program:

1. Check the connections on the RS232 cable to be sure both ends are
securely plugged in. Sometimes static can occur on the connecter
pins. Plugging and unplugging the cable a few times will take care of
this.

2. Check to be sure the robot is operating properly and has
sufficient charge. Plug a PROM in and see if the robot does what it
is supposed to.

3. Check to see that you have included all of the necessary commands
in your RCL program and see that they are in the correct order.

TO

TROUBLE SHOOTING

BOTH THE RB5X AND SAVVY ARE RELATIVELY TROUBLE-FREE AND EASY
USE. BUT, AS WITH ALL TECHNOLOGY, EACH ITEM HAS ITS OWN

PECULIARITIES. IF YOU ARE HAVING TROUBLE GETTING YOUR COMPUTER TO
TALK TO YOUR ROBOT, HERE IS A LIST OF THINGS TO CHECK.

1-

HAVE YOU READ YOUR SAVVY TUTORIAL AND RCL PROGRAMMING MANUALS?
MANY PEOPLE DO NOT READ THESE MANUALS BECAUSE THEY HAVE
CONSIDERABLE PROGRAMMING EXPERIENCE. SAVVY IS5 INCREDIBLY EASY
TO USE BUT IT IS DIFFERENT FROM OTHER PROGRAMMING LANGUAGES AT
CONCEPTUAL LEVEL. THERE ARE MANY THINGS YOU DO NOT DO IN SAVVY
THAT ARE CRITICAL TO OTHER PROGRAMMING LANGUAGES. DOING THESE
THINGS FROM HABIT OR INTENTIONALLY CAN CAUSE SAVVY PROGRAMS TO
ABORT OR CAN EVEN DESTROY YOUR DATA DISKS.

FOR APPLE SAVVY, IS YOUR SAVVY CARD WELL SEATED IN SLOT 7 OF
YOUR COMPUTER? :

IS YOUR SAVVY SYSTEM CONFIGURED FOR THE COMPUTER HARDWARE YOU
HAVE? (SEE YOUR HCL MANUAL.) IF SAVVY COMES UP ON YOUR
COMPUTER SCREEN WITH THE PROMPT "WHAT WOULD YOU LIKE ME TO DO
NOW?" AND YOU CAN SUMMON THE STANDBY TASKS AS OUTLINED IN THE
RCL MANUAL, YOUR SAVVY SYSTEM IS ALRIGHT.

IF YOUR SAVVY SYSTEM TELLS YOU THAT A DISK MAY BE IN THOUBLE,
IT IS RIGHT 99% OF THE TIME. MAKE A NEW COPY OF THE DATA DISK
FROM YOUR FACTORY-PROVIDED SOURCE DISKS AND START PROGRAMMING
OVER AGAIN.

DOES THE RB5X WORK WHEN YOU PLUG IN THE TEST UTILITY PROM? 1IF
SO0, YOUR ROBOT IS FINE. IF NOT, CHECK TO SEE IF YOUR ROBOT'S
BATTERIES HAVE SUFFICIENT CHARGE. FOR ANY OTHER PROBLEMS SEE
YOUR RB5X REFERENCE MANUAL.

IS YOUR SUPER SERIAL CARD WELL SEATED 1N SLOT 1 OF YOUR
COMPUTER? MOST COMMUNICATIONS PROBLEMS BETWEEN THE COMPUTER
AND THE ROBOT ARE CAUSED BY PROBLEMS WITH THE SUPER SERIAL CARD
INTERFACE.

WHEN THE COMPUTER BEGINS TO "LOAD" THE PROGRAM INTO THE ROBOT,
THE ROBOT'S FLASHING LED LIGHTS SHOULD COME ON. 1IF THEY DO NOT,
THE ROBOT IS NOT HEARING THE COMPUTER FOR ANY OF THE REASONS
GIVEN IN THIS TROUBLE SHOOTING SECTION, PHROVIDED THAT YOUR
PROGRAM IS CORRECTLY WRITTEN.

ARE THE SWITCHES ON YOUR SUPER SERIAL CARD SET FOR DATA
TRANSMTISSION AT 1200 BAUD? (SEE YOUR SUPER SER!IAL CARD MANUAL).
SOMETIMES THE SWITCHES GET DIRTY. SLIDING EACH SWITCH BACK AND
FORTH A FEW TIMES CAN CORRECT THIS PROBLEM.

9- IS THE CABLE THAT CONNECTS THE SUPER SERIAL CARD WITH THE ROBOT
PLUGGED IN CORRECTLY? THE PLUGS ARE CONSTRUCTED SO THEY CANNOT
BE PLUGGED IN WRONG BUT ALL PINS MUST MAKE CONTACT AT BOTH ENDS.
THE CABLE MUST BE PLUGGED INTO PORT 1 OF THE ROBOT. SOMETIMES
STATIC BUILDS UP ON THE PINS. PLUGGING AND UNPLUGGING BOTH
ENDS OF THE CABLE CAN COHRRKECT TilS PHOBLEM

10-THERE ARE TIMES THAT YOU MAY HAVE ALL OF THIE SEHRLIAL CARD
PROBLEMS AT ONCE. BE SURE TO TRY ALL OF THE REMEDIES SEVERAL
TIMES IF ONE DOES NOT CORRECT THE PROBLEM. ABOUT 95% OF ALL
COMMUNICATIONS FPROBLEMS OCCUR IN THIS AREA AND DO NOT INVOLVE
THE ROBOT OR THE SAVVY SYSTEM DIRECTLY.

11-DO YOU HAVE AN E-PROM PLUGGED INTO THE ROBOT? YOU CANNOT LOAD
A PROGRAM FROM THE COMPUTER INTO THE HOBOT IF AN E PROM IS
PLUGGED IN.

12-IF YOU HAVE TRIED ALL OF THE ABOVE WITH NO SUCCESS, CALL THE
FACTORY. IN THE HISTORY OF THE RBS5X THERE HAS BEEN A LESS THAN
1% TECHNICAL FAILURE RATE OF ANY COMPONENT, BUT SOME ASPECT OF
YOUR SYSTEM MAY FALL IN THAT RANGE. WE GUARANTEE ALL OF OUR
PRODUCTS AND WE WILL FIND THE PROBLEM AND CORRECT IT.

A. INTRODUCTION

Congratulations on your purchase of Robot Control Language(tm)
with Savvy(R) - RCL(tm), for short. Developed jointly by -
Robot Corporation and Excalibur. Technologies Corporation;—-RCL is
more than just another programming language. RCL is a complete
software development system that virtually eliminates the
language barrier between robots -and- people-by allowing:yowto -
program your robot using common English words and phrases,

This Tutorial introduces you to the fun of programming with RCL
and explains some of the terms you need to know as you begin
creating your own RCL programs., As with other Tutorials, we
suggest you use this one while seated at your computer, with
your RB5X nearby, so that you can do the examples as we go
along. For details about RCL not covered in this Tutorial, see
the RCL Programmer's. Manual that comes with this package.

WHAT YOU GET WHEN YOU ORDER RCL WITH SAVVY

. To start, let's look at what you get when. you order the RCL
package,

In addition to this Tutorial, you receive a Robot Control
Language with Savvy Programmer's Manual and the Savvy Personal

Language Reference Folio. (We will discuss the relationsh1p of
RCL to Savvy a little later in this Tutorial.)

We also provide the Savvy circuit card, which you need to use
RCL and which fits into Slot 7 inside your Apple computer.

If you ordered RCL I, you received one RCL diskette, which
contains RCL with Savvy and some initial robot tasks we've
developed; a Savvy One Master diskette, which enables you to use
Savvy alone for other purposes on your Apple; and a "Let's Use
Savvy" diskette. With this system, you store the robot tasks
you create on the RCL diskette; it is a good idea to make
several copies of the diskette before you begin designing robot
tasks so you will have additional diskette space for storing the
robot tasks you develop later.

If you ordered RCL II, you received one RCL diskette, which
contains RCL and the initial robot tasks; one Savvy Pro Master
diskette, which you will use with the RCL diskette (or with a
blank data disk, if you wish to use Savvy with your Apple for
other purposes); a Savvy "Demo" diskette; and a 'Let's Use
Savvy™ diskette.

Copyright 1984 All rights reserved. A-]

The RCL I diskette or the Savvy Pro and RCL Il diskettes should
always be in the disk drives when RCL is in use. They are
standard floppy diskettes; the Savvy manual tells you how to
handle and care for them.

RCL I has everything for programming robot tasks that RCL II has
except the Savvy "Suspend® and selective file transfer
capabilities, which were excluded to provide more space in the
one-diskette system, For more information on these capabilities,
consult your Savvy Personal Langquage Reference Folio.

WHAT YOU NEED TO GET STARTED -
RCL I
To set up RCL I, you need the following hardware items:

Most important, of course, is one RB5X robot, which comes with
its own Reference Manual.

You also need an Apple II+ or Apple Ile computer with a single
disk drive and controller.

To establish communication between your computer and the RB5X,
you must have & serial communications card -- either Apple's
Super Serial ‘'Card or California Computer Systems (CCS) 7710A.

You also need an RS-232 cable for loading the RCL programs you
write using your Apple into the RB5X. The connector on one end
should be a 25-pin D male connector. (If this sounds like Greek
to you, ask your computer dealer for help in assuring that you
have the right cable.) This goes into Port 1 on the back of your
RB5X. The other end must match the RS-232 port on your Apple
serial card.

Insert the CCS 7710A or the Super Serial card in Slot 1 in your
Apple and set the card's baud rate at 1200. Slot 1 is commonly
used for a printer; when using RCL, your computer communicates
with RB5X as though it were a printer. Therefore, when loading
robot tasks into RB5X you cannot also have a printer connected to

your Apple.

When using the CCS 7710A card you must also make the following
modifications to establish proper serial communication:

A-2 Copyright 1984 . . : All rights reserved.

1. Switch RS-232 lines 2 and 3 (inside the robot). This is
done by positioning the switch on the RB5X's interface
panel circuit board up, instead of down (normal).

2. Connect pin 4 on the CCS card to pin 6 on the CCSs card.
3. Make sure there is no connection between pin 25 on the CCS

card and the robot. Severe damage to the card and RB5X
may result from this connection.

Please see your RBSX dealer if you need help making these cable
modifications.

You may want to use an B0-column display card because it allows
you to use both upper and lower case letters, making the screen
easier to read. If you have an Apple IIe, any brand of card will
do. 1f you have an Apple II+, you must use the Videx Videoterm
card. This card should be inserted in Slot 3 of your Apple.
Refer to pages 3-4 of your Savvy manual for further information
on hardware set up.

RCL II

RCL II has the same hardware requirements as RCL I, with one
difference., To use this system, you need from two to four disk
drives or, optionally, a hard disk drive.

RB5X OPTIONS

You might want to add options -- such as the RB arm or
voice/sound synthesis -- to your RB5X to make your programming in
RCL more fun and more challenging. The sample program we use in
this Tutorial, for example, works with an RBS5X that has voice
capability.

WHAT EXACTLY IS RCL WITH SAVVY?

RB5X's native tongue is Tiny BASIC. But as we all know, computer
languages such as Tiny BASIC can be difficult for people to
learn. There are complicated codes and symbols to memorize, and
every character you enter must be in its proper place., No extra
spaces, no transposed letters. Otherwise, it isn't Tiny BASIC
and RB5X can't understand what you want it to do. And while Tiny
BASIC is easier to learn than many programming languages, it can
still be frustrating.

So RCL's primary responsibility is to act as a foreign language
interpreter, translating what you say in your own words into the
Tiny BASIC in which your RB5X is fluent.

. Copyright 1984 : All rights reserved. A-3

RCL is based on Excalibur's personal language system called
Savvy. 8o to understand RCL, you must have at least some
understanding of Savvy.

Think of it this way: RCL is a subset of Savvy; it exists within
Savvy, as your house exists within its neighborhood. RCL has its
own personality, its own unique style of architecture. But it
also draws some of its characteristics from its environment, from
its neighborhood; in this case, from Savvy.

So what is Savvy? It really is a lot of things. It is an
operating system -- you don't need CP/M or Apple DOS or any other
operating system,

Savvy is a Vvirtual Resources Manager that lets your small
microcomputer run huge programs as if it were a much larger
machine.

Savvy is a language. More specifically, Savvy learns your
language from you -- whether it is English, French, or Turkish.
But since it needs some language to start with, Savvy learns an
important primary vocabulary at the factory.

Savvy is an associative memory, which lets the system place items
- in its memory based on their description; therefore, the system

will find what you want if you describe it. You don't have to
assign or ask for an actual memory address, which is a

¢t complicated programming activity.

Savvy is an automatic program generator, which allows it to write
"families™ of programs for you, designing them for specific
purposes.,

But, most important, Savvy is a personality. You communicate
with it using words instead of baffling, hard-to-remember codes,

Using Savvy as its basis, RCL then learns your language from you
and offers RB5X owners a flexible, interactive, conversational
method of writing programs for the robot.

In addition to learning your language from you, RCL also tries to
figure out what you mean by what you enter at the keyboard. For
example, if you enter the words MVOE FOREWARD on your computer
keyboard exactly as we have written here, errors and all, RCL
searches its memory trying to figure out what you really intended
to enter. It then presents you with as many phrases as it has
that resemble MVOE FOREWARD and asks you which one you want:

A-4 Copyright 1984 All rights reserved.

B I e W L _ —

I'm not sure what MVOE FOREWARD refers to.
Is it one of these:
l. MOVE FORWARD
2. MOVE BACKWARD
3. MOVE RANDOMLY
4, or None of the above?
Please type the number of the correct answer:

RCL also comes with some standard tasks that you can incorporate
into the programs you write yourself for your RBS5X. (MOVE
FORWARD is one of those tasks.)

So RCL is an intelligent software development system -- able to
draw conclusions, willing to overlook your spelling errors, and
ready to learn your language from you -- that is just perfect for
use with the RB5X Intelligent Robot!

SOME USEFUL DEFINITIONS

Before we actually step you through a sample program, there are
some important definitions that will help you to use RCL.

Robot Tasks and Primary Tasks

In RCL, a "robot task" is a program that you write in order to
train RB5X to do something -- for example, move through the

living room using its sonar and tactile sensors to detect objects.
in its way.

A robot task is composed of smaller, primary tasks, some of which
we have already written for you to use in the composition of your
robot tasks and some of which you will create yourself., So unlike
other languages where you have routines and subroutines as
distinct from procedures and functions, in RCL, everything is a
task. A robot task simply comprises a group of shorter tasks,
one nested neatly inside the other.

A list of the provided RCL tasks appears at the end of this
Tutorial, in Appendix 3, Take a look now at this list. You will

. hotice that we have starred (*} some of these tasks. This

| designates the tasks with which everyone using RCL should be

familiar, whether they are writing simple or complex robot tasks.
The other, unstarred entries are tasks that will be used by more
experienced users of RCL.

We use some of the starred entries in the "Sample Robot Task"
later in this Tutorial.

Copyright 1984 . All rights reserved. A-S

m

Prompt

There are times when you are working in RCL that the system
prompts you. This is a common programming term meaning that a
message appears on the screen asking you for more information or
instructing you on what to do next.

The RCL prompt you probably see most often is:
What would you like me to do now?

as the system awaits your next set of instructions.

Menus

While you are working in RCL, you will notice that the system
periodically displays lists of options, like a restaurant menu,
from which you choose items for the system to accomplish. For
example, if you use the Savvy SUMMON command, the system displays
a menu and gives you several choices: you can either backup your
diskettes, configure the system for your individual computer
setup, or run diagnostics. You also have the choice of returning
to the "What would you like me to do now?" prompt.

Section B, "Getting Started," contains several examples of RCL
menus.

Replaceaent Symbols

You will notice as you look through the list of primary tasks
that some of them contain angle brackets (< >) enclosing numbers.
These numbers designate replacement symbols, characters that
stand for information that you must supply.

For example, in the task "DEFINE A VARIABLE called <1>", the
number 1 is the replacement symbol. You must supply the name of
the variable -- for example, DEFINE A VARIABLE called "A%". Note
that when you supply the answer in place of the replacement
symbol, -unless the answer is a number (value) or unless it is a
response to the direction prompt in the commands for the RB arm
(OPEN, QUT, etc.), it must be enclosed in quotation marks. You
type the first set of quotations (") and when you press <RETURN>,
Savvy supplies the ending quotation marks.

Loops
Another concept you must understand is loops. If you have done

any programming, you should recognize this term. Even if you
haven't, you may have heard it and have a vague idea of what it

means.,

A-6 Copyright 1984 . : All rights reserved.

haRe

LT

In its most fundamental sense, a loop is a procedure that a
computer program -- or, in this case, a robot task -- repeats
over and over again until it meets some condition or set of
circumstances, allowing the program to stop the repetition. 1In
other words, a loop within a robot task instructs your RBS5X to
repeat a procedure over and over again until some condition is
met that allows it to stop. And if you don't designate this
condition, your RB5X repeats and repeats until you switch it off.
Our "Sample Robot Task™ later in this Tutorial includes several
loops and illustrates this concept.

In RCL, there are three kinds of loops: limited loops, counted
loops, and general loops.

The limited loop is identified in RCL as the "BEGIN A LIMITED
LOOP" task, and is ended with the command "REPEAT THE LIMITED
LOOP until <1»> is (<,>,=,<>) <2> to <3>." 1In a limited loop
(which Tiny BASIC programmers will recognize as a DO/UNTIL loop},
the robot task repeats the same procedure over and over again
until it encounters a condition that allows it to leave the loop,
This condition is defined by the "REPEAT THE LIMITED LOOP"
command.

in a counted loop (which Tiny BASIC programmers will recognize as
a FOR/NEXT loop), the robot task repeats a procedure for a
specified number of times. The task "BEGIN A COUNTED LOOP"
instructs the robot task to start this procedure and begin
counting the times it is repeated. For this task, your computer
system prompts you for the name of the loop, where it begins, and
where it ends. So the task reads "BEGIN A COUNTED LOOP called
<1> beginning at <2> ending at <3>"., Remember that 1, 2, and 3
are replacement symbols for information you must supply. The
number 1 represents a variable name that will be used in Tiny
BASIC, so it must be a single letter enclosed in quotation marks.
The numbers 2 and 3 designate variable values that RCL counts
from the first value to the second, one number at a time., For
example, the loop that begins with "BEGIN A COUNTED LOOP called
"P" beginning at 1 and ending at 5" and is closed with "REPEAT

" THIS COUNTED LOOP for the counter "P"" will be executed five

times.

General (unconditional) loops (which Tiny BASIC programmers will
recognize as a GOTO construction) will repeat from "BEGIN A LOOP"
to "REPEAT THIS LOOP"” until some condition within the loop causes
the task to exit and proceed with the instructions that follow.
The primary task "TEST IF the variable <1> isg (=,<,>,<) <2»
compared to <3>" and the primary tasks that begin with EXIT are
most often used to set up a condition within the loop.

Copyright 1984 . o . All rights reserved. A-7

YL

SAVVY DEFINITIONS

Since RCL is a subset of Savvy, you occasionally need to use some
commands that are basic Savvy functions and are not really
additional features of RCL, We have listed some of these
commands -- called primaries -- here, but you should examine your
Savvy manual for details on using the Savvy primaries.

ASSOCIATE

This command enables you to teach RCL your language.
Specifically, you can tell it to “"associate” one phrase with
another. For example, using this task, you can teach RCL to
think of the two tasks "CLEAN THE CARPET" and "VACUUM THE
FLOOR" as meaning exactly the same thing.

DEFINE

This is the command you use to create robot tasks in RCL. The
"sample Robot Task" beginning on page 21 begins with DEFINE.

DETAIL

This command allows the user to list the various components
of a robot task. For example, if you look at the "BEGIN A
LOOP" detail in Appendix 2, you see the four separate tasks
that comprise "BEGIN A LOOCP."

EDIT

This command allows you to change a robot task you already
created using the DEFINE command. In using this command, you
have access to several impertant functions, including L
(which allows you to list the task you are editing), <$>--a
line number (which enables you to automatically move the
cursor to the line number specified), D (which deletes the
line above your cursor), and Q (which allows you to leave, or
guit the EDIT task and return to the mode where you can enter
more robot tasks). The "Sample Robot Task"™ in Section C
describes how to use these functions.

FORGET

This command cancels an association that you may have
previously created using the ASSOCIATE command. For example,
if you told the system to recognize "CLEAN THE CARPET" and
"VACUUM THE FLOOR" as meaning the same thlng, and later
decide they should have two separate meanings, you would use
this command.

A-8 Copyright 1984 , All . rights reserved.

RENAME

This command allows the user to rename a task throughout the
RCL system. This is most often used when customizing RCL to
your particular needs.

SUMMON

The SUMMON command allows you to display on the screen the
EXPLANATION of STANDBY TASKS menu (RCL II) or the UTILITIES
menu (RCL I). From these menus, you can choose to make
backups of your diskettes, configure RCL to match your
computer system, or run a diagnostic check of your system.,

SOME KEYBOARD PRELIMINARIES

In general, your Apple keyboard is similar to the keyboard of a
standard typewriter, with a few extra keys added that correspond
to specific computer functions.

Your Apple User's Manual contains detailed information about the
operation of the computer itself, including the functions of the
various keys. But it is important that you understand how RCL
handles certain keys.

RESET Key

The RESET key interrupts the computer's CPU and leaves no way
for you to return to what you were doing. As a rule, you
should NEVER use the RESET key as it will cause irreparable
damage to your RCL diskette or diskettes.

RETURN Key

Any time you type an instruction in RCL, you need to end it
by pressing the RETURN key. This signals the system to look
at what you have entered. 1In the sample program in this
Tutorial, we use <RET> to remind you to press the RETURN key.

Left-Pointing Arrow

If you make a mistake while entering RCL instructions, use
the left-pointing arrow to back up the cursor to the mistake.
Then type your correction. Each time you press this key, the
cursor backs up one character, erasing that character.

Right-Pointing Arrow

The right-pointing arrow acts as a "delete" key. When you
press this key, you delete everything you have typed since
you last pressed the RETURN key.

Copyright 1984 All rights reserved. A-9

Escape Key

Use the Escape key, labeled ESC on the left side of your
keyboard, to stop an operation. Pressing this key returns
you to the "Finish, Resume, or Suspend?” prompt. Press the
first letter of the choice you wish to make to continue from
there. See your Savvy Personal Language Reference Folio for
a detailed description of the "Finish, Resume, or Suspend?”
function.

Upper-Case Letters

You should remember to type all of your RCL instructions in
capital or upper-case letters. The system then responds or
prompts you in all lower-case letters. (That is, unless you
are working with an Apple II+ with a 40-column display. 1In
this case, everything on the screen appears in upper-case
letters.) The shift key does not work with Savvy; to shift
between upper and lower case input press CTL and A at the
same time,

A-10 Copyright 1984 . All rights reserved.

o

B. GETTING STARTED

One of the first things you should do when you open your RCL
package is to configure the diskettes to your individual
computer system and then make copies of the diskette or
diskettes.

In RCL I, the one-diskette system, the system software takes up
about 50% of the diskette space, leaving you only 50% for your
own program development. So it is a good idea to make several
copies of your RCL I diskette and to use these copies for
writing different RCL programs for your robot.

With RCL 11, the Savvy system software is contained on one
diskette, leaving the second diskette for RCL commands and your
program development. However, it is still a good idea to make
copies of both the system diskette and the RCL diskette so that
if your system ever malfunctions while your diskettes are in the
drives, you can recreate the work you did up until the system
failure.

TO CONFIGURE RCL FOR YOUR SYSTEM
RCL X
To configure RCL I for your system:

1. Make sure the Savvy circuit card is in Slot 7 inside
your Apple and that the serial card is in Slot 1.

2. Insert your RCL diskette, with its label up and the
notch to the left, into the Apple disk drive and close
the door,

3. Switch the Apple on.

4. At the "What would you like me to do now?" prompt, use
the Savvy SUMMON command to display the UTILITIES menu.

Type:
SUMMON<RET>

"

The system then prompts you with the message:
the standby task

.Copyright 1984 ' ST All rights reserved.® B-1

5. Type:'
" <RET>
and the system displays the following menu:
--~UTILITIES MENU--
1. Make an exact copy of this diskette.
2. Perform system DIAGNOSTICS.
3. CONFIGURE for différeéent hardware.

4. ALL DONE WITH RELP...Go back to 'What
would you like me to do now?'

ENTER the NUMBER of the desired action:

6. Choose the CONFIGURE option by pressing:
3
There is no need to press the RETURN key.
The system then displays the following screen:

WHICH CRT (MONITOR) WILL YOU BE USING?
(ASTERISK SHOWS PRESENT CONFIGURATION)

*1) 40-COLUMN NATIVE APPLE SCREEN
WITHOUT LOWER-CASE.

2) 40-COLUMN NATIVE APPLE SCREEN
WITH LOWER CASE.
(SPECIAL EQUIP. OR II-E REQ'D)

3) 80-COLUMN VIDEX VIDEOTERM,
(SPECIAL EQUIP. REQ'D)

4) 80-COLUMN NATIVE APPLE SCREEN,
{II-E REQ'D)

ENTER THE NUMBER FOR DESIRED CRT:
7. Press the number key that corresponds to your

configuration. The system then displays the following
menu:

B-2 Copyright 1984 : All rights reserved.

WHICH PRINTER.INTERFACE WOULD YOU LIKE?
(ASTERISK SHOWS PRESENT CONFIGURATION)

1) 'APPLE PARALLEL
*2) APPLE SUPER SERIAL
3) CCSs 7728 PARALLEL
4) CCS 7710 SERIAL
5) NO PRINTER PRESENT
ENTER THE NUMBER FOR DESIRED PRINTER.
Remember that you won't actually be using a printer. RCL
simply thinks of the RB5X as a printer. Press the number
key that corresponds to your printer setup (either #2 or

#4). The system then returns you to the "What would you
like me to do now?” prompt.

Once you have configured your diskette to match your system, you
are ready to move on to the section, "Backing Up Your Diskettes.,"

RCL II

To configure RCL II for your system:

1.

2.

6.

Make sure the Savvy circuit card is in Slot 7 inside your
Apple and that the serial card is in Slot 1.

Insert the Savvy system diskette with its label up and
the notch to the left into Disk Drive 1, and close the
door.

Insert your RCL II diskette with its label up and the
notch to the left into Disk Drive 2, and close the door,

Switch the Apple on.

At the "What would you like me to do now?"™ prompt, use
the Savvy SUMMON command to display the EXPLANATION of

- STANDBY TASKS menu. Type:

SUMMON <RET>

The system prompts you with the message:
the standby task

Type:
" <RET>

Copyright 1984 All rights reserved. ' B-3

and the system displays the following menu:
EXPLANATION of STANDBY TASKS

1. ARCHIVE is used to make copies of
disks. It can also be used to do
special disk related operations.

2. CONFIGURATOR is used to’tell SAVVY
what hardware is in your system
and to make clean data disks.

3. DIAGNOSTICS is used to test the
integrity - of the data on your-data - -
disk. It can also clear the 'your
disk may be in trouble' message.

4. All done with UTILITIES...Go back to
'What would you like me to do now?'

ENTER the NUMBER of desirefl action:
7. Choose the CONFIGURATOR option by pressing:
2
There is no need to press the RETURN key.
8. The system then displays the following menu:
~- CONFIGURATOR MENU --
1) Make a CLEAN new DATA-DISK.

2) Change the Hardware Configuration.
(Monitors, Printers, Disk-Drives)

3) Extend the length of the DATA-DISK.
4) Shorten the length of the DATA-DISK.

S) All done with the CONFIGURATOR...go back
to 'What would you like to do now?'

ENTER the NUMBER for the desired action:
Choose the second option by pressing:
2

There is no need to press the RETURN key.
The system then displays the following message:

Copyright 1984 . .. All rights reserved.

T 13

You may VIEW the CURRENT configuration
of the hardware by responding with only
a carriage RETURN to the questions.
HOWEVER, if you make any configuration
changes, I will automatically RESTART
to make your change become effective.
Press any key to continue.

9. Press any key to continue., The system then displays the
following menu:

Which CRT (Monitor) will you be using?
(Asterisk shows present configuration.)

1) 40 column native APPLE screen
without lower-case

*2) 40 column native APPLE screen
with lower-case
(Special equip. or II-e req'd.)

3) 80 column VIDEX videcterm
(Special equip. req'd.)

4) 80 column native APPLE screen.
(II-e regq'd.)

ENTER the NUMBER for desired CRT:

10. Press the number key that corresponds to your system and
the following menu appears:

Which printer interface would you like?
(Asterisk shows present configuration.)

1) APPLE parallel
*2) APPLE Super Serial
3) CCs 7728 parallel
4) CCS 7710 serial
5) No printer present
ENTER the NUMBER for desired PRINTER:
11. Remember that you won't actually be using a printer. RCL
simply thinks of the RB5X as a printer. Press the number
key that corresponds to your system (either #2 or #4) and

the following menu appears:

Copyright 1984 . All rights reserved. B-5

* What drive will you be using for DATA?
(Asterisk shows present configuration)

*1) Floppy diskettes

2) Corvus hard-disk
The MASTER-DISK you are now using is
presently configured for a data-disk on
Drive #2.
ENTER NUMBER for desired data-drive:

12. Press the number key that corresponds to your system and
the following message appears:

I always use diskette Drive #1 for the
SAVVY MASTER diskette,

How many of the REMAINING Drives shall
I use for DATA storage (1-3)7?

13. Press the number key that corresponds to your system and
the following message appears to confirm your choice:

For DATA I'll use Drive #X.
Press any key to continue.

where the X stands for the number 1 through 3 that you
choose.

14. Press any key to continue and the following message
appears, signaling you that configuration is complete.

I will now RESTART to make these changes
become effective immediately.

If you changed your CRT configuration, the following
message also appears:

Reminder...you changed your video.
You may need to move a cable,

The system then returns to the "What would you like me to do

now?" prompt, and you may now move on to the section, "Backing Up
Your Diskettes."”

B-6 Copyright 1984 ; i : All rights reserved.

BACKING UP YOUR DISKETTES

RCL I

Once you finished configuring your diskette to match your
computer system, your screen displays the "What would you like me
to do now?" prompt, To make backups of your diskettes:

1. Use the Savvy SUMMON command to display the UTILITIES menu
again. Enter:

SUMMON<RET>

The system then prompts you with the message:

the standby task
2. Type:

"<RET>

The system displays the UTILITIES menu:

~-UTILITIES MENU--

1. Make an exact copy of this diskette.

Perform system DIAGNOSTICS. .. ;

L
N

3. CONFIGURE for different hardware.

4. ALL DONE WITH HELP...Go back to 'What would you
like me to do now?'

ENTER the NUMBER of the desired action:

3. To choose the backup (or copy) option from this menu,
press:

1

The system then displays the following message:
This procedure allows you to make an
exact copy of this ORIGINAL. You will
need a spare diskette to continue.

Do you still want to copy?

4. Type:

Copyright 1984 . All rights reserved. B-7

for yes and the system displays the following prompt:
Insert NEW diskette into drive
Press any key to continue,

5. Remove your RCL diskette and place your spare diskette
into the disk drive. Close the disk drive door.

6. Press any key to begin the copying process. The system
then displays the following message to signal you that
copying is taking place:

WORKING!

7. The next message you see is:
Insert ORIGINAL diskette into drive.
Press any key to continue,

Remove your new diskette and place the original into the
drive. Close the disk drive door. The system then
displays the "WORKING!" message.

8. The system displays these last two messages several times
before the copying process is complete. Continue to swap
diskettes and press any key until you see the following
message, which indicates that this process is complete:

Good copy.

The copying process is now complete.
Insert the disk you want to use now.
Press any key to continue.

9. Insert your copy into the disk drive and press any key to
return to the "What would you like me to do now?" prompt.

10. To make additional copies, insert your original into the
disk drive and repeat the procedure until you have several
copies of your RCL diskette to work with. Keep the
original in a safe place, using your copies to write robot

tasks.

11. At the prompt, you are ready to proceed to the section of
the Tutorial titled "Sample Robot Task" and to begin
entering this task.

B-8 Copyright 1984 All rights reserved.

RCL II

Once -you have finished@ configuring your diskettes to match your
computer system, your screen displays the "What would you like me
to do now?" prompt. To make backups of your diskettes:

l. Use the Savvy SUMMON command to display the EXPLANATION of
STANDBY TASKS menu again. Enter:

SUMMON<RET>
The system then prompts you with the message:
the standby task
2. Type:
"<RET>
and the system displays the following menu:
EXPLANATION of STANDBY TASKS

1. ARCHIVE is used to make copies of
disks. It can also be used to do
special disk related operations.

2. CONFIGURATOR is used to tell SAVVY
what hardware is in your system
and to make clean data disks.

3. DIAGNOSTICS is used to test the
integrity of the data on your data
disk. It can also clearn the 'your
disk may be in trouble' message.

4. All done with UTILITIES...Go back to
'What would you like me to do now?"

ENTER the NUMBER of desired action:
3. Choosé option 1 by pressing:
1
There is no need to press the RETURN key.

The system then displays the following menu:

Copyright 1984 all rights reserved. B-9

=~ ARCHIVE MENU --
1) Copy diskettes.
2) Show the diskette drive numbers.
3) Copy between hard-disk and diskettes.

4) Use the SPECIAL disk utilities and
diagnostic routines.

5) All done with ARCHIVE...Go back to
'What would you like me to do now?'

ENTER the NUMBER of desired action:
4. Again, choose option 1 by pressing:
1
There is no need to press the RETURN key.
The system then displays the following screen:
COPY DISKETTES
This procedure allows you to copy data
from one diskette, called the ORIGINAL,
to another one, called the DUPLICATE.
Press ESCAPE (ESC) key to start over.
Do you need more instructions?
5. Answer this question by pressing:
Y

for YES and then follow the instructions as they are
presented on the screen.

It usually takes about 90 seconds for the system to copy a
diskette. As the copy is being made, the system also
verifies the copy. If a copy cannot be verified, a
message displays so that you can try again. When a
successful copy is made, the screen displays the message:

Good copy

Press any key when ready to continue.

B-10 Copyright 1984 - All rights reserved.

¢ Dm*)'

6. After you press another key, you see the message:

REMOVE your new copy from Drive #1 then
RESTORE diskettes to original drives,

Press any key when ready to continue,
In fact, you should use your new copies and preserve your
original Savvy diskette and your original RCL diskette., So
once you have placed your Savvy duplicate in Disk Drive 1
and your RCL duplicate in Disk Drive 2, press any key to
continue. The system then displays the ARCHIVE menu.

7. Select option 5 from the ARCHIVE menu to return to the
'What would you like me to do now?' prompt. Press:

5
There is no need to press the RETURN key.

You are now ready to move on to the next section, "Sample Robot
Task." ‘

Copyright 1984 - i All rights reserved. B-1ll

C. SAMPLE ROBOT TASK

Now that we have discussed the basics of RCL, let us step
through a sample robot task.

For this demonstration, we will assume that you have RCL I and
an RB5X with the voice/sound synthesis option.

SCENARIO

Assume you have invited friends to your home to enjoy snacks
and conversation. As an added treat, you want your RB5X to
greet each guest on arrival. As each one enters, you press
a bumper on the robot, RB5X begins flashing its lights and
rolls over to your friend, stops and introduces itself
saying, "Hello, I am RB5X: the Intelligent Robot."

Before we actually write this robot task, you should consider

the various elements that comprise it: specifically, movement,
bumpers sensors, flashing lights, sonar, and voice. The robot
task is then broken down into smaller tasks controlling these

various elements.

A handy way to organize your approach to this scenario is to use
the following format for laying out the logic or sequence of
your robot task:

.Copyright 1984 - . All rights reserved., C-1

K

Building Blocks Programming

Bumper sensor The robot is programmed to
respond to your pressing
one of its bumper sensors
by flashing its lights,
moving, and using its sonar.

Flashing lights At the touch signal from
you, the robot begins
to flash its lights.

Movement At the same time, RB5X
begins to move toward your
friend.

Sonar sensor RB5X is programmed to stop

Bumper sensor moving as soon as it senses

someone with its sonar or
touches them with its
bumper.

Voice synthesis The robot greets your guest
with the phrase, "Hello, I
am RBS5X: The Intelligent
Robot" as soon as it stops
moving.

Now, let's begin to compose our first robot task.
Before your friends arrive:

1. Make sure the Savvy circuit card is in Slot 7 inside your
Apple and that the serial card is in Slot 1.

2. Make sure the voice card is in Slot J1 or J2 inside the
robot.,

3. 1Insert the RCL diskette, with its label up and the notch to
the left, into the Apple disk drive and close the door.

4. Switch the Apple on,

5. When the "What would you like me to do now?" prompt appears,
type: ‘

DEFINE<RET>

C-2 Copyright 1984 - . All rights reserved.

10.

11.

The next CRT display should be:
DEFINE a task called

Let's call this robot task PARTY, So type:
PARTY<RET>

NOTE: If at any time what you expect to appear on the screen
does not appear, press the ESCAPE key to return to the
"Finish, Resume, or Suspend?” prompt., If you then press F
(for Finish), you can return to the "What would you like me
to do now?" prompt and begin again.

The next display should be:

0--Task PARTY
1 Does

where line 0 gives the task title and line 1 is the beginning
of what the robot task does. RCL automatically numbers the
lines of your robot task.

The first thing you must do is prepare the robot's hardware
to begin accepting commmands. You need to do this any time
you want to write and then download programs from your
computer to the RB5X. Type:

PREPARE THE ROBOT<RET>

Next you must let the voice hardware know that it too must be
ready to accept commands., Type:

PREPARE THE VOICE<RET>

Next, you must load the command that instructs the robot to
introduce itself to your guests, Type:

(SEE NEXT PAGE - EXPANDED NO. 10)
X LOAD THE INTRODUCTION <RET>

The X before this task indicates that it is a sample task
that comes on your RCL diskette; you must include the X,

Line 4 contains the title of your task and must be included
so that when the RBSX reaches the end of the task, the robot

will have a point of reference for returning to the start and
repeating the greeting again. Type:

CALL<RET>
The system answers with:

this robot task line

Copyright 1984 All rights reserved. -3

12.

13.

14.

15.

16.

17.

18.

Name this line by typing:
"BEGINNING OF PARTY<RET>

Don't forget the first pair of quotation marks. RCL enters

the second set for you after you press the RETURN Kkey.

Line 5 marks the beginning of the first loop in your robot
task. With this general loop, you say to the robot, "You sit
and wait patiently until I give you the signal to begin your
greeting." Type:

BEGIN A LOOP<RET>

Once you've instructed RBS5X to begin a loop, you must also
tell the robot how to leave (or exit) the loop. 1In this
case, you want RB5X to sit and wait patiently until you press
a bumper. So, type:

EXIT IF ANY BUMPER TOUCHED<RET>

A general loop really consists of three tasks: one that tells
it when to start (BEGIN A LOOP), cne that tells it what to do
within that loop or how to get out of the loop (EXIT IF ANY

BUMPER TOUCHED), and one that closes the loop and tells it to
repeat the procedure, To program this last task, type:

REPEAT THIS LOOP<RET>

T

Now, when you touch any bumper on the robot, you want it to
begin flashing its lights and to roll up to your guest, using
its sonar and bumpers to tell when it has reached your
friend. So now type:

TURN ON THE FLASHING LIGHTS<RET>
MOVE FORWARD<RET>

Here's a good place for another general loocp. You want the

robot to continue moving forward until either it senses
something with its sonar or until it touches something with a

bumper. So, type:
BEGIN A LOOP<RET>
This loop has two tasks in it telling it when to stop. Type:

EXIT IF ANY BUMPER TOUCHED<RET>
EXIT IF SONAR<RET>

After you press the last RETURN, the system prompts you for
the sonar distance you wish:

distance value is less than

C-4 Copyright 1984 - ... All rights reserved.

10.

Next, you must load the command that instructs the
robot to introduce itself to the guests. Type:

LOAD THE PHRASE <RET>
The computer screen will display:

LOAD THE PHRASE called:
Now type in "SAY THE INTRODUCTION <RET>
The computer screen will display:

LOAD THE PHRASE called "SAY THE INTRODUCTION" with
phonemes:

Now type in the following phonemes exactly as they are
shown including the gquotation mark, and all periods.
Do not worry about where the letters wrap around the
screen. Just type in the the phonemes in a continuous
string. If the phonemes are not entered in the
correct manner, the robot will not speak.

"H.H.EH.L.L.00.01.PAl.AH.E.E.PAl.AE.AE.M,.PAl.D.THV.

U.PAl.AH1.AH]1.R.PAO.B.Y.Y.PAl.F.AH.Y.V.PAl.EH1.EH2.

K.PA0.S.PAl.I.N.T.EH.L.L.UH3.D.J.EH3.N.T.PA1l.R.Ol.B.
AH1.T.STOP. <RET> -

The computer screen will display:

LOAD THE PHRASE called "SAY THE INTRODUCTION" with
phonemes: "H.H.EH.L.L.00.0l.PAl.AH.E.E.PAl.AE.AE.M.
PAl.D.THV.U.PAl.AH1.AH1.R.PAO.B.Y.Y.PAl.F.AH.Y.V.PA
1.EH1.EH2.K.PAQ.S.PAl.I.N.T.EH.L.L,UH3.D.J.EH3.N.,T.
PAl.R.Ol1.B.AHl.T.STOP."

19.

20.

21.

22.

23.

This indicates at what distance the sonar is programmed to
detect obstacles in the robot's path. 1In this case, you want
the robot to stop just less than a foot from your guests, so

type:
95<RET>

(The value 95 is the minimum distance read by the sonar, and
is just less than a foot. For further understanding of sonar
values, see the section on "Sonar Machine Code Algorithm" in
Chapter D on "Software"™ in the RB5X Reference Manual.)

Once again, close the loop by typing:
REPEAT THIS LOOP<RET>

When either a bumper is touched or the robot's sonar detects
an object, you want the robot to stop. Type:

STOP ALL MOTION<RET>
After it stops, you want RB5X to introduce itself. Type:
SPEAK<RET>
The system then prompts with the message:
the phrase called:
Enter:
*SAY THE INTRODUCTION<RET>
This is the phrase you loaded earlier in your robot task with
the X LOAD THE INTRODUCTION command. Don't forget the first

set of quotation marks. RCL enters the second set for you.

Once it has spoken its piece, RB5X should return to its
starting peoint to await another guest. So tell RB5X to turn
around by entering:

SPIN CLOCKWISE<RET>
The system then prompts you with:
this many degrees:

Since you want the robot to turn around and return to the
start, type:

180<RET> .
MOVE FORWARD<RET>

Copyright 1984 -~ T All rights reserved. C-5

24.

25.

26.

27.

28.

29.

30.

RB5X should move forward until you press a bumper, so a loop
would be useful here. Type:

BEGIN A LOOP<RET>

The robot should continue to move forward until you instruct
it to stop, by pressing one of its bumpers. Type:

EXIT IF ANY BUMPER TOUCHED<RET>
Don't forget to close the loop:
REPEAT THIS LOOP<RET>

Once RB5X has returned to the starting point, you need to
have it facing front again, so type:

SPIN CLOCKWISE<RET>
At the prompt
this many degrees:
type:
1BO0<RET>
To have the RB5X turn off its lights, type:
TURN OFF THE FLASHING LIGHTS<RET>

You now want the robot to sit and wait until the next guest
arrives, So, to return to the beginning of the entire
program, type:

JUMP<RET>
At the prompt
to the line called
type:
"BEGINNING OF PARTY<RET>

Don't forget to type the first set of quotation marks. RCL
adds the second.

To redisplay the entire task on the screen, type:

L<RET>

C-6 Copyright 1984 - - : - All rights reserved.

This displays on your screen the RCL robot task listing you
see in Appendix 1. (To list only part of the task type the
number of the last line you want to see, for example, to list
lines 1-15, type 15<RET>.)
31. To signal the end of this robot task, type:

Q<RET>
This stands for Quit, The system displays:

END (Task is 15% full.)

Once you have ended the task, your screen displays the "What
would you like me to do next?"™ prompt,

32. To load this robot task into the RB5X, switch your robot on
(this means the top of the ON/OFF switch is pushed in) and

connect the RS5~232 cable to the port on the serial
communications card in your Apple and Port 1 on the robot,

33. Type:
BUILD AND LOCAD<RET>
The system disélays
Build and Load an RB5X robot task#,
34. At the prompt:
Please enter the name of the robot task:
type:
PARTY<RET>
35. The system responds with
Would you like the task checked for errors? (¥/N)
Type: Y or N and <RET>

If you type Y, the system takes a short time to check your
program for errors then displays:

Now building robot task PARTY... One moment, please,

Note that the process of building and loading the task may
take several minutes. You may also use BUILD and LOAD as
separate commands; when BUILD is used alone you must enclose
the name of the robot task that follows the command (e.gq.,
PARTY) in quotation marks.

Copyright 1984 T : . All rights reserved. C-7

The BUILD command begins the process of translating RCL
commands into the Tiny BASIC code RB5X understands.

Only one robot task can be translated at a time, and only one
robot task at a time remains in the Tiny BASIC code form on
your RCL diskette.

For example, you just built the robot task PARTY; it now
exists in Tiny BASIC code form on your RCL diskette, If you
create another robot task, DANCE, you must build DANCE before
you can download it to RB5X, but if you want to reload the
robot task PARTY, you do not have to build it again.
Therefore, you must build every robot task before you load it
into your robot, unless it is the task you last built when
you last used RCL.

36. When the system finishes building the task, the system
displays the message:

Ready to load into the RB5X. Press any key to continue,
After you press a key, the system displays:
Now loading ... One moment, please

It also displays a status line indicating the loading of
sonar, voice, and the robot task.

When the computer finishes loading this task into your RBSX,
the "What would you like me to do now?" prompt again
displays.

37. Disconnect the robot from the RS-232 cable, position it where
you want it to wait for your guests, and press any bumper for
it to begin its greeting.

38. So now you have a complete robot task in RCL. But suppose
you want to change your task? RCL allows you to add, change,
or delete lines in your robot tasks using the Savvy EDIT
command mode.

Suppose you want your robot to honk its horn as it begins to
approach each of your guests. To have RB53X do this, you need
to add a horn-honking command to your robot task, PARTY.
Since you just loaded PARTY into your robot, your screen now
displays the "What would you like me to do now?" prompt.

Type:
EDIT<RET>

to go into the Savvy edit mode, and at the prompt:
the

C-8 Copyright 1984 ~— - ' All rights reserved.

39.

40.

41.

42,

43.

Type:
PARTY<RET>
Your screen now displays:

0 --- Task PARTY
1 Does

which is the beginning of the task listing for PARTY.
Type:

L<RET>
to list the primary tasks that make up this robot task.

Looking down the list of primary tasks, you see that line 9,
which contains the primary task, MOVE FORWARD, is the line
where RB5X begins to move toward your guest. It is after
this line that you want to add a command that makes the robot

honk its horn,
Type:
9<RET>
Your cursor moves to line 10, and your screen displays the
text of lines 0 through 9. You can use this procedure to

move to any line in your robot task when you are in the Savvy
edit mode.

To add the horn-honking command, type:
HONK<RET>
RCL prompts you with:
the horn for this many seconds .
Type:
3<RET>
You have now added the horn sound to your robot's approach.
To view your new robot task PARTY, type:

L<RET>

Copyright 1984 - - All rights reserved. C-9

44.

45.

46.

47.

48.

49.

50-

Now type:
Q<RET>

to exit the edit mode and return to the "What would you like
me to 4o now?" prompt,

Now you can load the new task into your RB5X and run it using
the procedures beginning with step 32, Switch RB5X off, then
on again or press the software reset button on the interface

panel before you BUILD AND LOAD to clear the previous PARTY
robot task from its memory.

You also use the Savvy edit command mode to delete or change
robot task lines as follows:

When the system displays the "What do you want me to do now?"
prompt, type:

EDIT<RET>
At the prompt:
the
type:
PARTY<RET>
You are now again in the Savvy edit mode. Type:
L<RET>
to list your robot task.

Let's delete line 10, the HONK command we previously
inserted. Type:

10<RET>
to move the cursor to line 10.
Type:

D<RET>
to delete the line.

To change a robot task line, you follow the above procedure
for deleting the line, then type in the new line and <RET>.

C-10 Copyright 1984 . . All rights reserved.

51. To delete an entire robot task, you must delete each of its
lines separately. The task name, however, exists on your RCL
diskette even after you delete all the task lines. Because
you cannot completely remove old tasks from the RCL diskette,
we encourage you to reuse old task names or to rename them

using the Savvy RENAME command.

52. RENAME is used following the "What do you want me to do now?"
prompt. Type:

RENAME <RET>
at the prompt:
0ld name

type the name of the robot task you want to change and <RET>.

53. At the prompt:
to new name

type the new name of the robot task and <RET>.

To better illustrate the difference between what you wrote in RCL
and what RCL told RB5X, we have included in Appendix 1 a copy of
the "pParty" robot task and the Tiny BASIC translation. As you
can see, the RCL text is just 24 lines long -~ the Tiny BASIC
text stretches to 115 lines of complicated computer code that
only machines like RB5X should be forced to learn!

We have also included the detail (which we got by using the Savvy
task DETAIL) for each of the primary tasks used to compose the
robot task we just wrote. These tasks are listed alphabetically

in Appendix 2.

You are now ready to design your own robot tasks for your RB5X.
Use the sample scenario form in Appendix 4 to outline the
building blocks for your own scenarios and plans,

To start composing own your robot task, follow steps 1 through 8
of the Sample Robot Task using your new scenario data.

' Copyright 1984 -~ = : All rights reserved. C-1l1

D. APPENDICES

Copyright 1984 All rights reserved. D-1

wa P

APPENDIX 1

RCL Robot Task "PARTY" and its Tiny BASIC Translation

PARTY (a Task)

1
2
3

Does
and
and

and
and
and
and
and
and
and
and
and
and
and
and
and
and
and
and
and
and
and
and
and

PREPARE THE ROBOT

PREPARE THE VOICE

LOAD THE PHRASE called "SAY THE INTRODUCTION"
with phonemes: "H.H.EH.L.L.0Q.0l1.PAl.AH.E.E.
PAl.AE.AE.M.PAl.D.THV.U.PAl.AHl1.AH1.R.PAO.B.
Y.Y.PAl.F.AR.Y.V.PAl.EH]1.EH2.K.PA0.S.PAl1.I.N.
T.EH.L.L.UH3.D.J.EH3.N.T.PA1.R.O01.B.AH1.T. 8T
oP."

CALL this robot task line "BEGINNING OF PARTY"
BEGIN A LOOP

EXIT IF ANY BUMPER TOUCHED

REPEAT THIS LOOP

TURN ON THE FLASHING LIGHTS

MOVE FORWARD

BEGIN A LOOP

EXIT IF ANY BUMPER TOUCHED

EXIT IF SONAR distance value is less than 95
REPEAT THIS LOOP

STOP ALL MOTION

SPEAK the phrase called: "SAY THE INTRODUCTION"
SPIN CLOCKWISE this many degrees: 180

MOVE FORWARD

BEGIN A LOOP

EXIT IF ANY BUMPER TOUCHED

REPEAT THIS LOOP

SPIN CLOCKWISE this many degrees: 180

TURN OFF THE FLASHING LIGHTS

JUMP to the line called "BEGINNING OF PARTY"
END

Meaning of Text

Stmt Tiny BASIC Text
10 @87803=4#98 INITIALIZE 1/0
20 @#780B=#A7:S=TOF: A=0 FREFPARE THE VOICE
30 REM RBSX say the introduction REMARK
40 F=#1P: GDSUB I500 VOI1CE SUPROUTINE
S0 p=#02:605UB 3500 VOICE SUBROUTINE
60 P=#00: GOSUB I500 VDICE SUBROUTINE
70 P=#18: 6OSUR 3500 VOICE SUBROUTINE
80 P=#3%: GOSUR 3500 VOICE SUBROUTINE
Q0 P=#37:6085UR 3500 VOICE SUBRDUTINE
100 F=#15:60SUB 3500 VOICE SUEBRDUTINE
110 P=#00: GOSUR 3500 VDICE SUBROUTINE
§120 FP=#0%9: 60SUB 3I500 VOICE SUBROUTINE
130 P=#29: GOSUE 3500 VOICE SUBROUTINE
140 P=#3E: GOSUR 3500 VOICE SUBROUTINE
150 P=#3E: GOSUR 3500 - VOICE SUBRROUTINE
150 F=#2F: GOSUER 3500 VOICE SUBRDUTINE
170 P=#00: GOSUR 3500 VOICE SUBROUTINE
180 P=#0C: GOSUB 3500 VOICE SUBROUTINE
190 P=#38:60SUB 3500 VOICE SUBROUTINE
200 F=#32: 60SUB IS500 VO1CE SUBROUTINE
210 P=#15: 60SUR 3500 VDICE SUBRDUTINE
220 P=#31: 60SUR 3500 VOICE SUBROUTINE
220 F=#3A: GOSUR 3500) VOICE SUBROUTINE
240 P=#0E: GOSUB 3I500 VOICE SUBRDUTINE
250 F=42C: GOSUR 3500 VDICE SUBROUTINE
;260 P=#21:G60SUB I500 VOICE SUBROUTINE
270 P=#29:60SUB 3I500 : VOICE SUBROUTINE
280 P=#1D:GOSUR I500 VOICE SUBROUTINE
L1290 F=%15:GOSUB 3500 ' VOICE SUBRDUTINE
* 300 FP=#00: 6OSUR 3500 ' VOICE SUBROUTINE
310 P=#29: GOSUR 3500 VOICE SURROUTINE
320 FP=#0F : GOSUB 3500 VOICE SUBROUTINE
IX0 F=#3E:BOSUR 3500 VOICE SUBROUTINE
340 F=#02: GOSUB 3500 VOICE SUBROUTINE
330 F=#01:60SUR 3I500 VOICE SUBRDUTINE
I60 P=4#19: GOSUB 3I500 VOICE SUBROUTINE
370 - P=#03: GOSUR 3500 VDICE SUBROUTINE
890 P=#1F:G0OSUB 3500 VOICE SUBROUTINE
390 F=#0B: GOSUB 3I5S00 VOICE SUBROUTINE
400 P=#0D: GOSUB 3500 VOICE SUBROUTINE
. 410 P=#2A: GOSUB 3500 VOICE SUBROUTINE
420 P=#02: 6OSUB 3500 VD1CE SUBROUTINE
1430 P=#00: GOSUR 3500 VOICE SUBROUTINE
"440 F=#18:G0SUB 3500 VOICE SUPBROUTINE
450 P=#0B: GOSUB 3500 VOICE SUBROUTINE
4460 P=#0%: 6OSUB 3500 VDICE SUBROUTINE
470 P=#1E: 6GOSUB 3500 VDICE SUBROUTINE
480 P=#1A: GOSUR 3500 VOICE SUBROUTINE
490 F=#02:60SUBR 3I500 VOICE SUBROUTINE

S00 F=#00:6G0OS5UB 3500 VOICE SUBROUTINE

Stmt Tiny BASIC Text Meaning of Text

510 FP=#0D: GOSUE 3500 VOICE SUBRDUTINE

S22 F=#2A: GOSUB 3I500 VDICE SUEROUTINE

5= P=#2ZE: GDSUE 3500 VOICE SUBROUTINE

540 P=#35: GOSUB IZO00 VOICE SUBROUTINE

550 F=#37:60SUB 3500 VOICE SUBROUTINE

S60 F=#0E:GOSUB 3500 VOICE SUBROUTINE

570 P=#15: GOSUEB 3500 VOICE SUBROUTINE

580 P=#27:G0OSUB I500 VOICE SUBROUTINE

590 P=#2A: GOSUE I500 VOICE SUBROUTINE

&00 FP=#3F: GOSUR 3500 VOICE SUBROUTINE

610 REM LABEL THIS LINE BEGINNING LABEL THE LINE

&20 REM START A LOOF BEGIN A LOOF

630 Y=#7800 TEST FOR BUMFER CONTACT
640 IF Y<255 60T0O 660 EXIT IF ANY CONTACT

650 GOTO &20 REFEAT THIS LOOF

660 REM EXIT TO HERE

&70 X=#40 TURN ON FLASHING LIGHTS
&80 GOUSUB 3100 60 -TURN ON A BIT

&20 RH#7BO2=#09 60 FORWARD

700 REM START A LOOF BEGIN A LDOF _

710 Y=g#7800 TEST FOR BUMFER CONTACT
720 IF v<255 60TQ 770 EXIT IF ANY CONTACT

730 D=0) ZERDO DISTANCE

740 LINE #1800 CALL SONAR

750 IF D<95 GOTO 770 EXIT IF LESS THAN VALUE
780 GOTO 700 REPEAT THIS LOOF

770 REM EXIT TO HERE

780 e#7802= STOF ALL MOTION

790 S=TOF+500: LINK #2F50:REM SFEAK SFEAK A PHRASE

800 E#7802=#05 SFIN CLODCKWISE

B1O T=2 NUMEBER OF WHOLE SECONDS
820 GOSUBR 3000 GO WAIT

80 DELAY 649 MILLISECONDS TO WAIT
840 e#7802=0 STOF ALL MOTION

850 @247802=#09 G0 FORWARD

860 REM START A LOOF BEGIN A LDOP

870 Y=@#7800 TEST FOR BUMPER CONTACT
880 IF Y<255 6070 %00 EXIT IF ANY CONTACT

890 GOTO 8460 REFEAT THIS LOOF

00 REM EXIT TO HERE

210 @#7802=%#05 SFIN CLOCKWISE

920 T=2 NUMBER OF WHOLE SECONDS
90 GGSUB 3000 60 WAIT

940 DELAY 649 MILLISECONDS TO WAILT
250 e#7802=0 STOFP ALL MOTION

960 X=#BF TURN OFF FLASHING LIGHTS
970 GOSUBR 3120 GO TURN OFF A BIT

80 G0OTO 610 JUMF TO LABEL BEGINNING OF FAR
2999 GOTO 3400 GOTO END

3000 FOR 8=1 TO T .WAIT T SECONDS SUBROUTINE

Stmt

I005
3010
3015
3100
3105
3110
3115
3120
3125
3130
3135
3500
3510
3520
34600

Tiny BASIC Text

DELAY 1000
NEXT S
RETURN
U=2#7801
=U OR X
ṹ=U
RETURN
=@#7801
U=sU AND X
@#7801=U
RETURN
V=TOF+S00+A: @V=P
A=A+1
RETURN
REM END OF FROGRAM

Meaning of Text

TURN ON A BIT

TURN OFF A EBIT #7801

STORE THE PHONEME

** End of the Frogram ¥x

APPENDIX 2

Primary Tasks Used to Compose Robot Task "PARTY"

PRIMARY TASKS USED TO COMPOSE ROBOT TASK "PARTY"

BEGIN A LOOF (a Task)

1 Does 2 COMPILE the BASIC statement "REM START A LOOP® which means *BEGIN A LD
oF"
and COPY #rom "BEGIN" to STRUCTURE TYPE

and SAVE new page in LOQOFS
and SAVE new page in STRUCTURES
and END (Task is Szrfull.)

GUhUuN

BUILD AND LDAD (a Task)

1 Does CLEAF the page
2 and ODUTPUT 4rom “¥3% Build and lcad an RETSX robot task t#%" using format DEF

AULT

3 and CARRIAGE return

4 and CARRIAGE return

S and DUTFUT from “Please enter the name of the robot task: * using format DE
FAULT

& and INFPUT into HERE .

7 and BUILD a program from the robot tash HERE

8 and CLEAR the page

¢ and OUTPUT from "¢ Build completed, now loading into the REISX %£3" using for
mat DEFAULY

10 and LDAD

11 and END (Task is 16% $ull.)

CALL this robot task line <1> (a Function)

Does FASTE the “"REM LABEL THIS LINE " in front of <1>
and 2 COMFILE the BASIC statement FRONT which means “LABEL THE LINE"

1
2
3 and PASTE the "L" in front of <1>

4 and COFY from FRONT to STRUCTURE TYFE
S and SAVE new page in LODFPS

& ‘and END (Task is &% full.)

EXIT IF ANY BUMFER TOUCHED (a Task)

1 Does I COMPILE the BASIC statement “Y=E#7800" which means "TEST FOR BUMPER Ct

NTACT™
2 and I COMPILE the BASIC statement "“1F Y<255 G0TO EXIT" which means "EXIT IF

ANY CONTACT™

3 and COPY 4rom "EXIT" to STRUCTURE TYPE
4 and SAVE new page in LODPS

S and SAVE new page in BETRUCTURES

& and END {Tash: is 10%L full.)

SPEAK the phrase called: <1> (a Function)
Does BEGIN at page indexed by FIRST in folder SFEECH LOAD DATA

and GET the page indexed by <1> in folder BPEECH LOAD DATA

and COFPY from SFEECH ADDRESS to HERE

and PASTE the *S=" in front of HERE

and PASTE the FRONT in front of ":LINK #2FS0O"

and FASTE the FRONT in front of “:REM SFPEAK"™

and PASTE the FRONT in front of <1>

and 7 COMPILE the BASIC statement FRUNT which means “SPEAK A PHRASE"™

and END (Task is 9% full.)}

VONTCASLUN ™

SFIN.CLDCKWISE this many degrees: <1> (a Function)
Does IF the <1> IS GREATER THAN O then

1

2 Do MULTIFLY the <1> by .01472

3 and SPLIT the number PRODUCT

4 and TAKE this sany characters 4 from FRACTION
S and PASTE the INTEGER in front of FRONT

& and G0 CLOCKWISE

7 and WAIT this many seconds FRONT

8 and STOF ALL MOTION

9 and END of test

o]

and END (Task is 5% full.)

STOF ALL MOTION (a Task)

1 Does Z COMPILE the BASIC statement *"@47802=0" which means *STOP ALL MOTION"

2 and END (Task is 34 full.)

TURN OFF THE FLASHING LIGHTS {(a Task)

1 Does Z COMFPILE the BASIC statement "X=#BF" which means "TURN OFF FLASHING LI

HTS"
2 and Z COMPILE the BASIC statement “GDSUB 3120" which means " GO TURN 'OFF A .

IT"
3 and Z INSURE PORT 7801 SUBRDUTINE IS
4 and END (Task is 7X full.)

TURN ON THE FLASHING LIGHTS (a Task)

1 Does Z COMPILE the BASIC statement “X=#40" which means "TURN DN FLASHING LIG

TS
2 and I COMPILE the BASIC statement “GDSUB I3100" which means " 6D TURN ON A B
™™

S and I INSURE FPDRT 7801 SUBROUTINE 18

4 and END (Task is 74 full.)

X LOAD THE INTRODUCTION (a Task)

1 Does REMARK that: *"RBSX say the introduction - new voice cards only!"™

2 and LOAD THE PHRASE called: “SAY THE INTRODUCTION® with phonemes: “H.EH]1.EH3
-L-DI.UI.AHI.EHS.IS.V.PAI.Pﬂ!.AEl.EHS.H.THV.UHl.AHI.UHZ.ER.B.EI.AY.Y.F.&HI.EH3.Y
«V.PA1.EH1.EH2.K.PAO.S. 11.N. T.EHI . EH3.L.11.13.D.J.EH1 . EH3.N. T.R. D1.U1.B. AH1 . UH3.

T.5TOP, ™ .
3 and END (Task is 25% full.)

EXIT IF BONAR distance value is less than <1> <(a Function)

Does Z COMFILE the EBASIC statement "D=0" which means “ZERO DISTANCE"

and I COMPILE the BASIC statement "LINK #1800%" which means “CALL SONAR"

and SFLIT the number <1)>

and FPASTE the "1IF D<" in front of INTEGER

and PASTE the FRONT in front of * GOTO EXIT"

and Z COMPILE the BASIC statement FRDONT which means “EXIT IF LESS THAN vALUE

- and COFY from “EXIT" to STRUCTURE TYYPE
and SAVE new page in LODPS
and COPY from YES to SONAR NEEDED
and SAVE new page in SETRUCTURES
and END (Task: is 143 full.)

~O0ON CUMUN

[

JUMP to the line called <1> (a Function)

Does PASTE the “JUMP TO LABEL ™ in front of <1
and Z COMFILE the BASIC statement “GOTO GOES HERE"™ which means FRONT
and PASTE the "J" in front of <1> T :
and COFY 4rom FRONT to STRUCTURE TYPE
and SAVE new page in LOOPS
and END (Task is &% full.)

CURWUN-

MOVE FORWARD {(a Task)

1 Does I COMFILE the BASIC statement "@#7802=8#09" which means "GO0 FORWARD"
2 and END (Task is 3% full.)

PREFARE THE ROBOT (a Task)

1 Does Z COMPILE the BASIC statement “@#7803=#9B" which means "“INITIALIZE 1/D"
2 and END (Task is 3% full.)

PREPARE THE VOICE (a Task)

1 Does I COMPILE the BASIC statement “@#780B=#A7:5=TOP" which means “FREPARE TH
E VOICE"

2 and COPY from “YES" to VODICE NEEDED

3 and END (Task is 5% full.)

REFEAT THIS LOOFP (a Task)

Does COPY from STATEMENT NUMBER to HERE

and I GET PREVIOUS BEGIN
and DELETE the page indexed by STATEMENT NUMBER from folder LOOFS

and PASTE the "GOTO " in front of STATEMENT NUMBER

and COPY from HERE to STATEMENT NUMBER

and I COMPILE the BASIC statement FRONT which means "REPEAT THIS LOOP"
and Z COMFILE the BASIC statement “REM EXIT TDO HERE"™ which means "
and Z PATCH UP EXIT STATEMENTS

and COPY 4rom “"REPEAT" to STRUCTURE TYFE

and SAVE new page in STRUCTURES

and END {Task is 10%4 $ull.)

=2 ODONCUEUWUN~

.

APPENDIX 3

Provided RCL Tasks

TASKS
Name (Status)

ASSIGN A MOTOR CODE
*BEGIN A COUNTED LOGP called <1> beginning at <2> ending at <35>
*REGIN A LIMITED LOOP
*BEGIN A LOOF
*BUILD a program from the robot task <1>
*BUILD AND LOAD
«CALCULATE wvariable <13 = (2> (+,—-,%,/) <3> <4>
*CALL this robot task line <1>

CLEAR ALL ITEMS
«DEFINE A VARIABLE called <1>

END HERE
END OF FROGRAM
*EXIT IF ANY BUMFER TOUCHED
*EXIT 1F FRONT+REAR BUMFER FRESS
*EXIT IF SONAR distance value is less than <1>
<EXIT 1IF THE BATTERY IS LOW
+«EXIT IF THE CHARGER 1S TOUCHED
+EXIT IF THE TAPE IS SENSED
«EX1IT IF THIS BUMFER is touched <1>
+EXIT THIS LOOP
+»FOLLOW TAFE
»60 CLOCKWISE
*50 COUNTERCLOCKWISE
*HONK the horn for this many seconds <1>

INITIALIZE MEMORY

INITIALIZE VARIAEBLES
*JUMP to the line called <1
*LIGHTS ROUTINE
- *LIST THE PROGRAM
*LoAD
*LDAD THE PHRASE called: <1> with phonemes: <2>
*MAINTAIN CHARGE
*MOVE BACKWARD
*MOVE DISTANCE BACKMWARD for this many feet: <1
*MOVE DISTANCE FORWARD for this many feet: <1>

*MOVE FORWARD
*MOVE FDRWARD TIL TAPE NOT SENSED
*MDVE RANDOMLY
*MOVE THE ARM FROM SHOULDER (UFP,DOWN, IN,OUT): <1> for this many degrees <2
*MOVE THE FOREARM (IN,0OUT): <1> for this many degrees <2>
*MDVE THE HAND (DFEN,CLOSE): <1> for this (1-100) %: <2>
*MOVE TIMED BACKWARD for this many seconds <1>
*MOVE TIMED FORWARD for this many seconds <1>
*MOVE WITH BETA INTELLIGENCE

"OTHERWISE DO
*PICK A RANDOM DIRECTION
*FIVOT ON LEFT CLOCKWISE
*PIVOT ON LEFT COUNTERCLOCKWISE
*PIVOT ON RIGHT CLOCKWISE
*PIVOT DN RIGHT CDUNTERCLOCKWISE
*PREFARE THE ROBOT
*PREPARE THE VOICE

REMARK thatr <1>
*REPEAT THE LIMITED LODP unless <1> is ({,>,=,<>) (2> to <3>
*REPEAT THIS COUNTED LOOF for the counter <i>
*REFPEAT THIS LOOF

REFPORT ASSIGN ERRDOR

TASKS
Name {(Status)

REPORT DELETE ERRDR
REPORT GET ERROR (Undefined)

REFORT LOAD ERROR

REFPORT MATH ERRDR

REFORT REFLACE ERROR

REFPORT SAVE ERROR

*RUN

*SET the variable <1> equal to <2>

SHOW ERRORS

SHOW THE PHONEME DICTIONARY

*SPEAK the phrase called: <1>

*SPIN ARODUND CLOCKWISE this many times: <1>
*SFIN AROUND COUNTERCLOCKWISE this many times: <1
*SFIN CLOCKWISE this many degrees: <1>

*SFIN COUNTERCLOCKWISE this many degrees: <1>
*SFIN LEFT 90 DEGREES

*SPIN RIGHT 90 DEGREES

STARTUFP .

*STOP ALL MOTION

*TEST IF the variable <1)> is (=,<,>,<(>) <2> compared to <3>
*TURN OFF LED number <1>

*TURN OFF THE FLASHING LIGHTS

*TURN OFF THE HORN

*TURN OFF THE INFRARED LED

*TURN ON LED number <1>

*TURN ON THE FLASHING LIGHTS

*TURN ON THE HORN

*TURN ON THE INFRARED LED

*TURN THE WRIST (CW, ECW): <1> for this many degrees <2>
*WAIT this many seconds <1>

*WAIT RANDOMLY up to this many seconds <1>

*X ALFPHA

*X ALPHA W/SDNAR

*X BETA

*X BETA W/SONAR

*X BUMPER ACTIVATED MOTIONS

*X CHARGER FINDER

*X LDOAD THE INTRODUCTION

*X SIMPLE SIMDN

COMFILE the BASIC statement <1> which means <2>
COMPUTE 2 TO THE N-1 , with N = <1>

DELAY for this many loops: <1>

DO CHECK if item <1> is in folder <2>

DD NUMBER TEST on <1>

EMFTY THE PROGRAM .

ERROR CHECK IF/UNTIL STATEMENT

ERROR CHECK MATH FUNCTIDN

ERROR CHECK STRUCTURES

ERROR CHECK THE FDR STATEMENT

ERROR CHECKING?

FIND the label called <1>

GET PREVIOUS BEGIN

GET PREVIOUS IF OR ELSE

INCLUDE at <i)> the statement <2 which means <3>
INCREMENT the <1>

INCREMENT STAYEMENT NUMDER

INITIALIZE LEGAL VARIABLES

MAMNMNNNNNNRNNNMNNNNNNN

TASKS
Name (Status)

INSURE ARM PULSE SUBROUTINE IS
INSURE BETA SUBROUTINE IS
INSURE END DF PROGRAM IS THERE
INSURE PORT 7801 SUBROUTINE 1S
INSURE RANDOM TURN SUBROUTINE
INSURE RANDOM WAIT SUBROUTINE
INSURE VOICE SUBROUTINE IS
INSURE WAIT SUBROUTINE 1S
LOAD SONAR

LOAD VOICE SUBRDUTINE

LOOK FOR BEGIN

LOOK FOR MATCHING STATEMENT
DUTPUT PAGE NUMBER

DUTPUT PROGRAM HEADING

FATCH UF END STATEMENTS

PATCH UP EXIT STATEMENTS

PATCH UP JUMFP STATEMENTS

SAVE FOLDER ERRDR

SAVE NUMBER OR FOLDER ERROR
SAVE STRUCTURE ERROR missing the statement <1> to go with the statment <2> at
statement number <(3)>

ZZ AVAIL TASK

IZ AVAIL TASK #1

ZZ AVAIL TASK #10

2Z AVAIL TASK #11

ZZ AVAIL TASK #12

ZZ AVAIL TASK #13

I AVAIL TASK #14

IZ AVAIL TASK #2

122 AVAIL TASK 43

ZZI AVAIL TASK #4

ZZ AVAIL TASK #S5

ZZ AVAIL TASK #&

ZZ AVAIL TASK #7

12 AVAIL TASK #8

NNNNNNNNNNNNNNNNNNNN

APPENDIX 4

Your Own Application

YOUR OWN APPLICATION

Now that your have used this Tutorial and have seen how to go about
writing a robot task for your RBS5x, we hope you will use the form
below for creating your own robot tasks.

Scenario

Building Blocks Programming

B.

D.
E.

F.

ROBOT CONTROL LANGUAGE WITH SAVVY
PROGRAMMER'S MANUAL

TABLE OF CONTENTS

overview-..CC.I-I....'.I..II.‘...l.'..‘.i..ll..‘...'...l.A.-l
Structurev.‘loilii...ﬂ'.....C.I..-l...I.‘..l-....l.......IB-l
Action comands. * & & > 9 5B E S PSP RSP ES SSS S ST E S S S SEEEES .B-l
Programming Commands. S & & & 4 8 & & 5 O 0 H BB BB TS EE S8 G eE S A e .B_l
Parameter-Passing FUunNCtiONS..cceececccnssccannsenssseesB=1
Error-Checking and Compiler ROUtineS....ecceceecossessB=-1
VOC&bUlary Elements in RObOt TaSkS. R R R R R R RN EE R .B"2

RCL and Its Relationship to Tiny BASIC....cceevescesesB-3
Compiling RCL into Tiny BASIC....III..............'.I-B-s

Implementation-Q...I‘....l...Ill.lIO..IQOOIOOUHCOOOOOIUOQC-l
Instructions for Keying in the Sample Robot Task.......C-1
Writing New RODOt TasSKS...cesecscersrosacssnascarsansenssC3
Extending RCL and Defining New ActionS....cscevescsecsC=5
Modifying Existing RCL Tasks.'I.I.-I.I.'........l....--C_G

Debugging and Error Trapping..c.csctesccceseacsaseessnnsssasD-l

Miscellaneous Programmer's NOteS...eeevecssssccassssssessE~l

APpendices-..'..-..I..I.I.....'..‘....--....-Il.‘.......'F-l

Appendix l: Provided RCL Tasks

Appendix 2: Detail of Provided RCL Tasks

Figures

1.
2.

Hardware and Language RelationshipS......ccteeescesccseesB=3
Language Structures and Relationships.....ccecev0e000eeq..B-4

Copyright 1984 All rights.reserved.

LYY

P W

A. OVERVIEW

Robot Control Language{tm) with Savvy{(R) -- RCL(tm) for short --
provides a simple, straightforward method of programming the
RBS5X(tm) to perform many functions without using the terse Tiny
BASIC code that ultimately controls the robot's actions.

RCL users instruct the RB5X using "robot tasks"™ like MOVE
FORWARD, GO CLOCKWISE, TURN THE WRIST, TURN ON THE HORN, etc.
RCL then automatically cross-—-compiles the robot task, line by
line, into Tiny BASIC code and then downloads the code into the
robot's on-board memory by means of an RS-232 serial
communications interface.

In addition to commands that initiate and control RBS5X's action,
RCL also includes facilities for error trapping and compilation
of loops. Each element of RCL is as meaningful to Savvy as any
Savvy primary language command such as ADD, EDIT, or SAVE.
Furthermore, the system is flexible, to allow the addition of
new RCL commands, and the editing and modification of all RCL
elements and associated Savvy tasks. Since RCL is Savvy-based,
all robot vocabulary can be extended with synonyms for existing
commands.

This document presumes the reader has gone through the RCL
Tutorial, has reviewed the Savvy Personal Language Reference

Folio, has fundamental Savvy task development skills, and

possesses at least a superficial knowledge of NSC Tiny BASIC.
(If you need more information about how to use Tiny BASIC,
consult the RB5X Reference Manual.)

Copyright 1984 : R - N All rights reserved. A-1l

B. STRUCTURE

Accompanying this document is a complete directory of all RCL
vocabulary. The vocabulary has four main elements: action
commands, programming commands, parameter-passing functions, and
error-checking and compiler routines.

ACTION COMMANDS

These commands instruct the robot to perform an activity.

Examples:
FOLLOW TAPE
GO CLOCKWISE
MOVE BACKWARD

PROGRAMMING COMMANDS

These commands are used for initialization, error checking,
looping, and other programming conventions,

Examples:
LOAD
REPORT ASSIGN ERROR
REPEAT THIS LOOP

PARAMETER-PASSING FUNCTIONS

These functions pass specific parameters to the robot, sometimes
in the form of distances to move, degrees to rotate, phrases to
speak, etc. Other parameter-passing functions are used strictly
as programming conventions, such as counts for a loop.

Examples:
Parameter-passing functions as robot
instructions:

MOVE DISTANCE BACKWARD for this many feet: <1>
MOVE TIMED FORWARD for this many seconds: <1>

Parameter-passing functions for programming:

DEFINE A VARIABLE called <1>

REPEAT THIS COUNTED LOOP for the counter «<1>
ERROR-CHECKING AND COMPILER ROUTINES

All RCL vocabulary elements that are preceded by a '2' are for
error checking and compilation.

Copyright 1984 . -~ All rights reserved. B-~1l

Examples:
Z ERROR CHECK MATH FUNCTION
Z LOOK FOR MATCHING STATEMENT
Z LOAD SONAR

There are several elements in the directory preceded by an 'X',
These are sample RCL robot tasks (i.e., X Simple Simon}.

Each element of the RCL vocabulary -- action commands,
programming commands, parameter-passing functions, and the error-
checking and compiler routines -- has a corresponding Savvy task

or function that actually executes the task. These tasks and
functions may also call other tasks and functions, and may in
turn be called by other tasks. Their operation is completely
transparent to the end-user. (Appendix 2 contains the complete
text of all RCL tasks and functions.)

VOCABULARY ELEMENTS IN ROBOT TASKS

A user composing a robot task selects action commands,
programming commands, and parameter-passing functions to form a
robot task, which is also an actual Savvy task. The task can be
edited with the Savvy editor and is saved on disk just like any
other Savvy task. The task name becomes part of RCL. The X FIND
CHARGER ROUTINE listed as Sample 1 is an example of a simple
task. It has looping, parameter passing, and other programming
conventions,

Sample 1
X CHARGER FINDER (a Task)

Does WAIT this many seconds 20
and PREPARE THE ROBOT

and INITIALIZE MEMORY

and BEGIN A LOOP

and PREPARE THE ROBOT

and CLEAR ALL ITEMS

and BEGIN A LOOP

and MOVE FORWARD

and EXIT IF ANY BUMPER TOUCHED
10 and EXIT IF THE TAPE IS SENSED
11 and REPEAT THIS LOOP
12 and TEST IF the variable "R" is (=,<,>,<>) "=" to 0
13 and EXIT THIS LOOP
14 and END HERE

15 and MOVE WITH BETA INTELLIGENCE
16 and REPEAT THIS LOOP
17 and FOLLOW TAPE

18 and MAINTAIN CHARGE

19 and END (Task is 7% full.)

WODAhU s W

B-2 Copyright 1984 : - All rights reserved,

From this set of instructions, RCL compiles the Tiny BASIC text
necessary to accomplish the specified activity or function. The
error-checking and compiler routines are used as necessary in the
actual Savvy tasks that correspond to RCL elements.

RCL AND ITS RELATIONSHIP TO TINY BASIC

Programming the RB5X in RCL first requires communication between
two different hardware configurations, the 6502-based Apple I1I
and the INS8073-based robot. The diagram in Figure 1 illustrates
the hierarchy of languages that perform this communication and
their relationship. (FORTH is the machine language that
interfaces Savvy with the 6502,)

FORTH Tiny Basic

6502
Apple 11

INS8073

RBS5X
Robot

FPigure 1.
Hardware and Language Relationships

Copyright 1984 ' All rights reserved. B-3

RCL robot task

As illustrated in Figure 1, Tiny BASIC communicates with the

robot hardware.

Tiny BASIC instructions are necessary to implement an RCL

command.

relationships.

RCL language

element

¢

RCL language

element

Figure 2 illustrates the language structures and

Because of its machine code-like nature, many

RCL language

element

Tiny
Savvy BASIC cobot
. | action
task code Ll JJ
l
!
Savvy //’-‘\\
I task
Tiny robot
! ngIC action
c e ll JJ
| Savvy
task
' /—\
¢ Tiny
) BASIC robot
. code action
(L)
L
[]
|
Figure 2.
Language Structures and Relationships
All rights reserved.

B-4 Copyright 1984 .

COMPILING RCL INTO TINY BASIC

The Tiny BASIC program text is stored in a Savvy folder named
SOURCE. It is indexed (keyed) by the item STATEMENT NUMBER and
the two items BASIC TEXT and MEANING, BASIC TEXT is the Tiny
BASIC text, a combination of symbols and numbers, such as
@47803=4#98, that specify action, define addresses, turn bits on
and off, etc. MEANING is the documentary description that
accompanies the code.

The folder structure for stored Tiny BASIC text in RCL is:
SOURCE (a folder)
1 Id STATEMENT NUMBER
2 Item BASIC TEXT
3 Item MEANING

A Savvy task and function perform the compilation according to
the following process before the data is actually stored in the
SOURCE folder.

l. Increment the current line number to form the STATEMENT
NUMBER for this statement

2, Copy the appropriate piece of text to the BASIC TEXT
3. Copy any textual description to MEANING
4. Save this page of data in the SOURCE folder
The following tasks compile RCL according to the preceding
algorithm:
Sample 2
Z COMPILE the BASIC statement <1> which means <2> (a Function)
1l Does Z INCREMENT STATEMENT NUMBER
2 and COPY from <1> to BASIC TEXT
3 and COPY from <2> to MEANING
4 and SAVE new page in SOURCE
5 and END (Task is 2% full.)
Z INCREMENT STATEMENT NUMBER (a Task)
1l Does ADD the STATEMENT NUMBER and STATEMENT NUMBER INCREMENT
VALUE

2 and COPY from SUM to STATEMENT NUMBER
3 and END (Task is 1% full.)

Copyright 1984 - All rights reserved. B-5

. .A‘;‘

C. IMPLEMENTATION

RCL is flexible and extensive enough to allow users to program
the RB5X to perform countless activities, The best way to
understand how the RB5X works and how robot tasks are composed
is to actually key one in. By entering the following robot task
(Sample 3), you learn how to hook up the robot, how to prepare
its memory, how to download the robot task from your Apple to
your RB5X, and other aspects of "training" the RB5X.

INSTRUCTIONS FOR KEYING IN THE SAMPLE TASK

Composing a robot task is just like defining a regular Savvy
task. (Again, these instructions assume you have a basic
familiarity with Savvy and understand the way Savvy prompts for
input.) In the following dialogue, the user's response is in
upper case and Savvy's prompts are in lower case, just as in
actual use if you have an 80~column card or an Apple Ile.

1. Begin by defining a task called TEST PROGRAM.
DEFINE a task called TEST PROGRAM

2. Type the text, beginning with line 1, just as it is
listed in Sample 3 on page C-2. Remember that all lower
case words in the script are Savvy prompts that RCL
automatically inserts after you press the RETURN key.

3. Check the task for errors and correct with the Savvy
editor,

4. If the robot task appears satisfactory, instruct Savvy
to BUILD the source task. Savvy prompts for the task
‘name.

BUILD a program from the robot task "TEST PROGRAM”"
First the system displays the following message:

Would you like your robot task checked for
errors? (Y/N).

After your response, the system displays the message:
Now building robot task TEST PROGRAM
.+ .0One moment, please.

To see the Tiny BASIC code that the BUILD command

creates, type LIST THE PROGRAM and you see the Tiny
BASIC with comments.

Copyright 1984 - . - All rights reserved. C-1

5. Plug the Apple into the RB5X via the RS-232 serial
interface and switch the robot on. Type:

LOAD

The drive spins and RCL displays the message:
** Now loading...One moment please **

The system then displays the following message:
Now loading your robot task...###

6. After RCL downloads the completed robot task, the RBSX
executes the TEST PROGRAM. If the drives do not spin and
the robot does not respond, the baud rate may be
incorrect (it must be set at the same rate on both robot
and serial interface), the serial card may not be
connected properly, or the robot may be inadequately
charged.

7. To run again, type:

RUN<RET>
Sample 3

TEST PROGRAM (a Task)

1 Does PREPARE THE ROBOT

2 and TURN ON THE FLASHING LIGHTS

3 and MOVE DISTANCE FORWARD for this many feet 2
4 and SPIN LEFT 90 DEGREES

5 and SPIN RIGHT 90 DEGREES

6 and MOVE TIMED BACKWARD for this many seconds 5
7 and PIVOT ON LEFT CLOCKWISE

8 and WAIT this many seconds 4

9 and PIVOT ON LEFT COUNTERCLOCKWISE
10 and WAIT this many seconds 4

1l and PIVOT ON RIGHT CLOCKWISE
12 and WAIT this many seconds 4
13 and PIVOT ON RIGHT COUNTERCLOCKWISE
14 and WAIT this many seconds 4
15 and STOP ALL MOTION
16 and HONK the horn for this many seconds 2
17 and END (Task is 8% full.)

Remember that'you type Q<RET> to complete the robot task and
then RCL replies with the END line,

C~2 Copyright 1984 - -~ All rights reserved.

WRITING NEW ROBOT TASKS

As mentioned in the preceding instructions, creating a new robot
task is just like defining a new Savvy task. However, instead of
using Savvy commands and primaries directly, RCL is used to
specify instructions to the robot. Each robot task must begin
with the directive:

PREPARE THE ROBOT

This initializes the RB5X hardware and prepares it to accept the
robot task that has been compiled into Tiny BASIC. After the
PREPARE THE ROBOT command has been entered, other RCL language
elements can then be combined to define a robot task.

Simple robot tasks such as the TEST PROGRAM illustrated in Sample
3 do not include loops or conditional tests, nor do they require
the use of the special compiler routines. Other, more
complicated robot tasks use these conventions. " When composing
robot tasks with looping conventions, remember that loops may be
nested no more than eight deep in Tiny BASIC.

Sample 4 is a robot task that is more complex than TEST PROGRAM
and illustrates looping conventions. Try it out to begin to get
a feel for the way the language works.

Copyright 1984 :) All rights reserved. C-3

Sample 4

TEST LOOPS (a Task)

1 Does CALL this line "START OVER"
2 and PREPARE THE ROBOT
3 and BEGIN A LOOP
4 and DEFINE A VARIABLE called "L"
5 and EXIT IF ANY BUMPER TOUCHED
6 and REPEAT THIS LOOP
7 and BEGIN A COUNTED LOOP called "L" beginning
at 1 ending at 5
8 and TURN ON THE FLASHING LIGHTS
9 and WAIT this many seconds 1
10 and TURN OFF THE FLASHING LIGHTS
11 and wait this many seconds 1
12 and REPEAT THIS COUNTED LOOP for the counter "L"
13 and BEGIN A LOOP
14 and MOVE FORWARD
15 and EXIT IF SONAR distance value is less than 95
16 and REPEAT THIS LOOP
17 and MOVE BACKWARD
18 and SET the variable "L" equal to 0
19 and BEGIN A LOOP
20 and CALCULATE variable "L" = "L"™ (+,=,%,/) "+" 1
21 and HONK the horn for this many seconds 1
22 and WAIT this many seconds 1
23 and TEST IF the variable "L" is (=,<,>,<>) "=" compared
to 4
24 and REPEAT THIS LOOP
25 and STOP ALL MOTION
26 and JUMP to the line called "START QVER"
27 and END HERE
28 and END (Task is 19% full,)

After new tasks are written, you may go through the BUILD
procedure described in the section on "Instructions for Keying in
the Sample Task." However, in certain cases you may want to skip
the two-part BUILD and LOAD procedure and just type:

BUILD AND LOAD

This RCL primary task performs the BUILD and the LOAD operations
consecutively after the robot task title is entered, without
querying again. The BUILD AND LOAD routine does not, however,
have the same error~checking faculties as the separate BUILD and
LOAD tasks, and we do not advise using it on new tasks.

C-4 Copyright 1984 - - : All rights reserved.

oy e e

EXTENDING RCL AND DEFINING NEW ACTIONS

Extending RCL and defining new actions, either to expand the
language or to accommodate new hardware, requires a knowledge of
Tiny BASIC. The proper Tiny BASIC code must be inserted in the
source folder to provide communication with the hardware.

Implementing new RCL primary tasks begins with design at the Tiny
BASIC level. When the fundamental instructions are coded, they
may be incorporated into Savvy tasks., Certain existing RCL
elements make it easy to write one-liners. These are Z INCREMENT
STATEMENT NUMBER and COMPILE the BASIC statement <1> which means
<2>. (The text of these routines is listed in the section
"Compiling RCL into Tiny BASIC.")

For example, a task such as STOP ALL MOTION is done like this:
STOP ALL MOTION (a task)

1l Does COMPILE the BASIC statement "84#7802=0" which means
"STOP ALL MOTION"

Some new primary tasks require parameterized subroutines. For
example, if you were implementing a siren, you would write a
routine similar to TURN ON THE HORN listed in Sample 5.

The first line compiles the Tiny BASIC code; the second is a
subroutine to turn on a bit. - It is necessary to ensure that the
target subroutine is there, so a task is Z INSURE PORT 7801
SUBROUTINE IS. The text of this task is listed as Sample 6.

Sample 5
TURN ON THE HORN (a Task)

1l Does Z COMPILE the BASIC statement "X=#80" which means
"TURN ON HORN"

2 and Z COMPILE the BASIC statement "GOSUB 3100" which
means “GO TURN ON A BIT"

3 and Z INSURE PORT 7801 SUBROUTINE 1S

4 and END (Task is 6% full.)

Copyright 1984 - . All rights reserved. C-5

Sample 6
z INSURE PORT 7801 SUBROUTINE IS (a Task)

1 Does WHEN folder SOURCE DOES NOT CONTAIN 3,100 then
2 Do CorPY from STATEMENT NUMBER TO HERE
3 and Z INCLUDE at 3,100 the statement "U=@$7801"
which means "TURN ON A BIT"
4 and Z INCLUDE at 3,105 the statement "“U=U OR X"
which means ™"
5 and Z INCLUDE at 3,110 the statement "e#7801=U"
which means "*
6 and Z INCLUDE at 3,115 the statement "RETURN"
which means ""
7 and Z INCLUDE at 3,120 the statement “U=@#7801"
which means "TURN OFF A BIT"
8 and Z INCLUDE at 3,125 the statement "U=U AND X"
which means ""
9 and Z INCLUDE at 3,130 the statement "@$7801=U"
which means ""
10 and Z INCLUDE at 3,135 the statement “RETURN"
which means ""
11 and COPY from HERE to STATEMENT NUMBER
12 and END of test :
13 and END (Task is 23% full.)

Since RCL is Savvy-based, the existing commands can be "extended
with synonyms" using the Savvy ASSOCIATE command. These might be
abbreviations of certain frequently used commands to speed up
data entry, such as TOH for TURN ON THE HORN. And, because of
Savvy's Adaptive Pattern Recognition Processing (APRP)}, the more
synonyms added to RCL, the more Savvy is able to "help out"™ in
cases of misspelling or improperly worded phrases.

MODIFYING EXISTING RCL TASKS

The Savvy tasks that actually implement the RCL commands may be
modified to suit your needs,

For example: 1If you find it tiresome to begin each robot task
with PREPARE THE ROBOT, you can insert the Tiny BASIC
initialization code (@#7803=#98) in the LOAD routine so that RCL
automatically does this initialization. If you don't like using
periods as delimiters in the phonemes, you can change them to
slashes (/) by instructing Savvy to COPY from “/" to DELIMITER.
You can change display messages with Savvy's editor or modify the
RUN task to allow you to communicate "interactively®™ with the
robot. (Add wait states so you must type RUN at the keyboard
after each command as a useful debugging facility.)

Of course, before you begin modifiying the Savvy tasks, be sure

you have a recent backup of your disk so you can restore the task
to its original state if there are any problems.

C-6 Copyright 1984 All rights reserved,

LIV 9 "

D. DEBUGGING AND ERROR TRAPPING

Debugging and error trapping in new robot tasks and primary tasks
takes place at three levels:

Robot task level (RCL level)
Savvy task level
Tiny BASIC level

At the highest level, the robot task level, there are error-
trapping routines in Savvy itself that check new scripts for
language errors, matching statement errors, errors of
correspondence between arguments and functions, etc. These
routines do not check for logic errors. When RCL detects an
error, it saves the error and displays the number of the

offending line.

Some errors that are returned may not interfere with the purpose
of the script. In fact, some errors returned may be things you
intended to do. Endless loops are usually considered a bug in
most programming situations; however, endless loops to carry on a
specified motion may be something you intend the RBS5X to do.

When a Savvy script is modified and then does not function as
intended, check all other routines that are called by and from
the script to check for errors. Because of the reentrant nature
of these tasks, bugs may not necessarily show up in the modified
task. If an unmodified task that previously ran without problems
begins to behave in a peculiar. fashion, check to see if the tasks
it calls or is called by have been recently modified. ‘

Debugging new tasks that extend RCL must begin at the Tiny BASIC
level. Be sure the Tiny BASIC code works before introducing it
into the task that compiles it. If it works at that level, test
at the Savvy task level, and finally at the robot task level.
Debugging Tiny BASIC is not an activity for the casual or
inexperienced programmer.

Copyright 1984) All rights reserved. D-1

AR ".Fl"'y".*

E. MISCELLANEOUS PROGRAMMER'S NOTES

Listed below are various notes concerning language use and
conventions and other programming information.

1.

JUMP to the line called <1l>
CALL this line <1»>

These may be nested in any loop and the label name must
be in gquotes.

MOVE THE ARM FROM THE SHOULDER (UP, DOWN, IN, OUT}: <1>
for this many degrees: <2>

MOVE THE FOREARM (IN,OUT): <1> for this many degrees:
<2>

MOVE THE HAND (OPEN, CLOSE): <1> for this (1-100) %:<2>

TURN THE WRIST (LEFT, RIGHT). <1> for this many
degrees:<1>

The first argument in all of these functions does not
have to be enclosed in quotation marks. If the second
argument is incorrect, a warning message appears on the
screen and the BUILD stops.

PREPARE THE VOICE -- Initializes the voice

LOAD the phrase called <1> with phonemes <2>

For example:
LOAD THE PHRASE called "HELLO"™ with the
phonemes “"H.El....STOP."

Each phoneme must have a period after it, including the
last phoneme in the sequence., There can be no spaces in
between., If any periods are omitted, the machine goes
into an endless loop. The last phoneme must always be
STOP.

The "LOAD THE PHRASE" action should be near the top of
your robot task, but after the "PREPARE THE VOICE"
command. You should not include the "LOAD THE PHRASE"
task with any of your loops since it only needs to be
done once. Use the "SPEAK the phrase called <1>" in the
body of your task when you want the robot to speak the
phrase you previously loaded.

Copyright 1984 . All rights reserved. E-1

5. In the following tasks:
DEFINE A VARIABLE
BEGIN A COUNTED LOOP

REPEAT THIS COUNTED LOOP

CALCULATE
REPEAT A LIMITED LOOP

TEST 1IF

-the variable used must be a legal Tiny BASIC variable
(A"Z) -

6. CALCULATE

"CALCULATE" allows the programmer to alter a Tiny BASIC
variable by operating upon it with one of the four
standard arithmetic functions (add, subtract, multipy,
divide) along with either another variable or a constant
value. A common use of this task is to increment a
variable for use in a loop. For example:

CALCULATE variable "A"® = "A"™ "4+"]

In this case "A"™ is the variable to be operated on. The
variable is in quotation marks because Savvy must treat
the Tiny BASIC variable as a literal. The numeral, on
the other hand, does not reguire quotes since it is a
constant in both Savvy and in Tiny BASIC. Likewise, the
operand must be placed in quotes since Savvy does not
recognize it as a constant.

7. TEST IF

"TEST IF" gives the programmer the option of being able
to test a variable against another variable or a constant
value while in a loop. The result of such a test will be
either true or false. If the result is true, then the
loop continues; if the result is false, the task branches
out of the loop statement immediately following the end
of the loop. For example:

BEGIN A LOOP
CALCULATE variable "A" = "A" (+,-,*,/) "+" 1
TEST IF the variable "A" is (=,<,>,<>} "=". compared
to 4

REPEAT THIS LOOP

END HERE

E-2 Copyright 1984 - All rights reserved.

In this procedure, the loop will continue until the
variable A is equal to four; when this occurs, the task
terminates,

8. When using variables in your tasks, such as for the TEST
IF task, the CALCULATE task, or the COUNTED LOOPS, be
careful about using the following variables; they are
already being used within some of the RCL primary tasks:

Ar Di Ir Jr Lt Ml’ Nr O: Pr Qr R' Sr Tl Uf V, Wr xr Yr Z

There may or may not be interaction between your choice
of variable and the use of that variable within one of
the tasks, so it is best to use other variable names
unless you check the tasks being used, or look at the
LIST THE PROGRAM.

Copyright 1984 - : All rights reserved. E-3

F. APPENDICES

Copyright 1984 "All rights reserved. F-1

APPENDIX 1

Provided RCL Tasks

B Y I

TASKS
Name (Status)

ASSIGN A MOTOR CODE
*BEGIN A COUNTED LOOP called <1> beginning at <2> ending at <3>
«BEGIN A LIMITED LOOP
*BEGIN A LOOP
*BUILD a program from the robot task <13
*BUILD AND LOAD
*CALCULATE variable <1> = <2) (+,-,%,/7) £3> <4>
*CALL this robot task line <1>

CLEAR ALL 1TEMS
«DEFINE A VARIABLE called <1>

END HERE
END OF PROGRAM

*EXIT IF ANY BUMPER TOUCHED

*EXIT IF FRONT+REAR BUMFER PRESS

*EXIT IF SONAR distance value is less than <i>
«EXIT IF THE BATTERY IS5 LOW

*EXIT IF THE CHARGER 18 TOUCHED

+EXIT IF THE TAPE 15 SENSED

«EXIT IF THIB BUMPER is touched <1>

+EX1T THIS LODOP

«FOLLOW TAPE .)

»GO CLOCKWISE :

*50 COUNTERCLOCKWISE

-*"HONK the horn for this many seconds <1>
INITIALIZE MEMORY

INITIALIZE VARIABLES

*JUMP to the line called <1>

*LIGHTS ROUTINE

*LIST THE PROGRAM

*LOAD

**LOAD THE PHRASE called: <1> with phonemes: <2>

. *"MAINTAIN CHARGE

*MOVE BACKWARD

*MOVE DISTANCE BACKWARD for this many feet: <1>

*MOVE DISTANCE FORWARD for this many feet: <15

*MOVE FORWARD

*MOVE. FORWARD TIL TAPE NOT SENSED

*MOVE RANDOMLY
*MOVE THE ARM FROM SHOULDER (UP,DOWN, IN,OUT): <1> for this many degrees <2>

*MDOVE THE FDREARM (IN,DUT): <1> for this many degrees <2>
*MOVE THE HAND (DPEN,CLDSE): <1)> for this (1-100) %3 <2>
*MOVE TIMED BACKWARD for this many seconds <1>

*MOVE TIMED FORWARD for this many seconds <1>

*MOVE WITH BETA INTELLIGENCE

“"OTHERWISE DO

*PICK A RANDOM DIRECTIDN

*PIVOT DN LEFT CLOCKWISE

*PIVOT ON LEFT COUNTERCLOCKWISE

*PIVOT ON RIGHT CLOCKWISE

*PIVOT ON RIGHT COUNTERCLOCKWISE

*PREPARE THE ROBOT

*PREPARE THE VOICE

REMARK that: <1>

*REPEAT THE LIMITED LOOP unless <1> is ({,2,=,<2) <2> to <3>
*REFPEAT THIS COUNTED LODOF for the counter <12

*REPEAT THIS LOOP

REPORT ASSIGN ERROR

TASKS
Name {Status)

REPDRT DELETE ERROR

REPORT BET ERROR {(Undefined)

REFORT LOAD ERROR

REPORYT MATH ERROR

REFDORT REFLACE ERROR

REFORYT SAVE ERRDR

*RUN

*SET the variable <1> equal to <2>

SHOW ERRORS

SHOW THE PHONEME DICTIONARY

*SPEAK the phrase called: <1>

*SPIN AROUND CLOCKWISE this many times: <1>
*SFIN ARDUND COUNTERCLOCKWISE this many times: <1)>
*SFIN CLOCKWISE this many degrees: <1>
*SPIN COUNTERCLOCKWISE this many degrees: <1>
*SPIN LEFT 90 DEGREES

*SPIN RIGHT 90 DEGREES

STARTUP
*STOP ALL MOTION

*TEST 1F the variable <1> is (=,<,>, <>) <2> compared to <3>
*TURN OFF LED number <1>

*TURN OFF THE FLASHING LIGHTS

*TURN OFF THE HORN

*TURN OFF THE INFRARED LED

*TURN ON LED number <1>

*TURN ON THE FLASHING LIGHTS

*TURN DN THE HORN

*TURN ON THE INFRARED LED

*TURN THE WRIST (CW, CCW): <1> for this many degress <2>
"WAIT this many seconds <1>

*WAIT RANDOMLY up to this many seconds <1>

*X
*X
X
*X
X
*X
*X
X

MAMNMNNNNNNNNNNRNNNNN

ALPHA

ALPHA W/SONAR

BETA

BETA W/SONAR

BUMPER ACTIVATED MODTIDNS

CHARGER F1INDER

LOAD THE INTRODUCTION

SIMPLE SIMON

COMPILE the BASIC statement <1)> which means <2>
COMPUTE 2 TO THE N-1 , with N = <1)
DELAY for this many loops: <1

DO CHECK if item <1> is in folder <2>
DO NUMBER TEST on <1)>

EMFTY THE PROGRAM

ERROR CHECK IF/UNTIL STATEMENT

ERROR CHECK MATH FUNCTION

ERROR CHECK STRUCTURES

ERROR CHECK THE FOR STATEMENT

ERRDR CHECKING?)

FIND the label called <1>

GET PREVIOUS BEGIN

6ET PREVIOUS IF OR ELSE

INCLUDE at <1)> the statement <2> which aeans <3>
INCREMENTY the <1>

INCREMENT STATEMENT NUMBER

INITIALIZE LEGAL VAR1ABLES

-

& e %ﬁ.

TASKS
Name {Etatus)

INSURE ARM PULSE SUBROUTINE 1S
INSURE BETA SUBRODUTINE IS
INSURE END OF PROGRAM IS THERE
INSURE PORT 7801 SUBRDUTINE IS
INSURE RANDOM TURN SUBROUTINE
INSURE RANDOM WAIT SUBROUTINE
INSURE VOICE SUBROUTINE 1S
INSURE WAIT SUBROUTINE 15
LOAD SONAR

L OAD VDICE SUBROUTINE

LOOK FOR BEGIN

LODK FOR MATCHING STATEMENT
OUTPUT PAGE NUMBER

DUTPUT PROGRAM HEADING

PATCH UF END STATEMENTS

PATCH UP EXIT STATEMENTS
PATCH UP JUMP STATEMENTS

SAVE FOLDER ERROR

SAVE NUMBER OR FOLDER ERROR
SAVE STRUCTURE ERROR missing the statement <1)> to go with the statment <2> at
statement number <3> .
22 AVAIL TASK

ZZ AVAIL TASK #1

Z1I AVAIL TASK #10

ZZ AVAIL TASK #11

ZZ AVAIL TASK #12

Z1 AVAIL TASK #13

ZZ AVAIL TASK #14

IZ AVAIL TASK #2

ZZ AVAIL TASK #3

ZZ AVAIL TASK #4

ZZ AVAIL TASK #3

ZZ AVAIL TASK #&

ZZ AVAIL TASK #7

2Z AVAIL TASK #8

NNNNNNNNNNNNNNNNNNNN

P AN
A

APPENDIX 2

Detail of Provided RCL Tasks

o plerd

ASSIGN A MOTOF CODE (a Task)

the BASIC statement FRONT which means

" IF
"IF

"IF
"IF

"IF
“IF

[L] IF

“IF

" @M=

L] TU n

" DD (1]

Y=2%1
Ye254

Y=247
Y=127

¥=239%9
Y=191

Y=223
Y=253

PII

THEN
THEN

THEN
THEN

THEN
THEN

THEN
THEN

P=9*
P=B L]

P=g®
P=7 [1]

p=&"
p=2"

pP=10"

P=1"

which means

which
which

which
which

which
which

which

means
MEeEaAnEe

neans

means

means
means

which means

means

“FORWARD"
"RIGHT FOF

“RDTATE Rl
"RIGHT REV

"REVERSE™
"LEFT REVE

"ROTATE L

"LEFT FDRW

“ASSIGN THE MOTDR CODE"

COUNTED LOOF called <1> beginning at <2> ending at <3>

{a Function)

“BEGIN & COUNTED LOOFP (F

which means "BEGIN A LIMITED LOOF"

1 Does 7 COMPILE the BASIC statement
2 and Z COMPILE the BASIC statement
WARD®
X and Z COMPILE the BASIC statement
GHT"
4 and I COMFILE the BASIC statement
ERSE"
S and I COMFILE the BASIC statement
& and Z COMFILE the BASIC statement
RSE™
7 and Z COMFILE the BASIC statement
EFT"”
B and I COMFILE the BASIC statement
ARD"™
9 and I COMPILE the BASIC statement
10 and END (Task is 324 full.)
BEGIN A
1 Does 2 ERROF CHECK THE FOF STATEMENT
2 and PASTE the “"FDR * in front of <13
X and FASTE the FRONT in front of
4 and PASTE the FRONT in front of <2>
S and FASTE the FRONT in front of
& and PASTE the FRONT in front of <3>
7 and I COMFILE
OR/NEXT""®
B and COFY from "FDR" to STRUCTURE TYPE
® and SAVE new page in STRUCTURES
10 and END {Tack is 9L full.)
BEGIN A LIMITED LOOF ¢(a Task)
1 Does Z COMPILE the BASIC statement
2 and COPY from "DO" to STRUCTURE TYFE
3 and SAVE new page in STRUCTURES
4 and END (Task is &7 full.)
BEGIN A LOOF (a Task)
1 Does
oF*
and COFPY from "BEGIN" to STRUCTURE TYPE
and SAVE new page in LOOFS

and
and

MWhUN

END

(Task is

SAVE new page in STRUCTURES

S% full.)

Z COMFPILE the BASIC statement "“REM START A LOOP" which means “BEGIN A LD

BUILD a
1 Does
2 and
T and
4 and
S and
& and
7 and
8 and
9 and

10 and

i1 and

12 and

13 and

14 and

15 and

16 Do

17 and

18 and

19 and

20 Do

21 and

22 and

2% and

program from the robot task <{1> (a Function)

CLEAR the pag=
COPY from "RUILD" to ASSIGNMENT

ASSIGN the <1> to ASSIGNED TASK
Z ERROR CHECKING?
CLEAF the page
Z EMFTY THE FROGRAM
DISPLAY the “"Now building robot task ™
DISFPLAY the <1>
DISFLAY the "...one moment, please.”
CARRIAGE return
DO the assigned task
Z PATCH UP JUMF STATEMENTS
Z INSURE END OF PROGRAM IS THERE
COPY $rom EMPTY to ASSIGNMENT
IFf the ERRDF CHECK I£ YES then
COPY from 199 to ERROR NUMEER
2 ERROF CHECK. STRUCTURES
GET the page indexed by FIRST in folder ERRDRS
IF the PAGE 15 NOT EMFTY then
SHOW ERRORS
END of test
END of test
END (Task is 13%Z full.)

BUILD AND LOAD (a Task)

1 Does
2 and

L AULT

- 3 and
4 and
S and

FAULT

& and
7 and
8 and
9 and

CLEAR the page
DUTFUT from “%%x% Build and load an RBSX robot task $%x" using format DE

CARRIAGE return

CARRIAGE return
OUTFUT from “Flease enter the name of the robot task: * using format D

INFUT into HERE
BUILD a program from the robet task HERE

CLEAR the page
OUTFUT from "8% Build completed, now loading into the RESX %x&* using foi

mat DPEFAULT

10 and
11 and

LDAD
END (Tagk is 14% full.)

LI

CALCULATE variable 1> = (2> (+,~,¥8,/) <3>» <4> (a Function)

Does Z ERRDR CHECK MATH FUNCTION
and PASTE the <1> in front of "=*

and FPASTE the FRONT in front of <2

and FPASTE the FRONT in front of <3>

and FASTE the FRONT in front of <4>

and Z COMFILE the FEASIC statement FRONT which means

and END (Task is 5S4 full.)

“MATH FUNCTIDN™

NS -

CALL this robot task line <1> (a Functiocn)

Does PASTE the "REM LABREL THIS LINE * in front of <1>
and I COMFILE the BASIC statement FRONT which means
and PASTE the "L" in front of <1>
and COPY 4$rom FRONT to STRUCTURE TYFPE
and SAVE new page in LOOFS
and END (Task is &% +ull.)

“LABEL THE LINE™

CRDBUN-

CLEAR ALL ITEMS (a Task)

1 Does 2 COMFILE the BASIC statement "CLEAR™ which means "CLEAR VARIARLES®
2 and END (Tash: is I%Z full.)
DEFINE A& VARIABLE called <1> (a Functién)

Does BEGIN at page indexed by FIRST in folder LEGAL VARIABLES

and START a loop
GET the page indexed by NEXT in folder LEGAL VARIAELES

Do

and IF the USED IS NO then
Do LEAVE this loop-

and END aof test

and REFEAT this loop

and COPY from <1> to VARIAELES 1D

and COFY from LEGAL ID to VAR NAME

10 and SAVE new page in VARIABLES

11 and COPY from YES to USED

12 and REFLACE this page in folder LEGAL VARIABLES
13 and END (Task is 5% full.)

MONCABUWN -

END HERE (a Task)

1 Does Z COMFILE the BASIC statement "REM END HERE™
0 HERE™®
and Z PATCH UP END STATEMENTS
and COFPY from "END" to STRUCTURE TYFE
and SAVE new page in STRUCTURES
and END (Task is 54 full.)

MeUN

which means "FALL THROUGH

END OF FROGRAM fa Task)
1t Does I INCLUDE at 2,999 the statement “GOTO I400" which means "GOTOD END"

2
3 and
EXIT IF

END (Task is &% full.)

ANY BUMPER TOUCHED (a Task)

and Z INCLUDE at 3,600 the statement "REM END DF PROGRAM™ which means **

1 Does Z COMFILE the BASIC statement “Y=G#7800% which means “TEST FOR BUMFER

NTACT"

2 and Z COMFILE the BASIC statement "IF Y4255 607D EXIT" which means "EXIT IF
ANY CONTACT™ :

S and
4 and
S and

4 and
EXIT 1IF
1 Does

NTACT"
2 and

COFPY from "EXIT" to STRUCTURE
SAVE new page in LOOPS

SAVE new page in STRUCTURES
END (Task is 10% full.)

TYFE

FRONT+REAR BUMFER PRESS (a Task)

Z COMPILE the BASIC statement

Z COMFILE the BASIC statement

FRONT+REAR BUMFER FRESS"

3 and
4 and
S and
& and

EXIT IF

Does
and
and
and
and
ang

2

HOUON CUMBWUN™

and
and
and
and
and

L)

COPY from "EXIT" to STRUCTURE
SAVE new page in LOOPS

SAVE new page in STRUCTURES
END {Task is 11% #ull.)

"Y=3#7800" which means "TEST FOR BUMFER L[

"IF y=23I5 GOTO EXIT" which means "EXIT IF

TYFE

SONAR distance value is less than <1> ({(a Functiaon)

Z COMFILE the BASIC statement
Z COMFPILE the BASIC statement
SFLIT the number <1>

PASTE the “IF D<" in front of
PASTE the FRONT in front aof *
Z COMFILE the BASIC statement

COFPY from “EXIT" to STRUCTURE
SAVE new page in LOOPS

COPY from YES to SONAR NEEDED
SAVE new page in STRUCTURES
END (Task is 147 $ull.)

*D=0%" which means "2ER0O DISTANCE"
"LINK #1B00" which means “CALL SONAR"™

INTEGER
GOTO EXIT®
FRONT which means "EXIT IF LESS THAN VALUE

TYPE

iy &

» tot sinipipien,

EXIT IF THE BATTERY IS LOW (a Task)

1 Does I COMPILE the BASIC statement “ZI=@#7802 AND #10"

TTERY LOW"
2
TTERY IS LOW"

and 2 COMPILE the BASIC statement “1F I=0 GOTO EXIT*®

which means “TESYT 1IF 1

which means “EXIT IF §

X and COFPY from “EXIT" to STRUCTURE TYPE

4 and SAVE new page in LOOPS
% and SAVE new page in STRUCTURES

& and END

(Task: is 10% full.)

EXIT IF THE CHARGER 1S TDUCHED (a Task)

1 Does Z COMPILE the

HARGER CONTACT*
and Z COMFPILE the BASIC statmment "IF Q=0 GOTO EXIT" which means

2

BASIC statement "O=@#7802 AND #20" which means "TEST FOR
“EXIT IF C

ARGER 1S5 TOUCHED"
3 and COFY from “"EXIT" to STRUCTURE TYFE

4 and SAVE new page in LOOFS
= and SAVE new page in STRUCTURES

& and END

EXIT IF THE TAFE 1S5 SENSED (a Task)

1 Does TURN ON THE INFRARED LED
2 and Z COMFILE the BASIC statement

AFE SENSE*™

3 and Z COMPILE the BASIC statement "IF R=0 GOTO EXIT™

FE SENSED"

(Task is 1174 full.)

-

"R=A#7802 AND #40" which means “TEST FOR -

which means "EXIT IF T¢

4 and COFY from. "EXIT* to STRUCTURE TYPE

% and SAVE new page in LODFS
& ‘and SAVE new page in STRUCTURES .

7 and END

(Task is 107 full.)

EXIT IF THIS BUMPER is touched <1i> (a Function)

1 Does IF the <1> 15 LESS THAN OR EQUAL TO 8 then
2 Do IF the <1> I8 GREATER THAN OR EQUAL TDO 1 then

X Dbo
PER CONTACT™
4 and
S5 and
é& and
7 and
8 and
9 and
10 and
11 and
12 and
172 and

Z COMPILE the BASIC statement "Y=@#7800" which means “TEST FOR BUM

SPLIT the number <1>

Z COMPUTE 2 TO THE N-1 , with N = INTEGER
SUBTRACT the PRODUCT from 255

FPASTE the “IF Y=" in front of DIFFERENCE

PASTE the FRONT in front of " GOTO EXIT®

Z COMFPILE the BASIC statement FRONT which means
COPY from "EXIT" to STRUCTURE TYPE

SAVE new page in LOOFS

SAVE new page in STRUCTURES

END of test

“EXIT IF CONTACT™

14 and END of test

15 and END

(Task is 15% full.)

EXIT THIS LDOF (a Task)
1 Does Z COMPILE the BASIC statement “B0DTO GOES HERE" which means “"EXIT THIS L
op*
2 and COPY from "EXIT" to STRUCTURE TYPE i
I and SAVE new page in LDOFS

4 and SAVE new page in STRUCTURES
5 and END {Task is 9% full.)

FOLLDW TAFE (a Task)

Does BEGIN A LOOP

and PREFARE THE ROBDT

and CLEAR ALL ITEMS

and PEGIN A LDOP

and PIVOT ON LEFT COUNTERCLOCKWISE
and EXIT 1F THE TAPE 1S SENSED

and EXIT IF THE CHARGER 1S TOUCHED
and REFEAT THIS LODOF

and EXIT IF THE CHARGER IS TOUCHED
10. and TURN DN THE FLASHING LIGHTS

11 and MOVE FORWARD TIL TAFE NOT SENSED
12 and FREPARE THE ROROT

13 and CLEAR ALL ITEMS - .
14 and REGIN A LOOP

15 and PIVOT DN RIGHT CLOCKWISE

16 and EXIT IF THE TAPE 1S SENSED

17 and EXIT IF THE CHARGER 1S5 TOUCHED
18 and REFEAT THIS LOOP

.19 and EXIT IF THE CHARGER IS TOUCHED
20 and TURN ON THE FLASHING LIGHTS

‘21 and MOVE FORWARD TIL TAFE NOT SENSED
22 and REFEAT THIS LOOP

23 and END (Task is &% full.)

SONDCURIUN-

60 CLOCKWISE (a Task)

1 Does Z COMPILE the PASIC statement "@#7802=#05" which means "SPIN CLOCKWISE®
2 and END (Task is 3% full.)

60 COUNTERCLOCKWISE (a Task)

1 Does Z COMPILE the BASIC statement “8#7802=#0A" which means "SPIN COUNTERCLD!

KWwisge" :
2 antt END (Task is 4% full.)

~

=l

HONK the horn for this many seconds <1>

1 Does TURN ON THE HORN
2 and WAIT this many seconds <1>
X and TURN DFF THE HORN

r

and

END

INITIALIZE MEMORY (a Task)

1 Does Z COMFPILE the BASIC

BLOCK™
2 and Z COMFILE the
TION BLOCK*"
and Z COMPILE the BASIC

3
4
=
&
7

and
and
and
and

Z COMPILE

the

BASIC

"BASIC

Z COMFILE the BASIC

Z COMPILE
END

the

(Task is

BASIC

(Task is 1% full.)

statement
statement

statement
statement
statement
statement

154 #€ull.)

INITIALIZE VARIABLES (a Task)

1
z
3
4

Does
and
and
and

ORY"

=
é
7

and
and
and

JUMP to

U PAWN -

LIGHTS ROUTINE

- T
S OBONCUDWN

Does
and
and
and
and
and

Does
and
and
and
and
and
and
and
and
and
and

COMFILE
COMFILE
COMFILE
COMFPILE

COMFILE
COMFILE
END

NN NMNNMN

the
the
the
the

the
the

BASIC
BASIC
BASIC
BASIC

BASIC
BASIC

the line called <1>

PASTE the

“JUMP TO LABEL *

statement
statement
statement
statement

statement
statement

(Task is 11% full.)

{(a Function)

"N=TOP" which means "INITIALIZE EXPERIENI

“O=TOF+#FF"
“M=TOP+#200" which means **

which means

"INITIALIZE INHII

"FOR P=N TO M" which means "*

"@P=#FF"

which means ""

“NEXT P" which means ""

*N=TOP"

“O=TOP+#FF"
which means "*

llﬂzN'l

"FOR P=N TO O*

“@F=0*
"NEXT P"

i
{a Function)

Z COMFILE the BASIC statement
FASTE the "J" in front of <1)>
COPY from FRONT to STRUCTURE TYPE
SAVE new page in LOOPS

END

TURN
WAIT
TURN
WAIT
TURN
WAIT
TURN
WAIY
TURN
WAIT
END

{a Task)

(Task is &% full.)

ON LED number 2
this many seconds
DN LED number 3
this many seconds
ON LED number
this many seconds
ON LED number 5
this many seconds
ON THE FLASHING LIGHTS
this many seconds 1
(Task is 7Z $ull,)

4

-1

which means

which means ""
which means

which means

which means **

in front of <1>
*"60TD GDES HERE"™

"INITIALIZE ME

which means FRONT

LIST THE PROGRAM (a Task)
BEGIN at page indexed by FIRST in folder SOURCE

1 Does
2 and COFPY from O to PAGE COUNT
X and START a loop
4 Do CLEAR the page
S and Z INCREMENT the PAGE COUNT
& and Z DUTFUT PAGE NUMBER
7 and Z DUTFUT PROGRAM HEADING
8 and COFPY from 5 to LINE COUNT
9 and START a loop
10 Do Z INCREMENT the LINE COUNT
11 and GET the page indexed by NEXT in folder SOURCE
12 and 1F the PAGE 1S EMPTY then '
13 Do - LEAVE this loop
14 and END of test
15 and DUTPUT from SPACES using format S
16 and OUTPUT from STATEMENT NUMBER using format "#4"
17 and OUTPUT from SFACES using format S
18 and DUTPUT from BASIC TEXT using format 30
19 and ODUTFUT from SPACES using format S
20 and OUTPUT +4rom MEANING using format 30
21 and CARRIAGE return
22 and IF the LINE COUNT IS S5.then
23 Do LEAVE this loop
24 and END of test
25 and REFEAT this loop
26 and IF the PAGE IS EMPTY then
27 Do LEAVE this loop
28 and £END of test

29 and REFEAT this loop

130 and CARRIAGE return

21 and CARRIAGE return

32 and OUTPUT from SPACES using format 26

33 and OUTPUT from “%X End of the Program 2f" using format DEFAULT
34 and CARRIAGE return

35 and END (Task is 19%Z full.)

LOAD (a Task)

1 Does WHEN folder SOURCE DDES NOT CONTAIN 10 then
2 Do REPORT LOAD ERROR

S and END of test

4 and CLEAR the page

S and RING bell

& and RING bell

7 and RING bell

8 and DISPLAY the "Ready to locad into the RB3X...press any key to continue.”
9 and LIMIT the input for ANSWER to a maximum of 1

10 and CLEAR the page

11 and DISFLAY the “ff Now loading...One moment please x2*

12 and CARRIAGE return

13 and CARRIAGE return

14 and DISPLAY the "Now loading your robot task..."

1S and CARRIAGE return

16 and PRINT the "“

17 and DUTPUT 4rom "@#7B03=#98:E#7B01=#7C" using format DEFAULT

18 and EARRIAGE return

19 and I DELAY for this many loops: 10

20 and ODUTPUT from “NEW #1000% using format DEFAULT

LDAD (a

21 and
22 and
23 and
24 and
25 and
26 and

27 and
28 Do
29 and
X0 and
- 31 and
. 32 and
IX and
34 Do
35 and
I&6 and
I7 and
38 and
39 and

aly

A

93

40 and
41 and
42 and
4% and
44 and
45 Do
44 and
A7 Do
48 and
49 and
S0 and
=1 and
2 and
53 and
54 and
&S and
%6 and
57 and

S8 and
52 and
&0 and
61 and

62 and
&3 and
&4 and
45 and

Task)

CARRIAGE return
Z DELAY for this many loops: 60
OUTPUT from "NEW" using format DEFAULY
CARRIAGE return
Z DELAY for this many loops: 95
BREGIN at page indexed by FIRST in folder SOURCE
IF the VOICE NEEDED IS5 YES then
Z LDAD VDICE SUBRDUTINE
DISFLAY the **
CARRIABE return
FRINT the *"*
END of test
1F the SONAR NEEDED IS YES then
Z LOAD SONAR
DISFLAY the **
CARRIAGE return
PRINT the “*
END of test
DISFLAY the "*
CARRIAGE return
DISFLAY the "Now loading your Txny BASIC robot task..."
CARRIAGE return
FRINT the "
START a loop
GET the page indexed by NEXT in fulder SOURCE
IF the PAGE IS EMFTY then
LEAVE this loop
END of test §
FASTE the STATEMENT NUMBER in front of " *
PASTE the FRONT in front of BASIC TEXT
OUTPUT from FRONT using format DEFAWLLT
CARRIAGE return
DISPLAY the “&*
FRINT the **
Z DELAY for this many loops: 5
REFEAT this locp
Z DELAY for this many loops: 15
PRINT the **¥
OUTFUT from "RUN" using format DEFAULT
CARRIAGE return
DISFLAY the **
RING bell
CLEAR the page

DISPLAY the "1%% Your robot task has been successfully loaded tx*

END (Task is 47X full.)

LDAD THE FPHRASE called: <1> with phonemes: <2>

[T
FOJONCURUNS

b b fub et b B e
VONDABWN

N A
- O

Does
and
and
and
and

Do
and
and
and
and
and
and
and

Do

Do
and
and
and
and
and
and
and
and

Do
and
and
and

and
and
Do
Do

and
and
and
and
and
and
and
and
and
and
and
and
and
and
and
and
and
and
and
and

(a Function)

COPY ¥rom O to SPEECH LENGTH
cOoPY from EMPTY to SPEECH ADDRESS
GET the page indexed by FIRST in folder SFEECH LOAD DATA
DISFLLAY the PABE
IF the PAGE 15 EMPTY then
COPY from “TOP+500" to SFEECH ADDRESS
COPY from “TEMF" to LABEL 1D
SAVE new page in SFEECH LOAD DATA
GET the page indexed by "TEMF" in folder SPEECH LOAD DATA
END of test
GET the page indexed by "TEMF" in folder SFEECH LOAD DATA
Z INSURE VOICE SUBROUTINE IS
START a loop
IF the <2> I8 EMFTY then
LEAVE this loop
END of test
ADD the 1 and SFEECH LENGTH
COPY from SUM to SFEECH LENGTH
CUT the <2> after DELIMITER
COFY from BACK to <2>
SUBTRACT the 1 from LENGTH
TAKE this many characters DIFFERENCE from FRONT
WHEN folder PHONEMES CONTAINS FRONT then
BET the page indexed by FRONT in folder PHONEMES
PASTE the "P=#" in front of PHONEME CODE
PASTE the FRONT in front of ":B60SUB 3I500"
Z COMFILE the BASIC statement FRONT which means "VDICE SUBROUTINE®

COFY from YES to VOICE NEEDED

DTHERWISE
IF the ERROR CHECK 1S YES then
Z COMFILE the BASIC statement “REM PHONEME ERRDR™ which means *

Z INCREMENT the ERRDR NUMBER
COPY from STATEMENT NUMBER to LINE NUMBER
PASTE the PHONEME ID in front of * is not a valid phoneme®
COPY from FRONT to ERROR MESSAGE
SAVE new page in ERRORS
END of test
END of test
REPEAT this loop
GET the page indexed by LAST in folder SPEECH LOAD DATA
COPY from <1> to LAEBEL ID
SAVE new page in SPEECH LDAD DATA
PASTE the SFEECH ADDRESS in front of "+
PASTE the FRONT in front of SPEECH LENGTH
COPY fram FRONT to SPEECH ADDRESS
COPY from “"TEMP* to LABEL 1D
COrPY from SPEECH ADDRESS to HERE
GET the page indexed by “TEMP" in folder SPEECH LDAD DATA
COFY from HERE to SFEECH ADDRESS
REFPLACE this page in folder SFEECH LO4AD DATA
END (Task is 38% full.)

N

Copn AR ey P

MAINTAIN CHARGE (a Task)

Does BEGIN A LOOP

and BEGIN A& LOOP
and EXIT IF THE CHARGER 1S TOUCHED

and SET the variable "P" squal to O

1
2

3

ry

% and BEGIN A LOOP

& and I COMPILE the BASIC statement "F=FP+1" which means “INCREMENT LOOF COUNT
7

8

and MOVE TIMED FORWARD for this many seconds .1
and EXIT IF THE CHARGER 1S TOUCHED

9 and TEST IF the variable “F" is (=,{,>,{>) “=* compared to 5

10 and MOVE TIMED BACKWARD for this many seconds |
11 and MOVE TIMED FORWARD for this many seconds 1.1
12 and SET the variable “P" equal to O

13 and END HERE

14 and REFPEAT THIS LDOP

15 and REFEAT THIS LOOP

14 and TURN DN LED number 2

17 and WAIT this many seconds 1

18 and PREPARE THE ROBOT

19 and REFPEAT THIS LOOP

20 and END (Task is 14% full.)

MOVE BACKWARD (a Task)

1 Does 7 COMFILE the BASIC statement "@#7802=#06" which means "REVERSE"
2 and END (Task is 2% #ull.)

MOVE DISTANCE BACKWARD for this many feet: <1> (a Ffunction)

1 Does IF the <1> IS GREATER THAN O then
2 Do MULTIFLY the <1> by 3

3 and MOVE BACKWARD

4 and WAIT this many seconds FRODUCT
5 and STOF ALL MOTION

& and END of test

7 and END (Task is J%L full.)

MOVE DISTANCE FDRWARD for this many feet: <1> (a Function)

Does IF the <1> IS GREATER THAN © then
Do MULTIPLY the <1> by 3.

and MOVE FORWARD

and WAIT this many seconds FPRODUCT
and STOFP ALL MOTION

and END of test

and END (Task is I%L full.)

NOEABUN-

1TM0VE THE ARM FROM SHOULDER {UFP,DOWN, IN,OUT): <1> for this many degrees (2>

o

"

MOVE FORWARD (a Task)

1 Does Z COMPILE the BASIC statement "@#7802=#09" which mseans “60 FORWARD"
2 and END (Task is 3% full.)

MOVE FDRWARD TIL TAFPE NOT SENSED (a Task)

Does SET the variable “T" egual to 0O
and Z COMFPILE the BASIC statement “DO"

1

2

3 and CALCULATE variable *“T" = "T" (+,-,%,/)
4

S

and MOVE FDRWARD
and Z COMFPILE the BASIC statement "R=G#7802 AND #40" which means "TEST FOR

AFE SENSE"
and Z COMPILE the BASIC statement "UNTIL (R<{>0) DR (T>=100}" which means *C

6
ECK EXIT CONDITIONS"™
7
8

which means "BEGIN A LIMITED LOOF“
ll+l' l

and WALIT this many seconds .1
and END (Task i€ 17%Z full.)

MOVE RANDOMLY (a Task)
1 DPoes I COMFILE the BASIC statement "GOSUB 3040 which means "FICK RANDOM DIR

CTION"™
2 and Z COMPILE the BASIC statement “"@#7B02=V" which means 60 RANDOM DIRECTI

N .
3 and I INSURE RANDOM TURN SURRDUTINE

4 and END (Task is 74 full.)

-

{a }
unction)

1 Does IF the <1> 1S5 1IN then
b4 Do COPY from "D=#7BOS:M=B:N=0:" to TEMP

3 and OTHERWISE

4 Do IF the <1> 15 OUT then
S Do COPY from "D=#7805:M=12:N=4:" tpo TEMP

& and OTHERWISE

7 Do IF the <1> 1S DOWN then

8 Do COPY from “"D=#7805:M=3:N=1:" to TEMF

2 and OTHERWISE

10 Da IF the <1> IS UF then

11 Do COPY from *"D=#7805:M=2:N=0:" to TEMP

12 and END of test

13 and - END of test .
14 and END of test

15 and END of test
16 and IF the <2> 1S5 GREATER THAN DR EQUAL TO 1 then

17 Do IF the <2> IS LESS THAN OR EQUAL TO 340 then

18 Do MULTIPLY the <2> by 40.3B

19 and SPLIT the number PRODUCT

20 and COPY from INTEGER to PRODUCT

21 and FPASTE the “P=" in front of FRODUCT

22 and FASTE the TEMP in front of FRONT

23 and Z COMFILE the BASIC statement FRONT which means *SET MOTDOR, ETC.™
g;- and Z COMPILE the BASIC statement “GOSUR 3400™ which means “"MOVE THE &
25 and 2 INSURE ARM FULSE SUBROUTINE IS

26 and 60 to the line called “SKIP*®

27 and END of test

2B and END of test
29 and CARRIAGE return

. W‘.—

o gl i

MOVE THE ARM FROM SHOULDER (UF,DDWN, IN,OUT): <1> for this many degrees <{2>
unction)

X0 _and

31 and
32 and
33 and
34 and

{(a

OUTPUT from "Shoulder Error: degrees = * using format DEFAULT
QUTPUT from <2> using format DEFAULT

HALT and return to Ready

LABEL this line "SKIP"

END (Task is 30% full.)

MOVE THE FOREARM (IN,DUT): <1> for this many degrees <2> (a Function)

1 Does
2 Do
X and
4 Do
S Do
& and
7 and
8 and
9 Do
10 Do
11 and
12 and
13 and
14 and
15 and
c-ll
16 and
RM™)
17 and
i8 and
19 and
20 and
21 and
22 and
23 and
24 and
25 and
26 and

IF the <1> 1S 1IN then
COFY from “D=#7805:M=4B:N=1&6:" to TEMP

OTHERWISE
IF the <1> IS OUT then
COFY from *“D=#7805:M=32:N=0:" to TEMP
END of test

END of test
IF the <2> 1S5 BGREATER THAN OR EQUAL TO 1 then

IF the <2> IS LESS THAN OR EQUAL TO 360 then
MULTIFLY the <2> by 20.146
SFLIT the number PRODUCT
COFY from INTEGER to FRODUCT
PASTE the "P=" in front of PRODUCT

PASTE the TEMFP in front of FRONT
I COMFILE the BASIC statement FRONT which means "SET THE MOTOR, E

Z COMPILE the BASIC statement *60SUB 3400" which means “"MOVE THE |

Z INSURE ARM PULSE SUBROUTINE IS
GO to the line called "SKIP"®
END of test ‘

END of test

CARRIAGE return
OUTFUT from "Forearm Error: degrees = " using format DEFAULT

OQUTPUT from <2> using format DEFAULT
HALT and return to Ready

LABEL this line “SKIP"

END (Task is 24%Z full.)

MOVE THE HAND (OFEN,CLOSE): <1> for this (1-100) %: <2> (a Function)

1 Does
2 Do
S and
4 Lo
S Do
6 and
7 and
8 and
9 Do
10 Do
11 and
12 and
13 and
14 and
15 and
14 and
17 and

IF the <1> IS OFEN then
COPY from "D=#7B06&:M=242:N=240:" to TEMP
DTHERWISE
IF the <1> 1S CLOSE then
COPY from “D=#7806&:M=24T:N=241:" to TEMF
END of test
END of test
IF the <2> 1S GREATER THAN OR EQUAL TO 1 then
iF the <25 1S LESS THAN OR EQUAL TO 100 then
MULTIPLY the <2> by 4.42
SPLIT the number PRODUCT
COPY from INTEGER to FRODUCT
SFLIT the number PRODUCT
PASTE the *“P=*" in front of INTEGER

PASTE the TEMP in front of FRONT
Z COMPILE the BASIC statement FRONT which means "SET MOTORS, ETC."

I COMPILE the BASIC statement "GOSUP J400" which means "MDVE THE M

MOVE THE HAND (OPEN,CLDSE): <1> for this (1-100) %1 <2> (a Function)

18 and Z INSURE ARM PULSE SUBROUTINE 1S
19 and G0 to the line called “SKIFP"
20 and END of test

21 and END of test

22 and CARRIAGE return
23 and OUTFUT from "Hand Error: percent = * using format DEFAULT

24 and DUTPUT from <2> using format DEFAULT
25 and HALT and return to Ready

26 and LABEL this line "SKIPY

27 and END (Task is 24% full.)

MOVE TIMED BACKWARD for this many seconds <1> (a Function)

1 Does MOVE BACKWARD

2 and WAIT this many seconds <1>
3 and STOF ALL MOTION

4 and END (Task is 1% #ull.)

MOVE TIMED FORWARD for this many seconds <1> (a Function)

1 Does MOVE FORWARD

2 and WAIT this many seconds <1> -
3 and STOF ALL MOTION

4 and END {Task is 1% full.)

“MOVE WITH BETA INTELLIGENCE (a Task)

-1 Does Z COMPILE the BASIC statement “GOSUB 3140" which means "GO0 TO BETA SUBF

SUTINE®
2 and I COMPILE the BASIC statement “REM RETURN GOES HERE™ which means “RETUF

" TO HERE™
3 and COPY from STATEMENT NUMBER to RETURN STATEMENT NUMBER
4 and Z INSURE BETA SUBROUTINE IS
5 and END (Task is 9% full.)

OTHERWISE PO (a Task)

1 Does Z COMFILE the BASIC statement "REM ELSE® which means “DD THIS INSTEAD"
2 and COPY from "ELSE" to STRUCTURE TYPE

3 and SAVE new page in LOOPS

4 and SAVE new page in STRUCTURES

S and END (Task is S% full.)

PICK A RANDOM DIRECTION (a Task)
1 Does Z COMFPILE the BASIC statement "GOSUB 3J040"

CTION"
2 and 2 INSURE RANDOM TURN SUBROUTINE

3 and END {(Task is 4% +ull.)
FPIVDT ON LEFT CLOCKWISE (a Task)

1 Does 7 COMFILE the BASIC statement “"@#7802=8#04"
2 and END (Task is 3% full.)

FIVOT ON LEFT COUNTERCLOCKWISE (a Task)

1 Does Z COMPILE the BASIC statement “@#7802=#08"
2 and END (Task is 3% full.)

PIVOT ON RIGHT CLOCKWISE (a Task)

1 Does Z COMFILE the BASIC statement *@#7802=#01"
2 and END (Task is JI%L full,)

PIVOT ON RIGHT COUNTERCLOCKWISE (a Task)

1 Does Z COMFILE the BASIC statement "@#7802=#02"
2 and END (Task is JFL full,)

PREPARE THE ROBOT (a Task)

1 Does Z COMPILE the BASIC statement “@#7803=#98"
2 and END (Task is I4L full.)

FREFARE THE VOICE (a Task)

which

which

which

which

which

which

- 1 Does Z COMPILE the BASIC statement “@#780B=#A7:S=TOP"
. E VOICE*®

2 and COFY from "YES" to VDICE NEEDED
3 and END (Task is 5% full.)

REMARK that: <1> {a Function)

1 Doe= PASTE the "REM " in front of 1>

2 and 7Z COMPILE the BASIC statement FRONT which means

X and END {(Task is 2% full.)

neans

me2ans

MEeaANns

means

means

means

which

“PICK RANDOM DIRE

"RIGHT REVERSE"

*RIGHT FORWARD"

*LEFT FDORWARD"

"LEFT REVERSE"

"INIJIALIZE 1I/D

means “PREPARE TH

"REMARK"

N

REFEAT THE LIMITED LDOF unless <1> is ({,>,=,<>) 2> to <3> (a Function)

TN DDUWUN

Does
and
and
and
and
and
and
and

Z ERROR CHECK IF/UNTIL STATEMENT

PASTE the "UNTIL " in front of <1>

FASTE the FRONT in front of <2>

FASTE the FRONT in front of <3>

Z COMFILE the BASIC statement FRONT which means "CHECK EX1T CONDITION“
COFPY from “UNTIL" to STRUCTURE TYPE

SAVE new page in STRUCTURES

END (Task is 7% full.)

REPEAT THIS COUNTED LDOF for the counter <12 ta Function)

VBN U L UN

Does
and
Do
and
Do
and
and
and
and

Z DO CHECK if item <1> is in folder "VARIABLES"
iF the RESWT IS “FAIL" then
Z SAVE FOLDER ERROR

ODTHERWISE
GET the page indexed by <12 in folder VARIABLES

COPY from VAR NAME to <1>
END of test

PASTE the "NEXT " in front of <1> .
Z COMFILE the BASIC statement FRONT which means “REPEAT THE COUNTED LOOF

(FOR/NEXT) "
10 and COPY from “NEXT" to STRUCTURE TYFE

11

and

SAVE new page in STRUCTURES

12 and END (Task is 11% full.)

REFEAT THIS LDOP ta Task)

“OJONOCMALEWN~

LI]

Does
and
and
and
and
and
and
and
and
and
and

COFY from STATEMENT NUMBER to HERE

Z GET FREVIDUS BEGIN
DELETE the page indexed by STATEMENT NUMBRER from folder LOOFS

PASTE the "GOTO * in front of STATEMENT NUMBER

COFY from HERE to STATEMENT NUMBER ,

Z COMPILE the BASIC statement FRONT which means "REPEAT THIS LOOP"
I COMFPILE the BASIC statement "REM EXIT TO HERE" which means "*

Z PATCH UP EXIT STATEMENTS

COPY from "REFEAT" ta STRUCTURE TYPE

SAVE new page in STRUCTURES

END (Task is 10% full.)

REFORT ASSIGN ERROR (a Task)

1
2
h.4
4
S
&
7
8

Does
and
Do

and
and

Do
and
and

CARRIAGE return
IF the ASSIGNMENT IS “BUILD" then
DISPLAY the “I’m sorry, 1 could not find the requested robot script.”

HALT and return to Ready
OTHERWISE
D1SFLAY the “REPDRT ASSIGN ERRDR'"
END of test
END (Task is 10%Z full.)

H.-—Q&u

REPORT DELETE ERROR (a Task)

Does IF the ASSIGNMENT IS “BUILD" then
Do DISFLAY the ™"

and OTHERWISE
Do DISPLAY the "REPORY DELETE ERROR!'"

and END of test
and END (Tack is 4% full.)

CUADUN =

REFORT GET ERROR (Undefined) (a Task)
Undefined task! (Task is 1% full.)
REFORT LOAD ERROR {a Task)

1 Does CARRIAGE return

2 and DISFLAY the "Sorry, there is not a program to load."

3 and HALT and return to Ready
4 and END (Task is 4% full.)

REFPORT MATH ERROR (a Task)

1 Does DISFLAY the *"
2 and END (Task is 1% full.?

REPORT REPLACE ERROR (a Task)
1 Does END (Task is 1% full.)
REFORT SAVE ERRDR (a Task) 7}
1 Does CARRIAGE return |

2 and DISFLAY the "REPORT SBAVE ERRDR!"
S and END (Task is 2% full.)

. RUN (a Task)

1 Does PRINT the "
2 and OUTPUT from "RUN" using format DEFAULT

3 and CARRIAGE return
4 and END (Task is 1% full.)

SET the variable <1)> equal to <2> {(a Function)

Does Z DO CHECK if item <1> is in folder "VARIABLES"
and IF the RESUILT IS5 "FAIL" then

Do Z SAVE FOLDER ERROR

and OTHERWISE

Do GET the page indexed by <1> in folder VARIABLES
and COPY from VAR NAME to <1>

and END of test

and Z DO NUMBER TEST on <2>

and IF the RESULT IS “FAIL" then

Do Z DO CHECK i item <2> is in folder “VARIABLES".
and IF the RESWULT IS *“FAIL" then

b ek h b A e b
CADUNSOODONCOUNLUWUN

Do 1 SAVE NUMEBER OR FOLDER ERROR

and OTHERWISE

Do GET the page indexed by <2> in folder VARIABLES
and COPY from VAR NAME to <2>

and END of test

SET

17
18
19
20
21

the variable <1> equal to <2> (a Function)

and
and
and
and
and

END of test

PASTE the <1> in front of

PASTE the FRONT in front of <(2>
1 COMFILE the BASIC statement FRONT which means "INITIALIZE"

END

(Task is 154 full.)

SHOW ERRORS (a Task)

VDN B WK -

Does
and
and
and
and
and
and
and

Do
and

Do
and
and

Do
and
and
and
and
and
and
and
and
and
and

and

CLEAR the page

OUTFUT from “LINE NUMBER" using format DEFAULT
OUTPUT from SPACES using format 23

DUTFUT 4rom "ERROR MESSAGE" using format DEFAULT
CARRIAGE return

CARRIAGE return

BEGIN at page indexed by FIRST in folder ERRORS

START a loop
GET the page indexed by NEXT in folder ERRDRS

IF the PAGE IS EMFTY then
LEAVE this leoop
END of test
IF the ERRDR NUMEBER 15 200 then
CARRIAGE return . .
OUTPUT +rom SPACES using format 25
OUTFUT from "——- Structure Errors —-—" using format DEFAULT
CARRIAGE return
CARRIAGE return
END of test

OUTFUT from LINE NUMEBER using format 7

OUTPUT from SFACES using format 8

OUTPUT from ERROR MESSAGE using format DEFAULT
CARRIAGE return ‘

REPEAT this loop

and CARRIAGE return

END

(Task is 15% full.)

SHOW THE PHONEME DICTIONARY (a Task)

VRNCNADUWN -

Bd b B hed bt b b b
AN RUN=O

Does
and
and
and
and
and
and
and

Do
and

bo
and
and
and
and
and
and
and

CLEAR the page

OUTFUT from "Phoneme Syabol" using format DEFAULT
OUTPUT from SPACES using format 10
OUTPUT. from. “Phoneme Code" using format DEFAULT
CARRIAGE return

CARRIAGE return

BEGIN at page indexed by FIRST in folder PHONEMES

START a loop
GET the page index®ed by NEXT in folder PHONEMES

IF the PAGE 1S EMPTY then

LEAVE this loop

END of test
DUTPUT from SPACES using format &
DUTPUT from PHONEME ID using format 24

OUTPUT ¥rom FHONEME CODE using format 2

CARRIAGE return

REPEAT this loop

END

(Task is 104 full.)?

k' 2

SPEAK the phrase called:

DONCNDUN

Does
and
and
and
and
and
and
and
and

<1> (a Function)

BEGIN at page indexed by FIRST in folder SFEECH L OAD DATA

GET the page indexed by <1> in folder SPEECH LOAD’ DATA

cCoPY from SFEECH ADDRESS to HERE

PASTE the "S=" in front of HERE

PASTE the FRONT in front of ":LINK &2F50"

FASTE the FRONT in front of ":REM SFEAK®

PASTE the FRONT in front of <1>

Z COMPILE the BASIC statement FRONT which means "SPEAK A PHRASE"

END (Task is 94 full.)

SFIN AROUND CLOCKWISE this many times: <1> (a Function)

-

SPIN AROUND COUNTERCLOCKWISE this many times: <1>

1

COUPNOCVHLHAN-

VDN AN -

0

Does
Do
and
and
and
and
and
and
and
and

Does
Do
and
and
and
and
and
and
and
and

IF the <1> 1S BREATER THAN O then
MULTIFLY the <i> by 5.353

SPLIT the number PRODUCT)
TAKE this many characters 4 from FRACTION

PASTE the INTEGER in front of FRONT
60 CLOCKWISE
WAIT this many seconds FRONT
STOP ALL MODTION
END of test
END (Task is S%Z full.)

{(a Function)

IF the <1> 1S GREATER THAN O then
MULTIPLY the <1> by 5.53
SFLIT the number FRODUCT
TAKE thic many characters 4 from FRACTION
FPASTE the INTEGER in front of FRONT
GO COUNTERCLOCKWISE
WAIT this many seconds FRONT
STOP ALL MOTION
END of test
END (Task is 5% full.)

SFIN CLOCKWISE this many degrees: <1> (a Function)

[]

COBNCUDWN-

Does
Do
and
and
and
and
and
and
and
and

IF the <1> 15 GREATER THAN O then
MULTIFLY the <1> by .01472
SPLIT the number PRODUCT
TAKE this many characters 4 from FRACTION
PASTE the INTEGER in front of FRONT
60 CLOCKWISE
WAIT this many seconds FRONT
STOFP ALL MOTION
END of test
END (Task is 5% full.)

SFIN COUNTERCLOCKWISE this many degrees: <1> (a Function)

Does IF the <1> 15 GREATER THAN O then

1

2 Do MULTIFLY the <1> by .01472

X and SPLIT the number PRODUCT

4 and TAKE this many characters 4 from FRACTION
S and PASTE the INTEBGER in front of FRONT

& and G0 COUNTERCLOCKWISE

7 and WAIT this many seconds FRONT

8 and STOF ALL MOTION

9 and END of test

(o)

and END {Task is 5% full.)

-

SFIN LEFT 90 DEGREES (a Task)

1 Does WAIT this many seconds .35
2 and GO COUNTERCLOCKWISE

2 and WAIT this many seconds 1.38
4 and STOFP ALL MOTION

S5 and END (Task is 2% full.?

SFIN RIGHT 90 DEGREES {(a Task)

1 Does WAIT this many seconds .5
2 and GO CLOCKWISE

3 and WAIT this many seconds 1.38
4 and STOF ALL MDTIDN

S and END (Task is 24 full.)

STARTUF (a Task)

1 Does CLEAR the page

2 and DISFLAY the “"Robot Control Language (RCL-II) with SAVWY —— Version 1.00
of "
.= and DISPLAY the VERSION

4 and CARRIAGE return

S5 and CARRIAGE return

& and DISFLAY the “"RCL-11 is Copyright (C) 1982 by RP Robot Corporation. All
rights reserved.”

7 and CARRIAGE return

68 and CARRIAGE return

92 and END (Task is 15%Z full.)

STOF ALL MOTION (a Task)
1 Does Z COMPILE the BASIC statement "@#7B02=0" which means "STOP ALL MGTION"

and END (Task is 3% full.)

2
TEST IF the variable <1> is (=, ¢{,>, (>} (2> compared to <3> (a Function)
{ Does COPY #ram "TEST IF" to TASK NAME

2 and 72 ERROR CHECK IF/UNTIL STATEMENT

X and PASTE the "IF ™ in front of <1>

4 and PASTE the FRONT in front of <2>

5 and PASTE the FRONT in front of <3>

& and PASTE the FRONT in front of “ 6070 *

7 and I COMFILE the BASIC statement FRONT which means "MAKE A COMFARISON"
B and COPY from "1F" to STRUCTURE TYPE

9 and SAVE new page in LOOPS

10 and COPY from EMFTY to TASK NAME

11 and SAVE new page in STRUCTURES

12 and END (Task is 9% full.?

TURN OFF LED number <1> (a Function)

1 Does IF the <1> 1S 1 then
2 Do Z COMFPILE the BASIC statement "X=#FD" which means "TURN OFF LED 1"
3 and OTHERWISE
] Do 1IF the 1> 1S5 2 then
S Do Z COMFILE the BASIC statement "X=#FB" which means "TURN OFF LED 2"
& and OTHERWISE
7 Do IF the <1> 185 X then)
8 Do Z COMFILE the BASIC statement "X=#F7" which means "TURN OFF LEL
3“
? and OTHERWISE
10 Do IF the 1> 18 4 then
- 11 Do Z COMPILE the BASIC statement "X=8EF" which means "TURN DFF
LED 4"
12 and . DTHERWISE
13 Do Z COMFILE the BASIC statement “X=8#DF" which means “TURN OFF
LED S*
14 and END of test
15 and END of test
1& and END of test ,
17 and END of test
18 and Z COMFILE the BASIC statement "GOSUB 3120" which means " 60 TURN OFF A E
IT”
19 and I INSURE PORT 7801 SUPROUTINE 18

20

and END (Task is 23% full.)

B o e e T A - i ~——

TURN OFF THE FLASHING LIGHTS (a Task)

1 Does I COMFILE the BASIC statement

HTS"
2 and Z COMILE the BASIC statement

ITII
3 and I INSURE PORT 7801 SUBRDUTINE

4 and END (Task is 74 full.)
TURN OFF THE HORN (a Task)

1 Does 7 COMPILE the BASIC statement
2 and Z COMFILE the BASIC statement

TID

I and Z INSURE FORT 7801 SURRQUTINE
4 and END (Task is &% full.)

TURN OFF THE INFRARED LED (a Task)

1 Does TURN OFF LED number 1
2 and END (Task is 1% full.)

TURN ON LED number <1> (a Function)

“X=f#PF* which means "TURN OFF FLASHING L1
“GOSUEB I120" which means * GO TURN OFF a |

IS

*X=#7F" which means "TURN DFF HORN"
“GOSUB 3120" which means “6G0 TURN OFF A B

1S

1 Does IF the 1> 1S 1 then
2 Do Z COMFILE the BASIC statement "X=#02" which means “"TURN ON LED 1*
3 and OTHERWISE
4 Do 1IF the <1> 15 2 then
] Do Z COMFILE the BASIC statement "X=#04" which means "TURN ON LED 2*
& and OTHERWISE
-7 Do IF the <1> 1% 3 then
B Do i COMFILE the BASIC statement "X=#08" which means "TURN ON LED
3“
9 and OTHERWISE
10 Do IF the <1> 1S 4 then
11 Do 7 COMFILE the BASIC statement "X=#10" which means "TURN ON L
ED 4~
12 and OTHERWISE
13 Do Z COMPILE the BASIC statement “X=#20" which means "TURN ON L
ED 5*
14 and END of test
15 and END of test
i&6 and END of test
17 and END of test
18 and Z COMPILE the BASIC statement “BGOSUB 3100" which means " 60 TURN ON A Bl
Tll

19 and Z INSURE PDRT 7801 SUBRUOUTINE
20 and END (Task is 23% full.)

18

~

ot

TURN ON

1 Does Z COMPILE the BASIC statement
Tg" and Z COMFILE the BASIC statement
T; and Z INSURE FORT 7801 SUBROUTINE
4 and END (Task is 74 full.)

TURN ON THE HORN (a Task)

Z COMFPILE the BASIC statement

-1 Does
Z COMPILE the BASIC statement

2 and
]

I and
4 and

Z INSURE PDRT 7801 SUBROUTINE
END (Task is 674 full.)

TURN DN THE INFRARED LED (a Task)

1 Does TURN ON LED number 1
2 and END (Task is 1% full.)

THE FLASHING LIGHTS (a Task)

"TURN ON FLASHING LIGt

*"X=#40" which means
*6DSUB 3I100" which means * G0 TURN ON A B.
15

“X=#BO0" which means "TURN DN HORN"

*GOSUB 3100" which means "60 TURN ON A BIT

18

TURN THE WRIST (CW, CCW): <1> 4or this many degrees <2> (a Function)

IS CW then

1 then

the BASIC statemeqt FRONT which .means "SET THE MOTOR, ET

the BASIC statement "GDSUR 3400" which means “TURN THE W

degrees = " using format DEFAULT

1 Does IF the 1>

2 Do COPY from "D=#7805:M=128:N=0:* to TEMF
3 and OTHERWISE

4 Do IF the <1> IS CCW then

] Do COFPY from "D=#7B05:M=192:N=464:" to TEMP
& and END of test

7 and END of test

8B and IF the <2> 1S5 GREATER THAN OR EQUAL TO

9 Do IF the <2> IS LESS THAN OR EQUAL TO 3I&0 then
10 Do MULTIPLY the <2> by 19.88

11 and SPLIT the number PRODUCT
12 and COPY from INTEGER to FRODUCT

13 and FASTE the “P=" in front of PRODUCT
14 and PASTE the TEMF in front of FRONT

15 and Z COMFILE
C.ll

16 and Z COMPILE
RIST"

17 and Z INSURE ARM PULSE SUBROUTINE IS

i8 and B0 to the line called "SKIP"

19 and END of test
20 and END of test
21 and CARRIAGE return
22 and OUTFUT +4rom "Wrist Error:
23 and OUTPUT from <2> using format DEFAULT
24 and HALT and return to Ready
2% and LABEL this line “SKIP*
26 and END (Task is 24% full.)

WAIT this many seconds <1> (a Function)}

Does IF the <1> 1S NOT O then
IF the <1> 1S5 LESS THAN OR EQUAL TO 1 then

i
2 Do
3 Do
4 and
S and
& and
7 Do
8 and
9 and
ECONDS"
10 and
11 and
12 and
13 Do
14 and
15 and
16 and
O WAIT"
17 and
18 and
19 and
20 and

MULTIFLY the <1> by 1,000
PASTE the *DELAY " in front of PRODUCT
Z COMPILE the BASIC statement FRONT which means "SHORT WAIT*

OTHERWISE

SFLIT the number 1>
FASTE the "T=" in front of INTEGER
Z COMFILE the BASIC statement FRDNT which means "NUMEER OF WHOLE

Z COMFILE the BASIC statement “GOSUB 3000* which means "GO WAIT®
Z INSURE WAIT SUBROUTINE IS
IF the FRACTION IS NOT O then

MULTIFLY the FRACTION by 1,000

TAKE this many characters 3 from PRODUCT

PASTE the “DELAY " in front of FRONT
Z COMPILE the BASIC statement FRONT which means “"MILLISECONDS -

END of test
END of test

END of test

END

(Task is 21% full.)

WAIT RANDOMLY up to this many seconds <1> (a Function)

1 Does
2 and
I and
. & and
S5 and
& and
X ALPHA
1 Does
2 and
3 and
4 and
S and
6 and
7 and
8 and
? and
10 and
11 and
12 and
13 and
14 and
15 and
14 and
17 and
1B and
19 and
20 and
21 and
22 and

SPLIT the number <1>

FASTE the "W=" in front of INTEGER

I COMPILE the BASIC statement FRONT which means "MAXIMUM SECONDS"

2 COMPILE the BASIC statement *“GOSUEB 3070" which msans "GO WAIT RANDOML

Z INSURE RANDOM WAIT SUBRODUTINE

END

(Task is 74 full.)

(a Task)

PREPARE THE ROBOT
BEGIN A LOOP
PREPARE THE ROBDT

TURN

ON THE FLASHING LIGMHTS

BEGIN A LOOFP

TURN
MOVE
EXIT

ON THE FLASHING LIGHTS .

FORWARD
IF ANY BUMPER TOUCHED

REFEAT THIS LOOP
PREPARE THE ROBOT

STOP
MOVE
HONK
WAIT
STOP
MOVE
WAIT
STOP

ALL MOTIDN

BACKWARD

the horn for this many seconds .5
this many seconds 1

ALL MOTION

RANDOMLY

RANDOMLY up to this many seconds 5
ALL MOTION

PREPARE THE ROBOT
CLEAR ALL ITEMS
REFEAT THIS LODOP

END

(Task is 7% full.)

vt T

% ALPHA W/BONAR (a Task)

CONCUBEAN-

Does
and
and
and
and
and
and
and
and
and
and
and
and
and

 and

and
and
and
and
‘and
and
and

PREFARE THE ROBOT
BEGIN A LOOP

PREPARE THE ROBOT "

TURN DN THE FLASHING L1GHTS

BEGIN A LODP

MOVE FORWARD

EXIT 1F SONAR distance value is less than %58
EXIT IF ANY BUMFER TDUCHED

REFEAT THI1S LOOF

FREFARE THE ROBOT

STOF ALL MOTION

MOVE BACKWARD

HONK the horn for this -many. seconds: .8 -. . .:
WALIT this many seconds 1

STOF ALL MOTION

MOVE RANDDMLY

WAIT RANDOMLY up to this hany Séconds S
ETOP ALL MOTIDN

PREPARE THE ROBOT

CLEAR ALL ITEMS

REPEAT THIS LDOF

END (Task is 8% full.)

X BETA ta Task)

1
2
3
Y
=
b
7
8

Does
and
and
and
and
and
and
and
and
and
and
and
and
and
and
and
and

FREPARE THE ROBOT

INITIALIZE MEMORY

TURN DN THE FLASHING LI1GHTS

REGIN A LOOP

EXIT IF ANY BUMFER TOUCHED

REPEAT THIS LOOP

CALL this robot task line “BEGIMN BETA HERE"
PREFARE THE ROBOT

CLEAR ALL ITEMS

TURN ON THE FLASHING LIGHTS

BEGIN A LOOP

MDVE FORWARD

EXIT IF ANY BUMFER TOUCHED

REFPEAT THIS LOOP

MOVE WITH BETA INTELLIGENCE

JUMP to the .line called "BEGIN BETA HERE"
£ND (Task is BL full.)

X BETA W/SONAR (a Task)

Does PREFARE THE RUOBOT

and INITIALIZE MEMORY

and TURN ON THE FLASHING LIGHTS

and BEGIN A LDOP

and EXIT IF ANY BUMPER TOUCHED

and REFEAT THIS LOOP

and CALL this robot task line "BEGIN BETA HERE"
and PREFARE THE ROEOT :

and TURN ON THE FILASHING LIGHMTS

and CLEAR ALL ITEMS

and BEGIN A LOOP

and MOVE FORWARD

and EXIT IF SONAR distance value is less than 9%
and EXIT IF ANY BUMPER TDOUCHED

and REFEAT THIS LOOF

and MOVE WITH BETA INTELLIGENCE

and JUMP to the line called "BEGIN BETA HERE"

and END (Task is 9% full.)

P et ek e b et b s
DNPFPVBUNQIONTUNDHN-

X BUMPER ACTIVATED MOTIONS {(a Task)

Does DEFINE A VARIABLE called "A"
and PREFARE THE ROBOT

and WAIT this many seconds 5

and BEGIN A LOOF

and HONK the horn for this many seconds 2

and WAIT this many seconds 1.5

and LIGHTS ROUTINE

and MOVE TIMED FORWARD for this many seconds 1.5
and MOVE TIMED BACKWARD for this many seconds 1.5
10 and 60 CLOCKWISE

11 and WAIT this many seconds 1.5

12 and GO COUNTERCLOCKWISE

13 and WAIT this many seconds 1.3

14 and STOF ALL MOTION

15 and HONX the horn for this many seconds 2

16 and WAIT this many seconds 1.5

17 and BEGIN A COUNTED LOOF called "A" beginning at | ending at &
18 and SET the variable "@#7802" squal to "A"

19 and WAIT this many seconds .95
20 and REPEAT THIS COUNTED LODOFP for the counter “A"
21 and STOF ALL MOTION

22 and SET the variable "@#7801" equal to ©
23 and BEGIN A LODOP

24 and EXIT 1F ANY BUMPER TOUCHED

25 and REPEAT THIS LOOP

26 and REPEAT TH1S LOOF

27 and END (Task is 17% full.)

VONTADUN™

X CHARGER FINDER (a Task)

Does WAIT this many seconds 20
and PREFARE THE ROROT

and INITIALIZE MEMORY

and BEGIN A LDOP

and PREPARE THE ROEBOT

and CLEAR ALL ITEMS

and BEGIN A LOOP

and MOVE FORWARD

and EXIT IF ANY BUMPER TOUCHED

and EXIT 1F THE TAFE 1S SENSED

and REPEAT THIS LOOP

and TEST IF the variable "R* is (=,{,>,<>) “=" comparmed to O
and EXIT THIS LOOP

and END HERE
" and MOVE WITH BETA INTELLIGENCE

and REPEAT THIS LOOF

and FOLLOW TAFE

and MAINTAIN CHARGE

and END (Task is 7% full.)

b s e bb Bt Rt b b b g
QONCURBUNSQOITMNOUIRMUAN -

X LOAD THE INTRODUCTION (a Task)

1 Does REMARK that: "RBSX say the introduction - new voice cards only!®

2 and LOAD THE PHRASE called: "SayY THE INTRODUCTION" with phonenest "H.EH1.EH:
eL.D1.U1.AH1 . EH3. I13.Y.PA1.PA1. AEL.EH3. M. THV. UH1 . AH1 . UH2 . ER.B.E1. AY. Y. F.AH1 . EH3.\
.V.Pﬂi.EHI.EH2. K.PAO-S. IICN. T-EH!-EHS-LI Il. Is-D.J-EH!-EHS:N-T.RtolnultalAHl.WSO

T.STOP. "
3 and END (Task is 25% full,)

X SIMPLE SIMON (a Task)

Does BEGIN A LOOP

and FREFARE THE ROBOT

and INITIALIZE VARIABRLES

and BEGIN A LOOP

and EX1T 1F FRONT+REAR BUMPER PRESS

and REFEAT THIS LOOP .

and TURN ON THE FLASHING LIGHTS

and HONK the horn for this many seconds .1

and BEGIN A LOOF

10 and BEGIN A LOOP -

11 and EXIT IF ANY BUMFER TOUCHED

12 and REFEAT THIS LOODOP

13 and EXIT IF FRONT+REAR BUMFER FRESS

14 and WAIT this many seconds .2

15 and HONK the horn for this many seconds .1

164 and ASSIGN A MOTOR CODE

17 and TEST IF the variable "M" jis (=,{,>,¢>) "> compared to “0O*
18 and EXIT THIS LOOP

19 and END HERE

20 and CALCULATE variable "M" = "M" (+,-,2,/7) "+ |}
21 and REPEAT THIS LOOP

22 and WAIT this many seconds 3
‘23 and BEGIN A COUNTED LOOP called "P" beginning at "N snding at "M"
24 and SET the variable "@#7802" equal to “@P"

25 and WAIT this many seconds §

26 and REPEAT THIS COUNTED LOOP for the counter "P"
27 and CLEAR ALL ITEMS

CONCURBUN-

X SIMFLE SIMON (a Task)

28 and REPEAT THIE LOOP
29 and END (Task is 1&% full.)

1 COMPILE the BASIC statement <1 which means <2> (a Function)

1 Does I INCREMENT STATEMENT NUMBER
2 and COFY from <1> to PASIC TEXT
3 and COFY from <2> to MEANING

4 and SAVE new page in SOURCE

S and END (Task is 2% full.)

Z COMPUTE 2 TO THE N~1 , with N = <1> (a Function)

1 Does COFY from 1 to PRODUCT
2 and COPY from <1> to DIFFERENCE

3 and START a loop

4 Do IF the DIFFERENLCE 15 LESS THAN OR EQUAL TD {1 then
5 Do LEAVE this loop

6 and OTHERWISE

7 Do MULTIFLY the PRODUCT by 2

8 and SUBRTRACT the 1 from DIFFERENCE
9 and END of test) .
10 and . REPEAT this loop
11 and END (Task is 5% full.)

2 DELAY for this many loops: <i> (a Function)

and REFEAT this loop
and END (Task is 3% full.)

1 Does COFY from O to COUNTER

2 and START a loop

3 Do 2 INCREMENT the COUNTER

4 and IF the COUNTER IS <1> then
S Do LEAVE this loop

& and END of test

7

8

Z DO CHECK if item <1)> is in folder <2> (a Function)

Domes ASSIGN the <2> to ASSIGNED FOLDER
and WHEN folder ASSIGNED FOLDER DOES NOT CONTAIN <1i> then
Do COFY 4rom "FAIL" to RESULT
and COPY from <1> to ITEM NAME
and COFY from <2> to FOLDER NAME
and OTHERWISE
Do COPY from “PASSED" to RESULTY
and END of test
and END (Task is SZ full.)

VRN ULGWN

it
«

Z DD NUMBER TEST on <1> {(a Function)

Does ADD the 0 and <1>

and IF the SUM IS8 ERROR then

Do COFY from "FAIL"™ to RESULY
and COPY 4rom <1> to ITEM NAME
and OTHERWISE

Do COFY $rom "FASSED" to RESULT
and END of test

and END {Task is S% full.)

WU AN -

Z EMPTY THE PROGRAM (a Task)

Does ERASE all pages in folder SDURCE

and ERASE all pages in folder LOOFS

and ERASE all pages in folder VARIABLES
"and ERASE all pages in folder ERFRORS

and ERASE all pages in folder STRUCTURES
and ERASE all pages in folder SFEECH LOAD DATA
and Z INITIALIZE LEGAL VARIABLES

and COFY from O to STATEMENT NUMBER

and COFPY from NO to SONAR NEEDED

10 and COFY from O to ERROR NUMBER

11 and COPY 4$rom ND to CHECKED ,

12 and COFY from NO to VOICE NEEDED

13 and COFY from NDO to SONAR NEEDED

14 and COFPY from EMFTY to RESULT

15 and COPY from EMFTY to SPEECH ADDRESS

16 and END (Task is 8% full.)

dODNEPURAWNS

Z ERROR CHECK IF/UNTIL STATEMENT (a Task)

Does Z DO CHECK if item <1> is in folder "VARIABLES"
and IF the RESULT IS “FAIL" then
Do 1 SAVE FOLDER ERROR

and DTHERWISE
Do GET the page indexed by <1> in folder VARIABLES

and COPY +rom VAR NAME to <1>

and END of test

and Z DO CHECK if item <(2> is in folder “CONDITIONS™
and IF the RESULT IS “FAIL" then

10 Do Z SAVE FOLDER ERROR

11 and OTHERWISE :
12 Do GET the page indexed by <2> in folder CONDITIDNS

VONCTARWHN=

13 and IF the TASK NAME 1S5 “TEST IF" then
14 Do COPY 4rom OFFDSITE to <2>
15 and END of test

14 and END of test

17 and I DO NUMBER TEST on <3>

18 and I1F the RESULT 18 *“FAIL"™ then

19 Do Z DO CHECK 1f item <3> is in {folder "VARIABLES“

20 and IF the RESULT I8 *FAIL" then

21 Do T SAVE NUMBER OR FOLDER ERRODR

22 and OTHERWIEE

23 Do GET the page indexed by <3> in folder VARIABLEB
24 and COPY from VAR NAME to <3>

25 and END of test

25 and END of test
27 and END {Task is 19% full.)

1 ERRDR CHECK MATH FUNCTION (a Task)

Does Z DO CHECK if item <1> is in folder “VARIABLEB"

1

2 and IF the RESILT I8 "FAIL" then

3 Do 1 SAVE FOLDER ERROR

4 and OTHERMWISE o

S Do GET the page indexed by <1> in folder VARIABLES .
& and COPY from VAR NAME to <i>

7 and END of test

8 and Z DO NUMBER TEST on <2>

9 and IF the RESULT 1S *“FAIL" then
10 Do Z DO CHECK if item <2> is in folder "VARIABLES"
11 and IF the RESULT 1S “FAIL" then
12 Do Z SAVE NUMBER OR FOLDER ERROR
13 and OTHERWISE - -
14 Do GET the page indexed by <2> in folder VARIABLESB
15 ' and COFrY from VAR NAME to <2»>
14 and END of test

17 and END of test

18 and Z DO CHECK i+ item <3> is in folder "FUNCTIDNS®

19 and IF the RESILTY IE& “FAIL" then

20 Do 7 SAVE FDLDER ERRDR

21 and END of test

22 and I DO NUMBER TEST on <4)> .

23 and 1F the RESULT IS5 "FAIL" then

24 Do 2 DO CHECK if item <4> is in folder “"VARIABLES"

25 and IF the RESULT 1S “FAIL® then

26 Do Z SAVE NUMEBER OR FOLDER ERROR

27 and DTHERWISE ‘ , .
28 Do 6ET the page indexed by <4> in folder VARIABLES

29 and COFY $rom VAR NAME to <4>)

I and END of test

3i and END of test
X2 and END (Task is 227 $full.)

Z ERROR CHECK STRUCTURES (a Task)
Does BEGIN at page indexed by FIRST in folder STRUCTURES

1

2 and START a loop

3 Do LABEL this line “START A LOOFP®

4 and GET the page indexed by NEXT in folder STRUCTURES

S and IF the PAGE 1S EMPTY then

[Do LEAVE this loop -
7 and END of test

8 and IF the CHECKED IS8 YES then

9 Do G0 to the line called "START A LODF"

10 and END of test

11 and IF the STRUCTURE TYPE 18§ *“REFEAT" then

12 Do 7 SAVE STRUCTURE ERROR missing the statement "BEGIN” to go with th

e statment STRUCTURE TYPE at statement number STATEMENT NUMBER
1X¥ and OTHERUWISE

14 Do IF the STRUCTURE TYPE 18 "“END" then

1S Do Z SAVE STRUCTURE ERROR missing the statement *1F DR ELSE"” to go
with the statment STRUCTURE TYFE at statement number STATEMENT NUMBER

1& and OTHERWISE

17 Do IF the STRUCTURE TYPE 18 “NEXT" then .

18 Do Z SAVE STRUCTURE ERROR missing the statement "FDR" to go wit

h the statment STRUCTURE TYPE at statement number STATEMENT NUMEER

19 and OTHERWISE
20 Do IF the STRUCTURE TYPE 1S “UNTIL" then

RRNEI Y PrrR e

Z ERRDOR CHECK STRUCTURES (a Task)

2 SAVE STRUCTURE ERRDR missing the statement “DO" to go

21 Do
ith the statment STRUCTURE TYFE at statement number STATEMENT NUMBER
22 and OTHERWISE .
23 Po IF the STRUCTURE TYPE IS “EXIT" then
24 Do 7 LOOK FOR BEGIN
25 and OTHERWISE
26 Do BET the page indexed by STRUCTURE TYPE in folder STATI
MENT TYPES
27 - and Z LOOK FOR MATCHING STATEMENT
28 and END of test
29 and END of test
30 and END of test
31 and END of test
32 and END of test
33 and REFEAT this loop
34 and END (Task is 25% full.)
Z ERROR CHECK THE FDR STATEMENT (a Task)
1 Does 7 PO CHECK if item <1> is in folder "VARIABLES"
2 and IF the RESULT IS “FAIL” then
X Do Z SAVE FOLDER ERRDR
4 and OTHERWISE
-] Do GET the page indexed by <1> in folder VARIABLES
& and COFY from VAR NAME to <1)>
7 and END of test .
8 and 2 DO NUMBER TEST on <2>
9 and IF the RESULT 1S “FAIL" then
10 Do Z DO CHECK i+ item <2> is in folder "VARIABLES"
11 and IF the RESULT 1S5 *“FAIL" then)
12 Do Z SAVE NUMBER OR FOLDER ERROR
13 and OTHERWISE
14 Do GET the page indexed by <2> in folder VARIABLES
15 and COFPY from VAR NAME to <2>
16 and END of test
17 and END of test
18 and Z DD NUMBER TEST on <3>
1? and IF the RESULT IS YFAIL" then
20 Do Z DD CHECK i4¥ item <3> is in folder “VARIABLES"
21 and IF the RESULT IS "FAIL" then
22 Do Z SAVE NUMBER OR FOLDER ERRDR
23 and OTHERWISE)
24 Do GET the page indexed by <3> in folder VARIABLES
25 and COPY from VAR NAME to <3>
26 and END of test
27 and END of test
28 and END {Task is 19%Z full.)

Z ERROR CHECKING? (a Task)

1
2
X
4

Does CARRIAGE return
and DISPLAY the "Would you like your robot script checked for errors? (Y/N)

and LIMIT the input for ERROR CHECK to a maximum of 1
and END (Task is 74 full.)

Z FIND the label called <1> (a Function)

1
2

Does BEGIN at page indexed by FIRST in fclder LOOFS

and START a loop
Do GET the page indexed by NEXT in folder LOOFS

and IF the FARGE IS EMFTY then

Do IF the ERRDR CHECK IS YES then

Do I SAVE STRUCTURE ERROR missing the statement "CALL” to go with
statment “JUMP" at statement number TEMP STATEMENT NUMBER

and LEAVE this loop

and END of test

and LEAVE this loop

and END of test

‘and TAKE this many characters 1 from STRUCTURE TYPE
and IF the FRONT IS *“L" then

Do 1IF the BACK IS <1> then.
Do COPY from STATEMENT NUMBER to LABEL STATEMENT NUMBER
and GET the page indexed by TEMF STATEMENT NUMBER in folder SOURCE
and CUT the BASIL TEXT after "GOTO "
and PASTE the FRONT in front of LABEL STATEMENT NUMBER
and COPY from FRONT to BASIC TEXT
and REPLACE this page in folder SOURCE
and LEAVE this loop
and ' END of test
and END of test

and REFEAT this loop
and END (Task is 14% full.)

Z 6ET PREVIOUS BEGIN (a Task)

1
2
3
4
S
&
7
a8

9

10
11
12
13

Does GET the page indexed by THIS in folder LOOFS

and IF the STRUCTURE TYPE 1S NOT “BEGIN" then

Do START a loop ’

Do GET the page indexed by PREVIOUS in folder LDOPS
and IF the FAGE IS EMFPTY then

Do LEAVE this loop

and END of test

and IF the STRUCTURE TYPE IS *“BEGIN" then

Do LEAVE this loop

and END of test

and REPEAT this loop

and END of test
and END (Task is &% full.)

;'\',"i"";.{ g

Z GET PREVIOUS IF OR ELSE (a Task)
COPY from EMPTY to STRUCTURE TYPE

1 Does

2 and BET the page indexed by THIS in folder LOOFPS

X and IF the STRUCTURE TYPE IS NOT "IF" then

4 Do IF the STRUCTURE TYPE IS NOT *“ELSE" then

=] Po START a loop

& Do GET the page indexed by PREVIOUS in folder LDOFS
7 and IF the PAGE IS EMPTY then

B8 Do LEAVE this loop

9 and DTHERWISE
10 Do IF the STRUCTURE TYPE 1S "1IF" then
11 Do LEAVE this loop
12 and OTHERWISE
13 bo IF the STRUCTURE TYPE IS “ELSE" then
14 Do : LEAVE this loop
15 and END of test
165 and END of test
17 and END of test
18 and REPEAT this loop
19 and END of test

20 and END of test
21 and END (Task is 10% full.)

Z INCLUDE at <1> the statement (2> which means <3> (a Function)

1 Does COFY from <1> to STATEMENT NUMBER
2 and COFY from <2> to BASIC TEXT

3 and COFY from <3> toc MEANING

4 and SAVE new page in SOURCE

S and END (Task is 2%. full.)

Z INCREMENT the <1> {a Function)

1 Does ADD the 1 and <1>
2 and COPY from SimM to <1>
3 and END (Task is 1% $ull.)

Z INCREMENT STATEMENT NUMBER (a Task)

1 Does ADD the STATEMENT NUMBER and STATEMENT NUMBER INCREMENT VALUE
2 and COPY from SUM to STATEMENT NUMBER
3 and END (Task is 1% full.)

Z INITIALIZE LEGAL VARIABLES (a Task)

and
Do
and
and
Do
and
10 Do
11 and
12 and

NONECABEAN-

14 and END

IF the PAGE
LEAVE this loop
END of test

IF the USED
LEAVE this loop
OTHERWISE
COPY from NO to USED
REFLACE this page in folder LEGAL VARIABLES
END of test
13 and REPEAT this loop
(Task is &% full.)

IS EMPTY then

IS NO then

Z INSURE ARM PULSE SUBROUTINE IS (a Task)

Dces BEGIN at page indexed by FIRST in folder LEGAL VARIABLES

and START a loop
Do G6ET the page indexed by NEXT in folder LEGAL VARIABLES

1 Does WHEN folder SOURCE DDES NOT CONTAIN 3,400 then

2 Do COFY from

I and Z INCLUDE at
*“SET STATUS BYTE"

& and Z INCLUDE at
ONII

S and Z INCLUDE at
R DRIVE"™

& and Z INCLUDE at
LOOFP*"

7 and Z INCLUDE at
R"ﬂ

8 and Z INCLUDE at
oP"

9 and Z INCLUDE at
*"TURN OFF ARM FOWER"

10 and Z INCLUDE at
MAIN FROGRAM"

i1 and COFY from

12 and END of test

13 and END

3,400
3,410
3,420
z,430
3,440
3,450
3,450

3,470

the
the
the
the
the
the
the

the

(Task is 3JI&% full.)

statement
statement
statement
statement
statement
statement
statement

statement

Z INSURE BETA SUBROUTINE 18 {(a Task)

1 Does WHEN folder SDURCE DOES NOT CONTAIN 3,160 then
COPY from STATEMENT NUMBER to ANSWER

2 Do

3 and Z INCLUDE at 3,180 the statement
ED*

4 and Z INCLUDE at 3,170 the statement
ONAR TREATED AS BUMFER #1*

S and Z INCLUDE at 3,1B0 the statement
ENCE BLOCK"

& and Z INCLUDE at 3,190 the statement
RY ACTIDN"

7 and Z INCLUDE at 3,200 the statement
oM ACTION"

8 and Z INCLUDE at 3,210 the statement

O 3200" which means

9 and

10 and
11 and

*"FPICK ANOTHER™

Z INCLUDE at 3,220 the statement
WAIT this many seconds 2

IF the SONAR NEEDED

18§ YES then

STATEMENT NUMBER to HERE

"DELAY 1000:8#7B07=#90" which means
"a#7806=#70" which means "ARM POWER
“"@#7BOL=#FO" which means "SET ARM FI(
“"FOR I=31 TO P" which means "BEGIN A
"@D=M: @D=N" which means "PULSE THE ¢
*NEXT I" which means "REFEAT THIS LC
"@#7B07=#70: B47B0OL=#BO" which means

“RETURN" which means “RETURN TO THE

HERE to STATEMENT NUMBER

"P=B#7B00" which means "FUMPER PRESS
*IF P=255 THEN P=251" which means *S§
"V=@(N+P)" which means "CHECK EXPERI
“IF V<>®FF GOTO 3220% which means "7
“W=RND{1,14)* which means "FICK RAND
*IF (V=3) OR (V=12) OR (V=(0+P)) GODT

“!n7802fV“ which means "TRY ACTION"

A Mo

Z INSURE BETA SUBRDUTINE IS

12 Do
1ERO"
13 and
14 and

IDNII
15 and
16 Do
sT"
17 and
18 and

1 COMFPILE the BASIC

Z COMPILE the
Z COMFILE the

OTHERWISE

I COMPILE the

END of test

Z COMFILE the BASIC statement

which means “NDOT SUCCESSFUL*

BASIC
BASIC

BASIC

(a Task)

statement "D=0" which means "DISTANCE EQUAL T

statement "LINK #1800" which means "CALL SONA

statement "@#7B02=V" which means "CONTINUE AC

statement "D=200" which means YCANCEL SONAR T!

“IF (@#7800<>#FF) OR (D<95) GOTD 33460

"@{N+P)=Y" which means "SUCCESSFUL"

19 and Z COMPILE the BASIC statement

20 and Z COMPILE the BASIC statement "CLEAR" which means "CLEAR ALL ITEMS”
21 and FASTE the "GDTO * in front of RETURN BTATEMENT NUMBER

22 and Z COMPILE the BASIC statement FRONT which means "BACK TO MAIN FROGRA!
23 and Z INCLUDE at 3,340 the statement "@(0+P)=V* which means "NDT SUCCESS!
mll

24 and Z INCLUDE at 3,370 the statement *"GOTD 3200" which means *"

25 and COPY from ANSWER to STATEMENT NUMBER

26 and END of test

27 and END (Task is 71% full.}

Z INSURE END OF PROGRAM 1S5 THERE (a Task)
1 Does WHEN folder SOURCE DOES NOT. CONTAIN 2,999 then

2 Do END OF PRDGRQM'
3 and END of test - .
4 and END (Task is 1% full.)

Z INSURE PORT 7801 SUBROUTINE 1& (a Task)

statement "U=@#7801" which means "TURN ON A B)

which means
which mseans "TURN OFF A E

which means "
which means “*

“UsU AND X* which means "*

which means "*

which mseans ""

1 Does WHEN folder SOURCE DOES NOT CONTAIN 3,100 then
2 Do COPY from STATEMENT NUMBER to HERE

3 and Z INCLUDE at 3,100 the
Tll

4 and Z INCLUDE at 3,105 the statement “U=U OR X"
S and Z INCLUDE at 3,110 the statement "@#7801=U"
& and Z INCLUDE at 3,115 the statement "RETURN"

7 and Z INCLUDE at 3,120 the statement "U=@#7801"
IT es7801*

8 and Z INCLUDE at 3,125 the statement

9 and Z INCLUDE at 3,130 the statement "@#7B01=U"
10 and Z INCLUDE at 3,135 the statement "RETURN"
11 and COPY from HERE to STATEMENT NUMBER

12 and END of test

13 and END (Task is 24%Z full.)

Z INSURE RANDOM TURN SUBROUTINE (a Task)

1 Does WHEN folder SOURCE DOES NOT CONTAIN 3,040 then

2 Do COFY from STATEMENT NUMBER to HERE

3 and 7 INCLUDE at 3,040 the statement "V~RND(1,14)" which means “RANDOM T
RN SUBRDUTINE"

4 and Z INCLUDE at 3,045 the statement “IF (V=3) DR (V=12) GOTO 3040“ whict

means
S5 and Z INCLUDE at 3,050 the statement "RETURN" which means "¢
& and COFY from HERE to STATEMENT NUMBER

7 and END of test

8 and END (Task is 13% full.?

Z INSURE RANDOM WAIT SUBROUTINE (a Task)

1 Does WHEN folder SOURCE DOES NOT CONTAIN 3,070 then

2 Do COFPY from STATEMENT NUMBER to HERE

3 and Z INCLUDE at 3,070 the statement "T=RND(1,W)" which means “RANDOM WAI
T SUBROUTINE"
and Z INCLUDE at JF,075 the statement "60SUB 3000* which means **
and Z INCLUDE at 3,0B0 the statement "RETURN" which means ""
and COPY from HERE to STATEMENT NUMBER
and Z INSURE WAIT SUBROUTINE IS
and END of test .
and END (Task is 127 full.)

GOSN

Z INSURE VOICE SUBRDUTINE IS (& Task)

1 Does WHEN folder SOURCE DOES NOT CONTAIN 3,500 then

2 Do COPY from STATEMENT NUMBER to HERE

3 and Z INCLUDE at 3,500 the statement “V=TOP+500+A:@V=P" which means “STOR
E THE PHONEME"
and Z INCLUDE at 3,510 the statement “A=A+1" which means ""
and Z INCLUDE at 3,520 the statement "RETURN" which means “"*
and COFY from HERE to STATEMENT NUMEBER
and END of test
and END (Task is 11% full.)

NN »

Z INSURE WAIT SUBROUTINE IS (a Task)

1 Does WHEN folder SDURCE DDES NOT CONTAIN 3,000 then
2 Do COPY from STATEMENT NUMBER to HERE
3 and Z INCLUDE at 3,000 the statement "FOR S=1 TO T" which means “WAIT T S
ECONDS SUBROUTINE" .
and Z INCLUDE at 3,005 the statement “DELAY 1000" which means **
and Z INCLUDE at 3,010 the statement "NEXT S§" which means **
and Z INCLUDE at 3,015 the statement "RETURN" which means “*
and COFY from HERE to STATEMENT NUMBER
and END of test
and END (Task is 14X full.)

QONOCASL

Z LOAD SONAR (a Task)

1 Does
2 and
X and
4 and
S Do
& and
7 Do
8 and
¥ and
16 and
11 and
12 and
1X and
14 and
15 and
16 and
17 and
18 and
19 and
20 and
21 and
22 and
23 and
24 and
25 and
26 and
27 and
28 and
- 29 and
. 30 and

DISFLAY the "Now loading the sonar subroutine...”

PRINT the **
BEGIN at page indexed by FIRST in folder SONAR

START a loop
6ET the page indexed by NEXT in folder GONAR
IF the PAGE IS EMPTY then
LEAVE this loop
END of test
FASTE the SONAR ID in front of
PASTE the FRONT in front of BASIC TEXT
OUTFUT #rom FRONT using format DEFAULT
CARRIAGE return
DISFLAY the "s$*
PRINT the "*
Z DELAY for this many loops: 3B
REFEAT this loop
Z DELAY €or this many loops: 10
PRINT the *"
OUTPUT +rom "RUN" using format DEFAULTYT
CARRIAGE return
Z DELAY for this many loops: 50
OUTFUT from "NEW#1841" using format DEFALLT
CARRIAGE return
Z DELAY for this many loops: &0
DUTPUT from "NEW" using format DEFAULTY
CARRIAGE return
DISFLAY the ""
CARRIAGE return

PRINT the "~
END (Task is 174 full.)

7 LOAD VOICE SUBROUTINE (a Task)

CARRIAGE return

DISFLAY the “"Now loading the veoice subroutine...”
CARRIAGE return ‘

PRINT the "*

BEGIN at page indexed by FIRST in folder VODICE SUBROUTINE

START a loop
GET the page indexed by NEXT in folder VOICE SUBROUTINE
IF the PAGE 1S EMPTY then
LEAVE this loop
END of test
OUTPUT from VOICE 1D using format DEFAULT
CARRIAGE return
DISFPLAY the "2
PRINT the "*
Z DELAY #or this many loops: 10
REPEAT this loop
Z DELAY for this many loops: 10
Z INSURE VOICE SUBROUTINE 1S
PRINT the **

OUTFUT 4rom “@#2000=#03:@42001=80F 1 @#2002=#35: @#2003=H#23: @#2004=#09" usi

ng format DEFAULT

1 Does
2 and
3 and
4 and
S and
& and
7 Do
8 and
Q Do
10 and
11 and
12 and
13 and
14 and
15 and
16 and
17 and
i8 and
19 and
20 and
21 and
22 and
23 and
OA=#1E"

CARRIAGE resturn
Z DELAY for this many loops: 10

DUTFUT from “@#2005=#21:8820046=R1F: @#2007=4#1B: @42008=435: GEZ2009=437: @420

using format DEFAULT

Z LDOAD VDICE SUBROUTINE (a Task)

24 and CARRIAGE return

25 and Z DELAY for this many loops: 10

26 and DUTPUT #rom "@#200B=#09:24200C=#1E: @#200D=43F: @#78B0B=#A7: S=#2000:LINK ¢
FS0" using format DEFAULT

27 and CARRIAGE return

28 and Z DELAY for this many loops: 10

29 and DISFLAY the "

30 and CARRIAGE return

31 and PRINT the ""

32 and END (Task is 32% full.)

Z LOOKX FOR BEGIN {(a Task)}

1 Does COPY from STATEMENT NUMEER to HERE

2 and START a loop

3 Do G6ET the page indered by PREVIOUS in folder STRUCTURES
4 and IF the PAGE IS EMFTY then

S bo GET the page indexed by HERE in folder STRUCTURES
& and Z SAVE STRUCTURE ERRDOR missing the statement "BEGIN"” to go with t!
e statment “EXIT" at statement number HERE

7 and LEAVE this loop

8 and END of test - .

9 and IF the STRUCTURE TYPE IS "BEGIN" then

10 Do GET the page indexed by HERE in folder STRUCTURES
11 and COPY from YES to CHECKED

12 and REFLACE this page in folder STRUCTURES

13 and LEAVE this loop

14 and END of test
15 and REPEAT this loop

16 and END (Task is 94 full.)
Z LOOK FDR MATCHING STATEMENT (a Task)

1 Does COPY from STATEMENT NUMBER tao HERE
2 and START a loop

3 Do GET the page indexed by NEXT in folder STRUCTURES

4 and IF the PAGE IS EMPTY then

k=] Do GET the page indexed by HERE in folder STRUCTURES

& and Z SAVE STRUCTURE ERROR missing the statement MATCHING STATEMENT to
go with the statment STATEMENT TYPES 1D at statement number STATEMENT NUMBER
7 and LEAVE this loop

8 and END of test

? and IF the CHECKED 1S NOT VYES then

10 Do IF the STRUCTURE TYFPE IS5 M™MATCHING STATEMENT then

11 Do COPY from YES to CHECKED

12 and REPLACE this page in folder STRUCTURES

1 and GET the page indexed by HERE in folder STRUCTURES

14 and COPY from YES to CHECKED

15 and REFLACE this page in folder STRUCTURES

16 and LEAVE this loop

17 and END of test

1B and END of test

19 and IF the STATEMENT TYPES ID 185 "IF" then
20 Do IF the STRUCTURE TYPE 15 “ELSE" then
21 Do GET the page indexed by HERE in folder STRUCTURES

22 and Z SAVE STRUCTURE ERRDR missing the statement MATCHING STATEMENT

to go with the statment STATEMENT TYFES ID at statement number STATEMENT NUMRER

P

L

Z LO0OK. FOR MATCHING STATEMENT (a Task)

23
24
25
26
27

and
and
and
and
and

LEAVE this loap
END of test
END of test
REPEAT this }Joop

END (Task is 1&% full.)

Z DUTPUT PAGE NUMBER (& Task)

1
2
3
8
S
6

Does PASTE the "page " in front of FAGE COUNT

and
and
and
and
and

ouT

FUT from SFACES using format 36

QUTFUT from FRONT using format DEFAULT

CAR
CAR
END

RIAGE return
RIAGE return
{Task is 24 full.)

Z OUTPUT PROGRAM HEADING (a Task)

NN -

Does
and
and
and
and
and
and

Z PATCH

CONCUSWN-

Does
and
and
and

Do
and
and
and
and
and

Do

Do
and
and
and
and
and
and
and

CAR
ouT
auT
ouT
CAR
CAR

RIAGE return

PUT from " Stmt &” using format 10
FUT from * Tiny BASIC Text * using format IO
PUT from * Meaning of Text™ using fourmat 23

RIAGE return
RIAGE return

END {Task is 8% full.)

ur

coF
26

END STATEMENTS {(a Task)

Y from STATEMENT NUMBER to END STATEMENT NUMEER
ET FPREVIDUS IF DR ELSE -

DELETE the page indexed by STATEMENT NUMBER from folder LOOFS

IF

the STRUCTURE TYFE IS8 "IF" then

GET the page indexed by STATEMENT NUMBER in folder SOURCE

CUT the BASIC TEXT after "GOTO *
PASTE the FRONT in front of EXIT STATEMENT NUMEER

COPY from FRONT to BASIC TEXT
REPLACE this page in folder SDURCE

OTHERWISE

corP
END

IF the STRUCTURE TYPE IS “ELSE" then
SUBTRACT the 25 from STATEMENT NUMBER
COPY from DIFFERENCE to STATEMENT NUMBER

PASTE the “6GOTO * in front of END STATEMENT NUMBER

Z COMFILE the BASIC statement FRONT which means

END of test

END of test
Y from END STATEMENT NUMBER to STATEMENT NUMBER

(Task is 13X full.)

"SKIP THE ELSE"

Z FATCH UF EXIT STATEMENTS (a Task)
Does COFY from STATEMENT NUMBER to EXIT STATEMENT NUMBER

1

2 and START a lpop

3 Do BET the page indexed by NEXT in folder LOOPS

4 and IF the FAGE IS EMFTY then

5 Do LEAVE this loop

6 and OTHERWISE

7 Do IF the STRUCTURE TYFE 18 "EXIT" then

8 Do GET the page indexed by STATEMENT NUMBER in folder SOURCE
? and CUT the BASIC TEXT after "GOTO *

1C and PASTE the FRONT in front of EXIT STATEMENT NUMEBER
1t and COPY from FRODNT to BASIC TEXT
12 and REFLACE this page in folder SOURCE
13 and DELETE the page indexed by STATEMENT NUMBER from folder LDOFS
14 and OTHERWISE
15 Do LEAVE this loop
14 and END of test
17 and END of test

18 and REPEAT this loop

19 and COPY from EXIT STATEMENT NUMBER to STATEMENT NUMBER
20 and END (Task is 10% full.)}

Z FATCH UF JUMP STATEMENTS (a Task)

Does BEGIN at page indexed by FIRST in folder LOOPS

1

2 and STARYT a loop

pd Do GET the page indexed by NEXT in folder LOOFS

4 and - IF the FAGE IS EMFTY then

S Do LEAVE this loop

& and END of test

7 and TAKE this many characters 1 from STRUCTURE TYFE

B and IF the FRONT IS “J" then

9 Do COPY from STATEMENT NUMBER to TEMP STATEMENT NUMBER
10 and COPY from BACK to LABEL NAME

11 and Z FIND the label called LABEL MNAME
12 and GET the page indexed by TEMF STATEMENT NUMBER in folder LOOFS
13 and DELETE the page indexed by THIS from folder LOOFS
14 and END of test

15 and REFEAT this loop
16 and END (Task is BY full.)

Z SAVE FOLDER ERROR (a Task)

Does IF the ERROR CHECK IS YES then
Do ADD the STATEMENT NUMBER and 10

and COPY from SUM to LINE NUMBER
and PASTE the “Folder ¥ in front of FOLDER NAME

and PASTE the FRONT in front of " doesn’t contain the item *
and PASTE the FRONT in front of ITEM NAME

and COPY from FRONT to ERROR MESSAGE

and 2 INCREMENT the ERROR NUMBER

and SAVE new page in ERRORS

and END of test

and END (Task is 9% full.)

= OOONCUNDLWNI»

(SN

Z SAVE NUMBER DR FOLDER ERROR (a Task)

1 Does
2 Do
S and
4 and

IF the ERROR CHECK 1S YES then
ADD the STATEMENT NUMBER and 10

COFPY from SUM ta LINE NUMBER
PASTE the ITEM NAME in front of " should be a number or be contained

in the folder *

and
and
and
and
and
and

cVvmNTM

1

PASTE the FRONT in front of FOLDER NAME
COFPY from FRONT to ERROR MESSAGE
Z INCREMENT the ERROR NUMBER
SAVE new page in ERRORS
END of test
END (Task is 10%4 full.)

Z SAVE STRUCTURE ERROR missing the statement <1> to go with the statment <2> at
statement number <3> (a Function)

Does
and
and
and
and
and
and
and
and

10 Do

11 and

12 and

13 and

VONCUNDAN

PASTE the "The " in front of <2>

PASTE the FRONT in front of * statement is missing the *

PASTE the FRONT in front of <1>

PASTE the FRONT in front of * statement®

COPY from FRONT to ERRDR MESSAGE

COPY from <3> to LINE NUMBER

Z INCREMENT the ERROR NUMEER

SAVE new page in ERRORS

IF the <1> 1S NOT *™“CALL" then
COPY from YES to CHECKED .
REPLACE this page in folder STRUCTURES
END of test

END (Task is 11% full.)

ZZ AVAIL TASK (a Task)

1 Does

END (Task is 1% full.)

1Z AVAIL TASK #1 (a Task)

1 Does

END (Task is 1% full.)

ZZ AVAIL TASK #10 (a Task)

1 Does

END (Task is 1% full.)

22

r 4

Iz

iz

4

r 44

2z

zz

22

y ¥4

2

AvAIL TASK
Does END
AVAIL TASK
Does END
AVAIL TASK
Does END
AVAIL TASK
Does END
AVAIL TASK
Does END
AVAIL TASK
Does END
AVAIL TASK
Does END
AVAIL TASK
Does END
AVAIL TASK
Does END
AVAIL TASK
Does END
AVAIL TASK

Does END

#11 (a Task)

(Task

#12 (a

(Task

is 14 4ull.)
Task)

is 1% full.)

#13 (a Task)

(Task

is 1% 4ull.)

#14 ¢a Task)

(Task
#2 (a
(Task
#3 (a
(Task
#4 (a
{Task
#5 (a
(Task
#56 (a
(Task
%7 (a
{Task
#8 (a

(Task

is 1% full.)
Task)
is 1% #full.)
Task)
is 1% full.l)
Task)
is 1% full.)
Task)
is 14 full.)
Task)
is 1%Z 4ull.)
Task)
is 1% full.)
Task)

is 1% $ull.)

