- s H T & =

L T o]

]

=y,

g BASE COMMUNICATOR PROTOCOLS
for ROM Version 1.0
Mike Saari 2/15/84
File: bcspec10.tp2

This document will deal strictly with base communicator (BaseCoﬁ;

or B.C.) protocols. Commands passing between the hos I
and Topo are covered in a separate document, the Topo Ekmﬁgﬂﬂpgﬁﬁ:ﬁf

specification. This specification applies te B.C. ROMS 1.00,
1.02 and 1.03.

All pumbers are decimal unless otherwise specified.

IR PROTOCOLS

—_—— = e

Packet Format

All messages are sent over the IR link in packets. The packet
format is one bit every 256 usec, starting with 5 on’s and 1 off
(the "start sequence”), then characters coded as 8 data bits (LSB
first) Ffollowed by 1 parity bit — odd parity. This gqives a
start sequence time of 1.5 msec, a character time of 2.3 msec and
a packet time of 20.0 msec. A high bit is a 5 usec IR pulse, a
low bit is npo IR pulse sent. All packets in the system are
always 8 characters, except for short ACK's which are only a

single character. The 8 characters in the packet are ordered as
follows:

ch#, proc#, cmd#, d,d,d,d, cksum .
d,d,d,d are 4 characters of data; ch# is the channel number to
indicate which device should receive the messagej proc# is the
on—-board process number; and cmd# is the command for the given
process, The cksum is calculated by first calculating the twos
complement of the sum of all the previous characters, and then
setting the low nibble (four low-order bits) to the value D(hex).

All packetizing, retries, and IR error handling is handled by
the B.C. :

For timing purposes, ‘“packet start” occurs on the first bit of

the start seguence. "Packet end" occurs at the parity bit for
the last byte transmitted.

—Packet end to packet start "dead time" = 2 msec sinimum

—-Facket end to response packet start

H

S50 msec maximum

—~Packet end to saywhat? start = 35 msec minimsum

As implemented, packet end to saywhat? start is actually &0 ssec, . "
Also, if the B.C. receives a valid start sequence and a valid ch# . -

(which also indicates the length of the forthcoming message)
before the 460 msec timeout, then the B.C. will wait until the
expected end of the message before sending a saywhat? - even if
the total wait time exceeds the &0 msec timeout time.

-y

Every message received by any given Topo (except for public
thannels), is acknowledged by an ACKO. or an ACKI1. These asust
alternate to ensure valid transmissions.. The MSB of the channhel®
being transmitted by the B.C.
an ACKO or ACK1 — O means ACKO, 1 means ACK1. Similarly, the
return ACK 1is indicated by the MSB of the returning channel#.

The B.C. is required to keep track of the current ACKO/ACK]
status for each private channel.

A valid ACK should be received by the B.C.
end of the message being sent.
time, or a

within 50 ms of the
If no ACK is received within that
garbled transmission or the wrong ACK is detected,
then a “saywhat?” command (see CONFIGURE BASECOMM) is given,
telling +the Topo to repeat its last ACK. Receiving the correct
ACK means to continue normally, i.e. the original message has
been correctly handled. Receiving the wrong ACK means the
original message was mishandled and should be resent. Receiving
nothing or a garbled reply should prompt another “saywhat?”.
After 5 or more saywhat’s without a valid reply, the appropriate
QUERY error flag (Topo not responding) is set while the saywhat’s
continue. The error flag will only be reset after the message is
eventually received, or by doing a RESTART BASECOMM.

If Topo is ever unable to determine the answer to a status
request within the ACK timeout time, it simply sends the
appropriate ACK with no message. The host computer may then deal
with the error of “message not received". This timeout handler
could change with future product revisions.

When Topo sends & message to the B.C. { generally a status
requested by the host computer), the format is:

B.C. channel #,

0 (don'"t care)

0 (don’t care)

d,d,d,d,

cksum.

For a short ACK, the message is a single character, simply:
short ACE channel #

IR Carrier

A carrier signal is transmitted on regular intervals, so that
their absence tan tell any Topos if they go out of range of the
B.C. The B.€. is required to send out some command at least once
every 300 msecs. If no command has been sent after 300 msecs has
elapsed, the B.C. must send out a dummy carrier message (see
CONFIGURE BASECOMM) . Any Topo which hears no valid commands for

1.28 seconds will PARK (abort the current motion command and -~

flush the motion command queue). This 1.28 timeout value can be

~changed — see Topo Command Set spec.

indicates whether Topo should send -

A~ A A

All data in the system, whether on the host or onboard Topo, °

consists of full 8-bit words. There is a problem, however, {in
that most serial cards deal with 7-bit ASCII, and also trap
certain control codes. To avoid this, all data sent between the
host and B.C. will be broken up into 4-bit nibbles, sent through
the serial card, and then reassembled. (The full 8-bits are sent
over the IR.) The 4-bit nibbles are encoded as ASCII 0-9 and A-
F. For example, data 10100011 would be sent as A3 (hex 41, hex
33Y. A letter G (hex 47) would be sent as 47 (hex 34, hex 37).

Handshaking commands between the host and B.C. are not broken up
into nibbles. All commands and responses are standard ASCII

characters, excluding O-F and excluding all control codes. The
actual range of values is hex S0-7F.

Host/B.C. Serial Bus Communication

Although the baud rates are setable on both the serial card and

the B.C., the standard cornfiguration is: 9400 baud, no parity, 1

start bit, 8 data bits, and 1 stop bit. The baud rate is set on

the E.C. with four dip switches. The following options are
avaiiable:

4 3 2 1

9600 baud - on, on, on, on

4800 baud - on, on, on, off

2400 baud - on, on, off,on

1200 baud - on, on, off,off

19.2 Kbaud- on, off,on, on

Any other combination will default to 9600 baud.

Host/B.C. Handshaking

A partial handshaking system is used between the host and the B.

E. Before sending any message or command to the B.€., the host
should first send the command:

BUERY (ASCII @).

The B.C. must respond with one of several answers to indicate
readiness to receive the message. The required response time is
within 3 ms + 1 character time (dependent on the baud rate).
(This protocol will run at 9600 baud, which gives a character
time of 1 ms.) The possible responses are:

Bit 3 - BUSY - host may not send more data yet
2 — MESSAGE WAITING (from Topo to host)
1 — ERROR - Topo not responding

O — ERRDR - invalid message from host to B.C.
all off — READY - OK to send

-y

[

The response is a single character, where the indicated bit is
active. The four high-order bits are always 1110, so responses
are EO-EF (ASCII lowercase blank,a,b...m,n,0). Thus MESSAGE
WAITING is 11100100, or hex E4, and BUSY is 11101000 or hex EB .-

The B.C. may interrupt a long message coming in by sending an
INTERRUPT (ASCII U) back to the host, which must then stop
sending and QUERY until a READY is received. {The host always

checks before sending any character to see if an INTERRUPT has
been received.)

(The B.C. will accept data even if MESSAGE WAITING is set.
However, the host will generally read the message first.)

The standard message format from host to B.C. is:

MESSAGE START (ASCII S)

Topo process number (nibbled)

Topo command number (nibhled)

d,d,d ... d {nibbled)

MESSAGE END (ASCII Z).
This is used for every message which is to be sent from the host
to Topo. If the B.C. detects an extra MESSAGE START, an extra
MESSAGE END, a MESSAGE END before proc# and cad## have been
received, a framing error or other serial error, or a MESSAGE END
after only half of a character (one nibble) has been sent, then
the invalid message error code is set for the next query.
Remaining characters at the end of a message, which fall short of
filling a packet, are sent out in a final packet padded with
trailing spaces thex 20). If the data for a message spans more

than one packet, then the Topo process number and command number
will be duplicated for each packet. '

In the middle of a message the only legal B.C. commands are GUERY
and RESTART BASECOMM, otherwise just data and END-OF-MESSAGE (
after READY has been received.) 1In fact, whenever an INTERRUPT

or BUSY has been received, the only legal commands are BRUERY and
RESTART BASECOMM.

GET LAST RESPONSE (ASCII R) will cause the B.C. %o return
{6,0,d,d,d,d}) (in nibbles) that was last received back from Topo.
The 0°s are den’t care characters returned with the packet. They

may be used in the future as a response identifier, or for other
information.

CONFIGURE PACKET :(ASCII P) tells the B.C. the channel # faor

further packets, and a public/private flag to indicate whether to
expect a return ACK. When the public flag is set, no ACK's are
expected. The format is:
CONFIGURE PACKET (ASCII P)
20 channel # (nibbled)
(8]0) public flag — 1=public, O=private (nibbled)
The left column shows the power—on default values (in hex}.

¢

The response is a single character, where the indicated bit

is
active. The four high—order bits are always 1110, so responses
are EO-EF (ASCII lowercase blank,a,b...m,n,a). Thus MESSAGE

WAITING is 11100100, or hex E4, and BUSY is 11101000 or hex EB .

The B.C. may interrupt a long message coming in by sending an
INTERRUPT (ASCII U) back to the host, which must then stop
sending and BUERY until a READY is received. (The host always

checks before sending any character to see if an INTERRUPT has
been received.)

(The B.C. will accept data even if MESSAGE WAITING is

set.
However, the host will generally read the message first.)

The standard message format from host to B.C., is:

MESSAGE START (ASCI1I S)

Topo process number (nibbled)

Topo command number (nibbled)

d,d,d ... d (nibbled)

MESSAGE END (ASCII Z).
This is used for every message which is to be sent from the host
to Topo. I{ the B.C. detects an extra MESSAGE START, an extra
MESSAGE END, a MESSABGE END before proc# and cmd# have been
received, a framing error or other serial error, or a MESSAGE END
after only half of a character (one nibble) has been sent, then
the invalid message error code is set for the next query.
Remaining characters at the end of a message, which fall short of
filling =& paclet, are sent out in a final packet padded with
trailing spaces (he: 20). I+ the data for a message spans more

than ome packet, +then the Topo process number and command number
will be duplicated for ezach packet.

In the middle of a message the only legal B.€. commands are BUERY
and RESTART BASECOMI, otherwise just data and END-OF-MESSAGE ¢
after READY ha:z been received.) In fact, whenever an INTERRUPT

or BUSY has been received, the only legal commands are QUERY and
RESTART BASECDMM.

GET LAST RESFONEE (ASCII R)Y will cause the B.C. to return
(0,0,d,d,d.d} {in nibbles) that wacs last received back from Topo.
The 0= are don’t care characters returned with the packet. They

may be uzed in the future as a response identifier, or for other
information. N

COHMTIBURE PACKFET (ASCII F) tells the B.C. the channel # for
further packets, and a public/private flag to indicate whether to

expect a return ACH. When the public flag is set, no ACK s are
expected. The format is:

CONFIGURE PACKET (ASCII F)
20 charnc! # (nibbled?
LS pubblic flac - 1=public, O=private (nibbled)
The left columm shows the power—on default values (in heu).

r

2

0

[§

RESTART BASECOMM (ASCII X) cancels the current packet being
attempted and resets all four QUERY status flags. Channel
settings and other parameters are not affected. The restart
occurs immediately (version 1.02 only had a delayed restart).

CONFIGURE BASECOMM (ASCII Y) tells the B.C. its own IR channel
#’s, the content of the carrier dummy message, and the content of
the "saywhat" message. The format is:

CONFIGURE BASECOMM (ASCII Y)

10 long ACK B.C. channel # (nibbled)

OF short ACK B.C. channel # (nibbled)

1F carrier null channel # (nhibbled)

30 carrier proc# — don’t care (nibbled)

41 carrier cmd##f — don’t care (nibbled)

82 "saywhat"” proc# (nibbled)

FF "saywhat” cmd# (nibbled)
The left column shows the power—on default values (in hex).

6ET BASECOMM REVISION (ASCII V) causes the B.C. to return two
don’t care bytes, then four bytes (in nibbles) of the B.C.’s
version number and prom number, i.e. (0,0,V.V,P.P). Each byte
has values 0-99. The third byte is integral version, the fourth
is fractional version, i.e. 1.00, 2.05, 99.92 . The fifth and
sixth bytes are integral and fractional prom numbers. The B.C.

has the same number for both version number and revision nuamber,
i.e. 1.00, 1.02, etc.

— configure Packet. Takes (ch#, public flag) in nibbles.

— RQuery basecomm. Returns EO—-EF (four status bits).

get last Response. Returns (0,0,d,d,d,d) in nibbles.

Start message. .

— interrUpt character to host.

get basecomm reVision. Returns (0,0,V.V,P.P) in nibbles.

— restart basecomm.

configure basecomm. Takes (B.C. ch#, short ACK#, carrier ch#,

carrier proc#f, carrier cmd#, saywhat proc#, saywhat cmd#)
in nibbles. -

Z - message end.

< <CODRT
|

Status Bit Values

Bit 3 — BUSY - _host computer may not send more data yet
2 — MESSAGE WAITING (from Topo to host computer)
1 - ERROR — Topo not responding
0 — ERROR - invalid message from host computer to B.C.
all off — READY' — OK to send

TOBS PROTOCOLS Version 1.0
Mi ke Saari and
Ed Wischmeyer 2/6/84
File: tobs.tp2

TOBS (Topo Onboard Bus System) is a four—wire serial communi-
cation bus, controlled by the TopoComm board, the bus master.
Connected to the bus master by TOBS are any number of slave
boards. The bus master broadcasts, and allows slaves to
broadcast, messages to which all boards have access.

All values are in decimal unless otherwise specified.

The message format specifications per se are simple: each message
is a 7 byte long packet, and the first byte is the destination
process of the message. However, all messages to date conform to
one of two formats.

The most common format is:

process#, command#, spare, datal, data2, data3, data4

This means that the given process should execute the given
command with as many of the 4 data bytes as required. All other
processes Should ignare this message. {There is also an "all
call" process number (0) to which most processes should respond.

See the Topo Command Set spec. for more details on process and
command assignments.)

The other currently used format is for status messages being
relayed from TOBS via the bus master to the IR system for
transmission as IR messages. The format for these return messages
is:

IR channel#, dest. process#, dest. command#, datal-4
In the current implementation, the only valid IR destination (the

base communicator) does not use destination process# or command#,
so0 this return format is equivalent to:

IR channel#, spare, spare, datal, data2, data3, data4

All status requests to date use the first three data values of

the requesting message to specify the "return address" +or the
response. In .other words, the first three bytes (the
dectination) of the return message are given by the first three
data bytes of the requesting message. Thus, a status request of
the form

process#, command#(request), spare, X, Y, Z, spare

ii-" 5

would be answered with a message of the form =y
X, Y, Z, datal, data2, data3, datas

For of*board requests, X is then the IR returnh chaﬁﬁel. For

- onboard requests, X is the return process# and Y is_the return

command#. Note that in all message formats currently used, the
last 4 bytes are always data.

Timing and Signal Characteristics

All messages transmitted over TOBS are exactly 7 'bytes long.
Each byte sent has 11 bits: a start bit (0), B data bits (L5B
first), a programmable ninth data bit, and a stop bit (1). The
ninth bit is set only in the first byte in each message, and
indicates message start. The ninth bit is cleared for all other
bytes. The baud rate is 12 MHz (system clock) / (16 X 3&6), or
20.833 Kbaud, giving one byte in 528 usec. This is set up by
configuring the BO31 serial interface in Mode 3, 'SMOD = 1, timer
1 in mode 2 with reload value of FD hex. At present, bytes are
sent on 256 usec intervals, so one byte is actually sent every
7568 usec. For standard 7-byte messages, this gives a transmit
time of 53746 usec/message. 8 pxtra cycles are allowed as margin
in the system, for a standard message time of 46400 usec.

TOBS Wiring

Two of the wires on TOBS are for serial data per se - bus master
transmit (for sending data from master to slave), and bus master
receive (for sending data from slave to master). In addition,
logic is supplied on the bus master board allowing it to tie the
transmit and receive lines together. The bus master always ties
the send and receive lines together whenever it grants a bus

request. This allows one slave to send data directly to all
other slaves. ’

The two TOBS control 1lines are named priority_OK_bar and
bus_busy_bar. Both are active low. With these lines high, the
state is referred to as priority not OK and bus not busy. Bus
busy is a single wire common to the bus master and all slaves.
It is configured as a wire—-0OR, normally pulled high by a resistor
{bus not busy), 'but any board can pull it low into the bus busy
condition. Priority OK is daisy—-chained starting with the bus
master at the "top"”, and lower—priority slaves in series "below"
it (see Figure 1). Any board may set priority not DK, but only
the bhoards "helow” it are affected. Every slave board has a bus
request line (active high) which it uses to request a TOBS
access. Activating bus request does two things: it will activate

bus busy, and it will set priority not OK for all "lower"” slaves
boards. K

2

How it Works

A slave board that wishes to send data over TDOBS must first wait
for a bus not busy condition (see Figure 2). (Priority will
always be not OK during bus not busy.) The slave then asserts
bus request (a), which causes a bus busy condition on all boards
{and also forces priority not OK for all lower boards). The bus
master, seeing a request (by bus not busy becoming bus busy),

grants the bus by setting priority 0K (b). The bus master
sets bus busy,

busy.

also
so now both master and slave are asserting bus

The slave, seeing priority 0K, transmits its message. Then the
slave releases bus request (c), but bus remains held busy by the
bus master, so no further accesses are allowed. One standard
message time (6400 usec) after granting the bus, the bus master
disables TOBS by setting pricrity not OK (d}. {This may occur
sometime after the timeout time, if the communication controller
board is busy elsewhere.) After another delay of 15 cycles, or
3840 usec, the bus master releases bus busy (e), and the TOBS is
free to accept another request. (This 15 cycles is in the
present impleméhtation to insure that boards have a chance to
process received TOBS messages.}) Thus, the total time for
consecutive messages is 40 cycles, or 10240 usec (10.24 msec),
plus any delay from one message to the next.

The slave should check priofity OK before sending every byte. If
it ever goes not OK (say if the slave takes too long to send its

message, although this should never happen), the slave must
immediately relinquish the bus.

If two slaves both wish to send a message, the first one to
request will set bus busy, 1locking out the other slave. If a
simul taneous request occurs, priority OK will only make it to the
higher priority slave, since its bus request will not allow
priority OK for the lower slave. The lower slave, after waiting
and not receiving priority OK within the prescribed time of 3512
usec, must release its bus request and try again later.

When the bus master board wants to use the bus, it must first
wait for any message in progress to complete. It then sets

priority not OK and bus busy, and sends its message. When done,
it sets bus not busy.

Since the bus master cannot monitor the TOBS bus while handling
speech data (since the serial port used for TOBS must be reset to

the speech board baud rate), the bus master will disable TOES
while passing data to the speech board.

Other

There is a fifth line routed with the TOBS bus, a system reset
line. This is asserted by the communication controller board,
and performs a power—on reset of all slave boards.

-

3

BUS BUSY BUS BUSY

i i BUS BUSY
i BUS F—> F———— - > TO
i MASTER | : H LOWER
H { PRIORITY 0K i ! PRIDRITY OK SLAVES
H i—> i i i H >
' : : H i
: i i H
: i ' :
] ' (o] H
i i /_\ HE
H i iNOT i
* -1 e IN__
H i R———=) /7
i H : OR
V. Vo
: BUS H
' RERBUEST H
: i
: TOP SLAVE :
: _ H
Figure 1.
TOBS Control Structure
a-bus reguest c—message done e-bus
-b—bus grant - d-bus deny -free
BUS BUSY : _ Y
PRIORITY OK -t i .
(master) . - - -
PRIORITY OK .. T -
(lower slaves) - - - .
BUS REBUEST ___ . send message &
) ab c d e
{—— 3376 us —-> {— 3840 us ->
{m———— &400 us —————— >
Figure 2.

TaBS Timing

ﬂl ‘ ﬂ/ dlan_ bampswTeh_words . Ihde Cam

15 -%3

4 Er Bam PswiIc (5 = wonl]
(word i bits 015 where 03 are ene bt @ for €ach o)

(“1" bmﬂ sens45 — /——/ef/eci(e/ ﬁ_,&ch)

ffac #5“/’ fehes OM/# JﬁampSM/ fetch-2- —wire - msq.. Jm/ﬂ S

> (¥ ¢ 7

T€9+“LMMP§W:/‘(A (W”’?’(ﬂ"ﬁff”" 0"3 — -F/t?g)
ok _oVER Aw0_ BooL_ ; S ——

| T

tn) (valsd Fo- n=0-15. N
_Duf L
L TF 41 swAP 0 M pq/ + LMF -

ELSE pROL | e

W A

Typ; cal _us€ ! S R
Get- bampswi ek) e) .
0_Test-bampswitch LF LARK_THEM S

|_Test-bumpswifch EF o THEN .

3 SUIRE-N

-13 ‘TC":J" éum#w[—fﬂlx LF . THE/U
PRaf_ o .

~ - i : -) - . z
— 1473 i3 sl A‘f'/ Ferse andfa’” €7 A esHrns — 47 cat
/lfd/ﬂﬂ I f;—a;)— wr/‘l ? 3 ~395X hfmc./d zf J -J-o?gs ; g& ne « L

/lfa/m/t bam/ﬂsw,+(wordS

20£2
'17‘(5faaé on # € Stuck 2n M§M
12-15-83
(495 14(_, Camm._na/ Lﬁﬁ SM/(TC/;‘ Fo /44/ cwma«y{_-i_m__
infs Switeh b s, . _ﬂ
war 4/ [, Waef/ 51) o

8 Logd-Switcs (S SWF, //v %, Cma/l?"

(f n_ means _ 4-; a_.)_ e

Ekamffﬁj
Parte_when_sw#3 _hit_(om L____ﬁ____m i
qwtt = ; 92 /_f’deﬂ-'— .; Ftp (m)lr?n) ;. Ch/# 507 (mzy‘arsz/a/J)

word | word 2= dgn £ Care
§ 02 0 0 Logd-SwrrcH P

S, fg3 4 Fo ¢
- o
__ 54} o’ " when fvf’/ he + 54'7 " 7[?(_ when 1 ‘/e€5.6Q{_.__,.‘-....m_._.-____
mf“fpmf Wlfo{/ Wor(l ¢a0/t /)féas 2 é 7‘35 /a?L /n
Tﬂe fourth ‘y?‘e—

_ 495// Cedt F’f’ each [etrer. (3. max).
ggag/a(__ég_____w_garrije refurn (,3 ad) Thus _

J N R & len | S ~
4F YE 9D 20 ‘fﬁ ‘M ‘/é Q,D
 FYFyb % H€00

_____ § 4FyEe _§ 0030
word | word - : woro(/ word 2 5
be cut b 81 Con)% 91 (of€))

e 2= 3 8¢ (s,amA) cnw/#‘—- $ 7F. (s47)
§ 7F 3 YFWE $ 0020 __LoAD-5wiTeH

§ 813 8¢

6 9 §8C_$ IF % 4HF44._$ 1600 L4} =S wiTch
0“,, an 45 50 ARC when sw #7 s Wt -
Swi = 53‘7 proc# = = § Fo (mn‘nn) (n.a{#— 555 (4-2() word(’f; wm/)':—;é

$ rg § £y 4 GE uS 50 LoA)-SwiTIck

!

—le | 38 38 T R0
N ‘ 938 198 dHEE 3 Bauaat
MATIT AL W

&=TA THeD
| g ol

Bheoe

Fe 4 THeD
e 5

Fre OoWNT

view A=A

4 Dec. &3

Core reclers

(0 kAL L LoD

uers FeaLc.

B,
J3yz-2
J35C

55555

NI
%&%ﬁ%

LN QN

ug ti

¢;;F

mﬂpﬁﬁﬁuppvﬁa

%
[
%

Pisd
[JINES

g%

S5~
S32-6

TR

4o 5¢521

wpduad xmppp

iy

e e s e b g e S e
' : ~

v
w g
48 4
38 @
- W
2 2
o
N o 8 &
b Loy \ e
NN TN TN oL
S92 D S &
SO OIS 1
A

: Head Switches

3

+ 1=FWD

2-LEFT
I-RIGHT
4-BACK

REGQUEST~HEADSWITCH returns

REGUEST—BUMPSNITCH returns

‘ Headswitches = 1-4

Bumpswitches (on) = BO-8D
Bumpswitches (off)= 90-9D

all e me e e i

LOADBUF commands use switch#’s:

Bump Switches

O-7
and

8~13 (initial set of 6)

di-d2 = 00000000 000ddddO
4321

di1-d2 = 00dddddd dddddddd
iy DCBA98 76543210

02 short ACK channel (one character only)
10 host datalink message return channel
20-2F Topo channels (Topo #’s 0-10 decimal}
7C-7F public channels F4-F1

R e —— i ——

00 . . ALL CALL
01-7F + (IR return processes)
g0 Comm. board null process
g1 - . .SWITCHES
g2 ! . - IR CONTROL
83 (special IR relay, reserved):
84 UTILITY
ec , SPEECH
8D (additional speech, reserved)
ge (additional speech, reserved)
gF (additional speech, reserved)
FO . . - MOTION :

FF . .- NULlL PROCESS

R .
. AR T
A B

el =S =TT

00 RESET .. universal—no data

0l CANCEL universal—-no data
02 ABORT-REQUEST universal-no data

03 TOBS-XMIT-OK . universal—-no data

&

DR

1 : - [

' TOBS-XMIT-NDT-OK

) AL Valaes hex

04

05 SELF-TEST

06 NO-OFERAT ION
07 MOTION-STOP
08~1F (open)
20-38 (open)

39 SET-HEADFOLL OW
IA SET-SMOOTH
3B GO-TURN

IC GO-FWD

ID SET-RAMP

2E SET-SFEED

3F SET-PRIVATE
40-SC (openi

5D Go

S5 ARC

SF

SET-PUBLIC -

&0-7B (open)

7C L. OADBUF—CHARS&6-7
7D LDOADBUF-CHARS4-35
7E LOADBUF-CHARS1-3
7F SAY

P s—— PRl bk

P ——— e e

universal—-no data

universal—no data

universal—-no data

universal—-no data
‘ switches dild2=flag (headfollow?)
motion did2=flag (smoath?)
motion dldZ=turnrate

motion did2=fwd. vel.:

motion didZ=ramp rate

motion dld2=speed param.

IR ctrl did2=ch#

motion did2=turnrate, d3d4=fwd. vel.
motion did2=angle, did4=dist.
IR ctrl did2=ch#, d3dd=flag
switches di=sw.#,d2d3=charsé=7
ewitches dl=sw.#,d2d3=chars4-3
switches dil=sw.$#,d2~d4=charsli-3
speech d1d2d3d4=speech data

e et S o e L o o B o e S i L e

AC REQUEST-FROCESS# universal —-returns did2=process#
Al REQUEST-SELFTEST- universal—-returns did2=result
STATUS ' —_—
AZ-BC (open)
BED REQUEST-MAX-RAMF motion returns dld2=ramp rate
BE REQUEST-BUMFSWITCH switches returns di1d2=bits0-13
BF REQUEST-HEADSWITCH switches returns didz=bitsi-4
co REQUEST-REVISION universal-returns di.d2=process vers.#

Ci-D9 (open)

d3.d4=prom #

IR ctrl returns did2=default channel
g3d4=current channel
motion returns did2=max. turnrate,
d3Zd4=max. velocity
motion returns dldZ=commands pending,
d3d4=space remaining
motion returns dild2=turnrate,
d3d4=fwd. velocity
motion returns did2=current angle,
d3d4=current distance
speech returns dld2=talking flag,

d3d4=buffer full flag

DA REGUEST-CHANNEL-
SETTINGS
DB RERUEST-MAX-SFEED
DC REQUEST-MOTION-
A QUEUESIZE
DD REQUEST-VELOCITY
'DE . REQUEST-POSITION
. REQUEST-SPEECH-
' §TATUS.
EO REQUEST-TYPE
E1-FE (open)
FF

SAYWHAT?. -
i RS
R

i
\

universal-returns dddd=process descript.

IR ctrl returns repeat of last IR msg.

TDPQ COMMAND SET version 1.0
Mike Saari 2/6/8B4
File: cmdset10.tp2

This document specifies all
of the currently assigne
Zgnieises, and commands, along with their code ass?gnﬁen%gangziz’
n etween the host computer and Topo. These cade assi;nmentg

should be i
shou generally transparent to the base communicator (see

Communicator Protocols spec.) exc i
for carrier, ACK s, saywhat®s gnd the iﬁ?%iggrlhtghgﬁagghg values

This specification applies to motor contrel ROMs and TopoComm
ROMs starting with version 1.0, ROMs

hich h t
released to date (to this specifica ioﬁ’ are d%%%ra%dﬁi¥5! ﬁ%ﬁ%
1.01 and 1.03, and TopoComm ROM 1.0.

(dddd) or (d1d2d3d4) represent four characters (bytes) of B-bit
data being transmitted. Numbers are twos complement unless
otherwise specified. All data values generally occupy two bytes
(O-FFFF), except where otherwise noted. A flag value of 0 means
False; 1 or any other value means True. Counters, such as
ncharacters 1-&", always start at 1 unless otherwise specified.
Bits always start at 0, i.e. bhits0-7.

All values are in hex unless otherwise specified.

The phrase "implemented but not used” means that the given
command, while functional, is not actually called anywhere by
TopoSoft or by any other part of the system. They are generally
hooks for future product expansion.

All REQUEST commands, which require an answer to be returned, are
always in the range 80-FF (i.e. high bit is set). This bit is
used by the system, specifically by the TopoComm IRctrl process,
to indicate that a return answer should be forthcoming. The
REGUEST message always includes the (d1d2d3d4) data field, which
contains the necessary information to indicate where the reply
should be sent. d1d2d3 are used as the first three bytes of the
return message over TOBS, and also as the first three bytes of

the IR return message. See the TDOBS Protocols spec. for more
details.

Universal commands are recognized by all processes. The same
general functionality is implied for any given process, although
the details of function and implementation will vary somewhat
from process to process. For any case where the particular
universal command is not applicable to a particular process, the

process should still handle it gracefully, usually by performing
a no—operation.

UNIVERSA!l Commands

RESET

CANCEL

ABODRT-RERQUEST

TOBS—-XMIT-OK

TDOBS—-XMIT-—
NOT-0K

SELF-TEST

NO-OPERATION

MOTION-STOP

REQUEST-
PROCESS#

REQUEST—
SELFTEST-
STATUS

REQUEST-
REVISION

RERUEST-TYPE

00—-CANCEL the last command{(s), and set all
parameters to their initial (power-on) values.

Ol1—stop processing of any previous command(s).
Implemented but not used.

02-cancel any previous status RERBUEST(s).

03—-the addressed process(es) may talk to the TOBS.
Implemented but not used.

04—-the addressed process{es) may NOT talk to the
TOBS. Implemented but not used.

OS—perform the internal self-test routine. Not
currently implemented.

06~null command. Implemented but not used.

07-if the addressed process is a MOTION process,
stop all motion and cancel any buffered commands.
Otherwise, do nothing.

AO-returns (did2). did2 is the process# of the
answering process. This command is useful for
determining the presence or absence of any given
process, or can be used with an ALL-CALl process

to poll all of the processes on the Topo. Imple-
mented but not used.

Al-returns (did2). did2 {(O-FFFF) is the result

of a previous SELF-TEST command. © = fail, 1 = 0K
2 = no test performed, 3 = not completed. (d3d4
are available for various error codes in the

future.) Implemented {always returns value 2) but
not used.

CO-returns (d1.d2,d3.d4). di.d2 is the version #
(0.0 — 99.97 decimal) of the answering process.
d3.d4 is the PROM # (0.0 — 99.99) of the answering
process. Numbers are coded in BCD, so 98.7&
decimal is coded as: 10011000 01110110,

EO-returns (d1d2d3d4). di1-d4 is a 4-byte descrip-
tion of the answering process in ASCII. Current
descriptions arel switches—-SWBS {(for headSWitches
and BumpSwitches), IR control-IRLD (for IR with
LeD’s), utility-UTC1, speech—-SPEC (for SPeech,
ECho, motion-MTN1. Implemented but not used.

wlt s

Head Switches Bump Switches

(Implemented but not used.)

1-FWD 0-13 decimal
2-LEFT (0O0—-0D hex)
3-RIGHT
4-BACK

LOADBUF commands use switch#’s:
Headswitches = 1-4 -
Bumpswi tches (on) = 80-8D
Bumpswitches (off)= 90-9p

The message buffer +for each switch can be 1loaded with 7
characters which constitute a standard 7—-character TOBS message
(see TOBS PROTOCOLS spec.). The message is sent over TOBS
whenever the particular switch is activated. (Only works for
headswitches if SET-HEADFOLIOW is disabled.)

Each bumpswitch has
two separate message buffers - "gn" and “off". "On" is activated
when the bumpswitch is triggered, and "off" is activated when it
is released.

L]

SWITCH Egntrol

SET-
HEADFOLL OW

SET-NO-IR

Commands

37-(d1d2). Enable or disable automatic head-

follow, based on flag did2 (true means enable).

The initial value is true. When enabled, the four

switches being pressed result in the following:

1 - Say "forward"” and send a "0 50 GO-FOREVER" cmd

2 — Say "left" and send a "-24 GO-TURN*" command

3 — Say "right" and send a "24 GO-TURN" command

4 — Say "stop" and send a PARK command (All-Call
Motion—-Stop). Above speed values are in
decimal.

When disabled, the four switches being pressed

result in the message contained in the switch

buffer being sent (see LOADBUF- commands) .

7B—(d1d2,d3d4). Set Topo’s actions after IR time-
out has occurred. di1d? is a flag which, if true,
indicates that Topo should automatically revert to
headfollow mode on IR timeout. Default is true.

d3d4 sets the IR signal loss timeout time X 10ms
(decimal). Valid values are 1-255 decimal and
the default is 128 decimal.

*#%¥This command will be superceded next revision. *&%

LOADBUF—
CHARS1-3

LOADBUF—
CHARS4-5

LOADBUF—
CHARS6-7

REQUEST-
BUMPSWITCH

REQUEST-
HEADSWITCH

7E-(d1,d2d3d4). Load characters 1-3

of the message buffer associated with the
indicated switch. dl is the switch # {O-FF).
d2-d4 are message characters 1-3. Initial values
for headswitches are ALL-CALL MOTION-STOP (i.e.
PARK). 1Initial values for bumpswitches contain a
message to the null TopoComm. process, i.e. NO-0OP.

7D-(d1,d2d3). Load characters 4-5

of the message buffer associated with the
indicated switch. d1l is the switch #.

d2d3 are message characters 4-5.

7C-(d1,d2d3). Load characters &-7

of the message buffer associated with the
indicated switch. d1l is the switch #.
d2d3 are message characters &6-7.

BE-returns (d1d2). d1d2 uses 14 (decimal) bits
representing 14 flags, one for each potential

bumpswitch sensor. Implemented but not used.
d1-d2 = 00dddddd dddddddd

DCBA98 746543210

BF-returns (d1d2). Bits 1-4 of d2 are four

flags, one for each latched headswitch value.
di—-d2 = 00000000 000ddddo

4321

L]

'MOTION Commands

For all motion commands, positive velocity is forward,
turns are clockwise.

SET-SMOOTH

GO-TURN

GO—-FWD

SET-RAMP

SET-SPEED

G0-FOREVER

ARC

RERQUEST-
MAX-RAMP

REQUEST—
MAX-SPEED

positive

3A4-(d1d2). Set Topo’s motion mode to smooth if
the flag dld2 is true. Set to exact mode (stap

after each movement) if the flag is false. The
initial value is true.

3B-(d1d2). Command Topo to turn at the indicated
turnrate, but do not alter the current forward
velocity. did2 is the new turnrate, +/- 0-106
deg/sec {decimal). Used only by headfollow mode.

3C-(did2). Command Topo to move forward at the
indicated velocity, but do not alter the current
turnrate. did2 is the new forward velocity,

+/— 0-50 cm/sec (decimal). Implemented but not
used.

3D-(d1d2). S8Set the motion ramp rate parameter
to the indicated value. did2Z is the new ramp

rate value, 0-100 cm/sec/sec (decimal). Initial
value is 10 (decimal).

3E-(di1id2). Set the target velocity parameter
to the indicated value. di1d2 is the new value,

0-50 cm/sec (decimal).. The initial value is 30
(decimal).

SD—-(d1d2,d3d4). Directly set the wheel speeds.
d1d2 is the turnrate, +/—- 0-106 deg/sec {(decimal}.

d3d4 is the forward velocity, +/— 0-50 cm/sec
{decimal).

SE-{d1d2,d3d4). Start a distance movement, using
the given values for angle and distance and using
previously set values for velocity and ramp rate.
did2 1is the total turn angle, +/- 0-7FFF deg.
d3d4 is the distance covered, +/- 0-7FFF cm.

BD-—returns (did2). Gets the maximum allowed

value for the motion ramp rate parameter (0—FF).
Implemented but not used.

DB-returns (dl1d2,d3d4). Gets the maximum allowed
turnrate and velocity. di1d2 is the max. turnrate,
current value 106 deg/sec (decimal).

d3d4 is the max. velocity, current value 50 deg/
sec (decimal). Implemented but not used.

D

=

% 4

REQUEST-

DC-returns (d1d2,d3d4). Gets the current status

MOTION—- of the motion queue. d1d2 is the count of commands
QUEUESIZE pending, O0-1&6 {(decimal). d3d4 is the count of
space remaining, 0-16 (decimal).
RERQUEST~ DD-returns (d1d2,d3d4). Gets the current velocity
VELOCITY values from the velocity control sequencer, i.e.
the current attemped Topo speed. did2 is the Y
current turnrate, +/—- 0-104 deg/sec (decimal).
d3d4 is the current velocity, +/- 0-50 cm/sec
{decimal). r
RERUEST- DE-returns (d1d2,d3d4). Gets the current Topo
POSITION position, relative to 0,0 at the beginning of the .1
latest motion command. did2 is the current angle,)
+/— O0-7FFF deg. d3d4 is the current distance,
+/— 0-7FFF cm. -
IR Channel Groupings Process Groupings
4] - All Call i
01-O0F - Ack’s BO-8F - TopoComm. i
10-1F ~— Other channels 90-9F — open
20-2F - TOPO private channels AO-AF - open
30-3F - open BO-BF - open
40-4F — open CO-CF - open
50-5F — open DO-DF - open H
60-6F - open EO-EF - Sensor (reserved))
70-7F — public channels FO-FE - Motion
FF — Null Process

Command Number Groupings

Command numbers (values are 0-FF) are grouped into the following
classifications:

00-1F
20-3F
40-35F
&0-7F

BO-9F
AO—-BF
CO-DF
EO-FF

command, no data parameters

command, single data parameter

command, two data parameters

command, special (or multiple data parameters)

request, unallocated

request, return single parameter

request, return two parameters

request, special (or return multiple parameters)

Universal commands start numbering from the bottom of any group,

i.e. 20,

21,

22, etc. Process—specific commands start numbering

from the top of any group, i.e. 3F, 3E, 3D, etc.

S —————— e — R T L S

OoF short ACK channel (one character only)
10 base communicator message return channel
1F null channel (used for carrier)

20-2F

7C-7F public channels P4-P1, respectively

Topo channels (Topo #°s 00-0OF, resbectively)

00 AlLlL CALL
01-7F (IR return processes)
80 TopoComm null process (Implemented but not used.)
81 SWITCHES
82 IR CONTROL
83 (special IR relay, reserved but not used.)
84 UTILITY (Implemented but not used.)
8c SPEECH
FO MOTION
FF NULE PROCESS (Implemented but not used.)

Emd Name

#

00 RESET

01 CANCEL

02 ABORT-REQUEST

03 TOBS-XMIT-DOK

04 TOBS—-XMIT-NOT-OK
05 SELF-TEST

046 NO-OPERATION

07 MOTION-STOP
08-1F (open)

Process

Data

.4

name

Format

universal-no data
universal-no data
universal—no data
universal—-no data
universal—no data
universal—-no data
universal—no data
universal—no data

20-38 (open)

39 SET-HEADFOLL OW
3A SET-SMOOTH

3B GO-TURN

3C GO~FWD

3D SET-RAMP

3E SET-SPEED

3F SET-PRIVATE

81
FO
FoO
FO
FO
FoO
82

switch
motion
motion
motion
motion
motion
IRctrl

did2=flag (headfollow?)
dld2=flag (smooth?)

did2=turnrate
did2=fwd. vel.
did?=ramp rate
dld2=speed param.
dld2=private ch#

40-5C (open)

SD GO-FOREVER
SE ARC

SF SET-PUBLIC

FO
FO
82

motion
motion
IRctrl

did2=turnrate, d3d4=fwd. vel.
didZ2=angle, d3d4=dist.

did2=public ch#,

d3d4=flaq

J

vall

Cmd Name

.3
&60-7A (open)
7B SET-NO-IR

#® 7B to be superceded
7C LOADBUF-CHARSAL-7
7D LOADBUF -CHARS4-5
7E LOADBUF-CHARS1-3
7F =2} 4

Data
Format

81 switch did2=flag (auto-headfollow?)
d3da=timecut X 10ms (decimal)

next revision %
81
81

switch di=sw.#,
switch dl=sw.#,d2d3=chars4-5

d2d3=chars&-7

81 switch di=sw.#,d2-d4=chars1-3

a8c

speech d1d2d3d4=speech data

BO0—9F ({(open)

A0
Al

REQUEST—-PROCESS#

REQUEST-SELFTEST-
STATUS

A2-BC (open)

universal-returns
universal —returns

FO motion returns
81 switch returns
81 switch returns

did2=process#
didZ=result

did2=max. ramp
d1d2=bits00-0D
did2=bhitsi1-—-4

BD REQUEST-MAX-RAMP
BE REGUEST-BUMPSKWITCH
BF RERUEST-HEADSWITCH
co REQUEST-REVISION

Ci-D2 (open)

universal —returns

dl.dZ=process vers.#

'd3.dd=prom #

DA REQUEST—CHANNEL — 82 IRctrl returns did2=initial channel
SETTINGS d3d4=current channel
DB REGUEST—MAX—-SPEED FO motion returns did2Z2=max. turnrate,
d3d4=max. velocity
De REQUEST—MOT ION—- FO motion returns dild2Z=commands pending,
RUEUESIZE d3d4=space remaining
DD REQUEST-VELDCITY FO motion returns did2=turnrate,
d3d4=fwd. velocity
DE REQUEST-POSITION FO motian returns didZ=current angle,
d3d4=current distance
DF REQUEST-SPEECH- BC—speech returns did2=talking flag,
STATUS d3d4=buffer full flag
EOQ REQUEST-TYPE universal-returns dddd=protess descript.
E1-FE {(open)
SAYWHAT? 82. IRctrl returns

FF

repeat of last IR msg.

AFPENDIX A

TOFPOSOFT COMMAND SUMMARY

MOTION COMMANDS

n FWD (dist-—-) FARK (—=)
n BACK {dist——) JOYSTICK (——)
n LEFT (angl—) TILL-STOPPED (—)
n RIGHT (angl—) MOVE-SMOOTH {(—=)
n n ARC (angl .dist) MOVE-EXACT (—)
n n GO-FOREVER GET-POSITION
(turnrate,speed—-) (——angl,dist)
n SET-SPEED (speed—-) GET-VELOCITY
n SET-RAMF (ramp—-—) {(——turnrate,speed)
SFEECH COMMANDS
SAY" (—=) TALK-LEVEL i (——)
PHON™ (—) TALK-WAVY . (==
sSAY-LATER" {(—) TALK~FAST {(—)
SAY-IT (—) , TALK-SLOW {(——)
n SAY#' (number——>
n SET-PITCH (pitch-—? SAY-LETTERS (—)
n SET-VOLUME (vol——) SAY-WORDS (——)
SPEECH-FULL? - (——flag) SAY—-SOME—-FUNC (——>
TALKING? (-—f1ag) SAY-MOST—PUNC (—)

TILL-SILENT

BET-HEADSWITCH

.n

n

(——bits12Z4)

OPEN—-CHANNEL

(channel—-)
CHANGE-CHANNEL
{privatechannel—-’

TEST—CHANNELS

RESET-MOTION
RESET-TOPD

(— sAY-ALL—FUNC
HEADSWITCH COMMANDS

ENARLE-HEADFOLLOW (——)
DISABLE-HEADFOLLOW (=)

CHANNEL COMMANDS
n ENAEBLE-PUBLIC
(publicchannel——)
n DISABLE-FUEBLIC
(publicchannel——)
(—) TOPQ-ON7? (——+f1lag)
RESET COMMANDS
(—=) RESET-SFEECH
(—)

(—=)

o™

Mike Saari 1/14/s84
Androbot Engineering Dept.
File: demos.tpZ

This is a summary of the demanstration commands on the marketing

demo boot disk for Topo. Type the command word (in capitals) to

perform the particular demo. (The source is on screens S0-64&).
SFEECH DEMONSTRATIONS

SFEECHDEMO — A demonstration of Topoe®s full range of speech
capabilities. The wolf-whistle exists separately as WOLF.

FORDEMO — Foreign. language capability demo. Says "Hello, my name
is Topo" in French, Spanish, Italian, and Japanese.

Bad FRaobot Jokes (four) — Type Q1 for the question, R1 for the
response. Similar for QZ,R2Z, 2%, R3, (4,R4. The answers also
include a laugh which can be called with the word LAUBGH.
MOTION DEMONSTRATIONS
SEFEEDDEMO — A& demonstration of Topo's speed range capabilities.
SQUARE - Topo demonstrates gecometry by moving in a sguare.
SINGING DEMONSTRATIDNS

DAISYDEMO — Ferforms a "Daisy, daisy" song and dance.

ANTHEM — Topo sings a brief chorus from the "Androanthem™.

EEATLES - Topo sings a short excerpt fram the song "When I'm

Sixty Four®.

n EOTTLES - Sings "n Eottles of EReer on the Wall" for any value
of n, i.e. 5 BOTTLES (recommended value). Bets more drunk around
= bottlies left. Demonstrates a simple Forth LOOF, and also shows
what can happen when you LOOF one time too many!

Other words already included as part of the original DEMD word in
TopoSoft (and thus on the demo disk as well) include: RIERIT - do
a frog croaki WHEE - spin in a circle and say "wheeeeeeeee!": and

HERES - spin and say "da da da da da...heeeeeeerrrrrrrrres Topo!"
MULTIFLE TOPOS DEMONSTRATION

INIT2TOFOS and ZTOFOSDEMO — Used only if two Topoé are available,
to demonstrate the ability to control multiple Topos. Type
INIT2TOFDS first and follow the instructions to initialize the
two Topos onto channels O and 1, and then type ZTOPOSDEMD to see
the demo. Start with Topos side-by-side facing the listener for
best results.

