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 A B S T R A C T

We construct real-time machine learning strategies based on a ‘‘universe’’ of fundamental signals. The out-of-
sample performance of these strategies is economically meaningful and statistically significant, but considerably 
weaker than those documented by prior studies that use curated sets of signals as predictors. Strategies 
based on a simple recursive ranking of each signal’s past performance also yield substantially better out-
of-sample performance. We find qualitatively similar results when examining past-return-based signals. Our 
results underscore the key role of feature engineering and, more broadly, inductive biases in enhancing the 
economic benefits of machine learning investment strategies.
1. Introduction

Machine learning methods have received considerable attention in 
the recent asset pricing literature, particularly in the area of return 
prediction (see, e.g., Chen et al., 2024c; Freyberger et al., 2020; Gu 
et al., 2020; Leippold et al., 2022). The general conclusions of the 
existing studies are remarkably similar— machine-learning models are 
superior to traditional models in predicting the cross-section of stock 
returns, and using machine-learning methods leads to large improve-
ments in investment performance. Indeed, a common theme among 
many existing studies is constructing long–short investment strategies 
based on machine learning forecasts and demonstrating that these 
strategies are highly profitable.

I Nikolai Roussanov was the editor for this article. We are grateful to the editor and an anonymous referee for their feedback and suggestions, which greatly 
improved the paper. We thank Marcin Kacperczyk, David Solomon, Allan Timmermann, and seminar and conference participants at the Chinese Finance Annual 
Meeting, Duke Kunshan University, Hunan University, Lehigh University, Nanjing University, Renmin University of China, Sun Yat-Sen University, Taiwan Finance 
Association Asset Pricing Conference, Tongji University, and Xiamen University for helpful comments and discussions. Bin Li acknowledges financial support 
from the National Natural Science Foundation of China (No. 72371191 and 71971164) and the Key Program of the National Social Science Fund of China 
(No. 24AZD020). Lingling Zheng acknowledges financial support from the National Natural Science Foundation of China (No. 72122021 and 72495154). We 
acknowledge the computational support provided by the Supercomputing Center of Wuhan University. All errors are our own.
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E-mail addresses: binli.whu@whu.edu.cn (B. Li), agr60@georgetown.edu (A.G. Rossi), xuy219@lehigh.edu (X. Yan), zhenglingling@rmbs.ruc.edu.cn 

(L. Zheng).
1 There are exceptions. For example, Kozak et al. (2020) use shrinkage and selection method to construct a stochastic discount factor (SDF) from a 

comprehensive set of financial ratios compiled by WRDS.

While prior studies have clearly established the potential for large 
economic gains to investors using machine learning forecasts, an im-
portant issue that has been overlooked in the literature is the real-time 
performance of machine learning strategies, and particularly how the 
choice of input variables affects such performance. Specifically, many 
existing studies use published anomaly variables as predictors of stock 
returns and implicitly assume that they are known to investors during 
the training period, even though most anomalies are discovered years 
later.1 While this approach is appropriate if the objective is to measure 
risk premium or estimate the stochastic discount factor, in which case 
we can take an econometrician’s perspective and analyze data ex-post, 
such an approach raises the issue of whether investors could have 
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selected those signals out of a universe of (potentially uninformative) 
signals in real time. As a consequence, the economic gains from using 
machine learning forecasts documented by the aforementioned studies 
are potentially overstated for real-time investors.

In this paper, we examine machine learning strategies based on 
a ‘‘universe’’ of over 18,000 fundamental signals that are accessible 
to investors in real time. Because these signals are constructed from 
financial statement variables using permutational arguments (Yan and 
Zheng, 2017), our strategies are not based on curated sets of inputs. By 
comparing machine-learning strategies based on a universe of signals 
with strategies based on selected sets of signals, our paper can shed 
light on the importance of feature engineering – i.e. the process of 
selecting and transforming the predictors used in machine-learning 
applications – for the performance of machine-learning strategies.2 ,3 
Such comparisons also provide insights into how human expertise 
influences machine learning models in predicting returns. Moreover, 
examining a universe of fundamental signals, rather than selecting a 
subset of them based on whether they have been published in academic 
journals, allows us to address the issue of publication bias (Harvey, 
2017; Chen and Zimmermann, 2020).4

The primary machine learning method we use is boosted regression 
trees (BRT). We focus on BRT for several reasons. First, previous studies 
have shown that BRT exhibit strong predictive performance in finance 
applications. Gu et al. (2020), for example, show that BRT and neural 
networks are the two best-performing machine learning methods in pre-
dicting stock returns. Second, BRT are ideally suited for handling large, 
high-dimensional data sets because of their computational efficiency. 
This is important for us because our predictor set, which contains more 
than 18,000 signals, is much larger than those examined by previous 
studies. Third, BRT are robust to missing values and outliers. Given 
the findings in Gu et al. (2020), we also use neural networks as an 
alternative machine learning method to ensure the robustness of our 
findings.

We follow Gu et al. (2020) and partition our sample period into 
a training period, a cross-validation period, and an out-of-sample test 
period. We form long–short portfolios based on machine learning pre-
dicted returns, buying stocks with the highest predicted returns and 
shorting stocks with the lowest predicted returns. Using boosted re-
gression trees (BRT) forecasts, our equal-weighted long–short portfolio 
generates an average return of 0.95% per month (𝑡-statistic = 6.63) 
and an annualized Sharpe ratio of 1.02, while the value-weighted 
portfolio earns an average return of 0.40% per month (𝑡-statistic = 
2.34) and a Sharpe ratio of 0.30. In comparison, Gu et al. (2020) 

2 We highlight ‘‘feature engineering’’ here for simplicity of exposition. More 
broadly, our work highlights the importance of the inductive biases associated 
with implementing machine learning methods. As detailed in Goyal and Bengio 
(2022), inductive biases encompass preferences or constraints imposed on the 
hypothesis space to guide the learning and improve the generalization of 
machine learning methods. Feature engineering can be considered an inductive 
bias because it imposes a preference over the features to be considered, 
effectively shaping the learning process by narrowing the focus of machine 
learning methods to specific predictor variables.

3 While humans determine the set of inputs to be fed into machine learning 
algorithms, the machine learning algorithms themselves often include variable 
selection mechanisms. This built-in variable selection identifies the most rele-
vant features from the human provided inputs based on statistical significance 
or contribution to the model’s accuracy. Throughout this paper, we use the 
term feature engineering to refer specifically to the human-driven process of 
selecting and designing the initial set of inputs, distinct from the algorithmic 
selection of variables during model training.

4 Although publication bias may overstate the true expected returns of 
published anomalies, several prior studies have shown that the magnitude of 
the publication bias is relatively small (McLean and Pontiff, 2016; Chen and 
Zimmermann, 2020). Chen and Zimmermann (2020), for example, quantify 
the publication bias to be around 12%.
2 
report that their BRT-based equal-weighted portfolios achieve a sig-
nificantly higher 2.14% per month (Sharpe ratio = 1.73), and their 
value-weighted portfolios earn 0.99% per month (Sharpe ratio = 0.81), 
which are more than double the returns and Sharpe ratios we observe.

Neural networks also show weaker performance in our analysis. For 
equal-weighted portfolios, our strategies generate average returns of 
0.80%–1.17% per month with Sharpe ratios of 0.74-1.16, compared to 
the 3.33% per month (Sharpe ratio = 2.45) documented by Gu et al. 
(2020). Similarly, for value-weighted portfolios, our neural networks 
yield returns of 0.21%–0.74% per month (Sharpe ratio = 0.16-0.70), 
whereas Gu et al. (2020) report 2.26% per month (Sharpe ratio = 1.35). 
Other studies, such as Chen et al. (2024c) and Freyberger et al. (2020), 
further emphasize this gap, reporting Sharpe ratios of 2.6 and 2.75, 
respectively, which significantly exceed our results.

To investigate whether the weaker performance is due to limitations 
in our machine learning implementation, we replicate our analyses on 
datasets of published anomalies. Using the Green et al. (2017, GHZ) 
sample, our BRT and neural network models achieve equal-weighted 
long–short returns exceeding 3.5% per month with Sharpe ratios of 
2.21–2.81, matching the performance reported by Gu et al. (2020). 
The results are even stronger with the Chen and Zimmermann (2022, 
CZ) sample: BRT models achieve equal-weighted returns of 5.14% per 
month with an annualized Sharpe ratio of 3.64. These results indicate 
that our implementation can deliver performance on par with prior 
studies when using curated predictors. This suggests that the choice of 
input predictors, rather than the ML implementation itself, is the key 
driver of the performance gap between our strategies and those based 
on published signals.

Thus, compared to the previous literature that uses published – 
and hence implicitly selected – signals as return predictors, our results 
indicate that the economic gains to real-time investors from using our 
machine learning strategies are much more modest. Prior literature, 
such as Yan and Zheng (2017), however, has shown evidence that 
investors could obtain large economic gains by learning from a universe 
of return signals. To explore this possibility, we follow Yan and Zheng 
(2017) and construct a recursive ranking strategy. In particular, we first 
construct a long–short strategy based on each fundamental signal in our 
sample. We then sort all signals each year into deciles based on the 𝑡-
stat of their past long–short portfolio alphas using a recursive window. 
Finally, we form an equal-weighted portfolio by going long in those 
signals ranked in the highest 𝑡-stat decile and shorting those signals 
ranked in the lowest 𝑡-stat decile.5 This procedure can be viewed as a 
crude machine-learning strategy that selects a subset of predictors to be 
included in the final investment strategy out of the universe of available 
ones using the 𝑡-statistic of their past univariate performance. The out-
of-sample performance of this investment strategy is impressive. The 
equal- and value-weighted portfolios generate an annualized Sharpe 
ratio of 1.60 and 1.17, respectively, which are significantly higher 
than those of our machine learning strategies (i.e., 1.02 and 0.30, 
respectively). The fact that feeding the universe of predictors to our 
machine-learning methods delivers a performance that is inferior to a 
simple recursive ranking strategy suggests that imposing an appropri-
ate structure or ‘‘inductive bias’’ is important to the performance of 
machine-learning algorithms (Goyal and Bengio, 2022).

Fig.  1 succinctly summarizes our main results. We plot the Sharpe 
ratios for the following five investment strategies: The real-time
machine-learning strategy based on our universe of fundamental signals 
(FS-ML);6 the recursive ranking strategy based on the same universe of 

5 We thank an anonymous referee for suggesting this analysis, which is 
motivated by an analysis in Table 3 of Yan and Zheng (2017).

6 We refer to our machine-learning strategy as real-time machine-learning 
strategy primarily because our strategy can be implemented using only real-
time information, i.e., our universe of signals is accessible to real-time 
investors. We acknowledge that to implement our machine-learning strategy, 
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Fig. 1. Comparison of Sharpe ratios across strategies. This figure presents the Sharpe ratios for five investment strategies: FS-ML, a machine-learning strategy based on a universe 
of fundamental signals (1987–2019); FS-RR, a recursive-ranking strategy based on the same universe of fundamental signals (1987–2019); GKX, the baseline results from Gu 
et al. (2020) (1987–2016); GHZ, a machine-learning strategy based on the Green et al. (2017) signals (1987–2019); and CZ, a machine-learning strategy based on the Chen and 
Zimmermann (2022) signals (1987–2019). The left panel shows results using boosted regression trees, while the right panel presents those based on neural networks. For each 
approach, we report Sharpe ratios for both equally weighted (EW) and value-weighted (VW) portfolio returns.
fundamental signals (FS-RR); the Gu et al. (2020) strategy (GKX); the 
machine-learning strategy based on the selected set of signals in Green 
et al. (2017) (GHZ); and the machine-learning strategy based on the 
selected set of signals in Chen and Zimmermann (2022) (CZ). Three 
main takeaways are evident in Fig.  1. First, our real-time machine-
learning strategies (FS-ML) deliver economically meaningful out-of-
sample Sharpe ratios. Second, machine-learning strategies based on 
curated sets of signals (GKX, GHZ, and CZ) exhibit significantly higher 
Sharpe ratios than FS-ML. Third, FS-RR, which can also be implemented 
using only real-time information, performs significantly better than FS-
ML. That is, a simple recursive ranking strategy based on the same 
universe of fundamental signals yields much higher Sharpe ratios than 
standard machine-learning strategies. Our main findings are robust 
across BRT and neural networks and hold for both equal- and value-
weighted portfolios.7 Overall, our results indicate that large economic 
gains are achievable for real-time investors, and that feature engineer-
ing and – more broadly – inductive biases are key to achieving such 
gains.

Our analyses so far have focused on fundamental signals. The main 
reason for this focus is that we can construct a ‘‘universe’’ of fundamen-
tal signals (Yan and Zheng, 2017). Past return-based signals are another 
class of predictors for which we can construct an ‘‘exhaustive’’ list of 
signals. In particular, we follow Martin and Nagel (2022) and use the 
past 120 months (excluding the most recent month) of stock returns. 
We also consider an alternative sample that includes the most recent 
month of stock return. As in our analysis of fundamental signals, we 
continue to use BRT as the primary machine-learning method. We find 
that the machine-learning strategy based on past-return signals earns an 
average return of 1.38% per month (𝑡-statistic = 4.93) and exhibits an 
annualized Sharpe ratio of 1.04 in equal-weighted portfolios. The value-
weighted portfolios deliver an average long–short return of 0.78% per 
month (𝑡-statistic = 2.41) and a Sharpe ratio of 0.46. The results are 
stronger when we include the most recent month of stock returns. 
The strategy earns an average return of 1.81% per month (𝑡-statistic 

investors would also need considerable computing power and access to modern 
machine-learning algorithms. To the extent that these resources may not have 
been available to investors in the 1980s and 1990s, the performance of our 
machine-learning strategy shown in Fig.  1 could overestimate the economic 
gains to real-time investors.

7 We include the performance of FS-RR in Fig.  1 for comparison, even 
though it is not a standard machine-learning strategy. Its performance is 
identical in the left panel (BRT) and the right panel (NN).
3 
= 6.40) and exhibits an annualized Sharpe ratio of 1.77 in equal-
weighted portfolios while earning an average return of 0.98% per 
month (𝑡-statistic = 3.14) and a Sharpe ratio of 0.66 in value-weighted 
portfolios.

These results are economically and statistically significant; how-
ever, they are weaker than those reported by prior studies that use 
curated sets of past-return-based predictors. For example, Moritz and 
Zimmermann (2016) show that machine learning strategies based on 
the past 24 monthly returns, which could have been plausibly selected 
by investors in real time, deliver a Sharpe ratio of 2.96 in equal-
weighted portfolios. Similarly, Murray et al. (2024) show that machine 
learning strategies based on past 12 monthly cumulative returns, ex-
hibit a Sharpe ratio of 0.78 in value-weighted portfolios. Comparing 
these performances with those of our past return strategies suggests, 
once again, that feature engineering can significantly improve the 
performance of machine-learning strategies.

As in Fig.  1 for fundamental signals, we summarize our main results 
for past-return signals in Fig.  2. We plot the Sharpe ratios of the fol-
lowing strategies: (1) Our machine-learning strategy based on 119 past 
monthly returns excluding the most recent month return (PR119); (2) 
the machine-learning strategy based on the past 120 monthly returns 
including the most recent month return (PR120); (3) the Moritz and 
Zimmermann (2016) strategy (MZ); and (4) the Murray et al. (2024) 
strategy (MXX). Because Moritz and Zimmermann (2016) report equal-
weighted results, while Murray et al. (2024) report value-weighted 
results, we combine the results of these two strategies in Fig.  2.

The main takeaways from Fig.  2 are as follows. First, our baseline 
machine-learning strategy (PR119) delivers economically meaningful 
Sharpe ratios. Second, PR120, which includes the short-term reversal as 
an additional predictor, yields a higher Sharpe ratio than PR119. Third, 
strategies based on curated sets of inputs (i.e., MZ and MXX) perform 
better than both PR119 and PR120. Overall, our analyses based on past-
return signals paint a similar picture to those based on fundamental 
signals. That is, the performance of our real-time machine-learning 
strategies is economically meaningful and statistically significant. More 
importantly, larger returns are available to real-time investors, and 
choosing a curated set of signals is key to realizing these larger returns 
for real-time investors.

We perform several robustness tests and additional analyses.8 First, 
we repeat our analysis using a rolling-window approach instead of a 
recursive one. If the relations between fundamental signals and future 

8 Robustness is important in machine learning studies given the large 
‘‘non-standard errors’’ found in the recent paper by Chen et al. (2024a).
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Fig. 2. Comparison of Sharpe ratios across ML strategies based on past-return signals. This figure presents the Sharpe ratios for three investment strategies: PR119, a BRT 
machine-learning strategy based on 119 past monthly returns—excluding the most recent month (1987–2019); PR120, a BRT machine-learning strategy based on 120 past monthly 
returns—including the most recent month (1987–2019); MZ, the Moritz and Zimmermann (2016) baseline results (1968–2012); and MXX, the Murray et al. (2024) baseline results 
(1963–2022). We report Sharpe ratios for both equally weighted (EW) and value-weighted (VW) portfolio returns.
stock returns are unstable over time, then the rolling-window approach 
should perform better. Contrary to this argument, our machine-learning 
strategies perform slightly worse under the rolling-window approach 
than under the recursive-window approach. Second, we repeat our 
analysis using alternative training and validation periods and find our 
results to be robust. Third, we repeat our analysis for subsamples of 
stocks sorted by firm size. We find that the out-of-sample performance 
of our machine-learning strategies is significantly stronger among small 
stocks than among large stocks. Fourth, we examine the after-trading-
cost performance of our machine-learning strategies using Chen and 
Velikov (2022)’s low-frequency effective spreads as our trading cost 
measure. We find that the net returns to our machine-learning strate-
gies based on fundamental signals are positive, while the net returns 
to strategies based on past-return signals are consistently negative. 
Finally, we explore the issue of time-varying predictability and find 
some evidence that the performance of our machine-learning strategies 
varies with the state of the market. However, there is little evidence 
that the profitability of our strategies varies systematically with in-
vestor sentiment, market volatility, market liquidity, or business cycle 
conditions.

Our paper builds on and contributes to the recent literature em-
ploying machine learning methods in empirical asset pricing. Gu et al. 
(2020) use machine learning methods to measure risk premium and 
show that machine learning models, particularly trees and neural net-
works, significantly outperform linear regression models in predicting 
stock returns. Freyberger et al. (2020) use the adaptive group LASSO 
for model selection and show that their model exhibits superior out-of-
sample performance. Kozak et al. (2020) use shrinkage and selection 
methods to construct an SDF that summarizes the joint explanatory 
power of a large cross-section of return predictors. Chen et al. (2024c) 
estimate the SDF using deep neural networks and show that their 
model outperforms all other benchmark models.9 These studies have 
established the potential for large economic gains to investors using 
machine learning strategies. We complement the existing studies by 
taking the perspective of real-time investors. Specifically, we show that 

9 For additional studies that use machine learning methods in asset pric-
ing, please also see, e.g., Rapach et al. (2013), Chinco et al. (2019), Feng 
et al. (2020), Bryzgalova et al. (2020), Bianchi et al. (2021), Dong et al. 
(2022), Leippold et al. (2022), Avramov et al. (2022), Kelly and Xiu 
(2023), Geertsema and Lu (2023), Kaniel et al. (2023), Bali et al. (2023) 
and Chen and McCoy (2024). Several earlier studies  (Ou and Penman, 
1989; Holthausen and Larcker, 1992; Haugen and Baker, 1996) use machine 
learning-like methods to predict future stock returns.
4 
using machine learning methods is beneficial for real-time investors and 
that feature engineering is key to significantly enhancing such benefits.

Our paper is also related to a growing literature examining the 
performance of data-mined signals (Yan and Zheng, 2017; Chordia 
et al., 2020; Harvey and Liu, 2020; Zhu, 2023; Chen and Dim, 2024; 
Chen, 2024; Chen et al., 2024b). In particular, Chen and Dim (2024) 
show that systematic data-mining leads to significant out-of-sample 
performance and argue that ‘‘high-throughput methods provide a rig-
orous, unbiased method for documenting asset pricing facts’’. Chen 
et al. (2024b) show that mining a universe of accounting ratios yields 
out-of-sample performance comparable to that of published signals.

Finally, our paper is related to Arnott et al. (2019) and Israel 
et al. (2020), who caution that machine learning methods may not 
work as well in finance as in some other disciplines. In particular, 
machine learning methods face three significant challenges in finance 
applications: the lack of data (on the time series dimension), the 
low signal-to-noise ratio, and the adaptive nature of financial mar-
kets. While the modest performance of our real-time machine-learning 
strategies could be a manifestation of these challenges faced by market 
professionals and investors, we argue that feature engineering holds 
considerable promise in significantly improving the performance of 
machine-learning-based investment strategies.

The rest of our paper proceeds as follows. Section 2 describes 
our data, sample, and methods. Section 3 presents our main empiri-
cal results. Section 4 presents the results for additional analyses and 
robustness tests. Section 5 concludes.

2. Data, sample, and methods

This section describes the stock sample and the fundamental signals 
we employ in our main analysis. We then describe the cross-sectional 
prediction problem underlying the portfolio strategies we generate and 
the main empirical method we use—boosted regression trees (BRT). 
Finally, we describe how we implement our machine-learning strategy.

2.1. Stock sample and associated fundamental signals

We obtain monthly stock returns, share price, SIC code, and shares 
outstanding from the Center for Research in Security Prices (CRSP) and 
annual accounting data from Compustat. Our sample consists of the 
NYSE, AMEX, and NASDAQ common stocks (with a CRSP share code 
of 10 or 11) with the necessary data to construct fundamental signals 
and compute subsequent stock returns. We exclude financial stocks, 
i.e., those with a one-digit SIC code of 6. We also remove stocks with 
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a share price lower than $1. To mitigate backfilling biases, we require 
that a firm be listed on Compustat for two years before it is included 
in our sample (Fama and French, 1993). We obtain Fama and French 
(1996, 2015) factors and the momentum factor from Kenneth French’s 
website and Hou et al. (2015) 𝑞-factors from Lu Zhang’s website.10 Our 
sample spans from July 1963 to June 2019, and our sample consists of 
15,035 stocks.

We construct the universe of fundamental signals for our sam-
ple of stocks following Yan and Zheng (2017).11 We start with 240
accounting variables (listed in Table  B.1) and compute, for each vari-
able, a total of 76 signals (listed in Table  C.1). These signals are 
obtained by taking the original accounting variables and transforming 
them by computing changes, ratios, and other potentially economically 
meaningful transformations. The final number of fundamental signals 
we include in our analysis is 18,113, which is slightly smaller than 
18,240 (240 × 76) because not all combinations of the accounting 
variables result in meaningful signals, and some of the combinations 
are redundant. For brevity, we refer the readers to Yan and Zheng 
(2017) for complete details regarding selecting accounting variables 
and constructing fundamental signals.

2.2. Methodology

2.2.1. Prediction equation
We predict the cross-section of stock returns using the following 

specification: 

𝑅𝑖,𝑡+1 = 𝑓
(

𝐱𝑖,𝑡|𝜃
)

+ 𝜖𝑖,𝑡+1 (1)

where 𝑅𝑖,𝑡+1 denotes annual excess return for stock 𝑖 from July of year 𝑡
to June of year 𝑡+1, 𝐱𝑖,𝑡 denotes a vector of variables used to predict the 
cross section of returns, and 𝜃 denotes the parameters for the prediction 
function 𝑓 . Stocks are indexed as 𝑖 = 1,… , 𝑁 and years are indexed by 
𝑡 = 1,… , 𝑇 .

The vector of predictive variables includes the 18,113 fundamental 
signals described earlier. To make sure the accounting information is 
publicly available to investors, we follow Fama and French (1992) 
and pair accounting variables in year 𝑡 − 1 with stock returns from 
July of year 𝑡 to June of year 𝑡 + 1. We follow Gu et al. (2020) and 
transform all fundamental signals as follows. We first rank all non-
missing fundamental signals each year and then scale their ranks to 
the interval [−1,+1]. By construction, the cross-sectional median of the 
transformed fundamental signals is zero.

We predict annual excess returns for two reasons. First, our funda-
mental signals are constructed from annual financial statements and 
are updated annually. Second, the number of signals considered in our 
study is substantially larger than those in prior studies. Predicting an-
nual returns is computationally more efficient than predicting monthly 
returns.12

10 Kenneth French’s data library is located at https://mba.tuck.dartmouth.
edu/pages/faculty/ken.french/data_library.html. The 𝑞-factors can be down-
loaded from http://global-q.org/index.html.
11 To minimize our discretion, we use a pre-existing universe of fundamental 
signals instead of constructing one specifically for this study. Chordia et al. 
(2020) extend (Yan and Zheng, 2017) and construct a universe of over 2 
million fundamental signals. We choose not to use this universe because real-
time investors are unlikely to have the computing power to evaluate these 
many predictive variables in a machine-learning context.
12 We conduct our empirical analyses on a high-performance cluster of 45
computing nodes, each of which is equipped with 128 GB, 384 GB, or 4TB of 
RAM. For neural networks, we have to use nodes with 4TB of RAM.
5 
2.2.2. Machine learning methods vs. linear regressions
Traditionally, it was common in the literature to assume linearity 

of the 𝑓 function and estimate Equation (1) using linear regression 
(LR) methods. More recently, the finance literature has instead started 
adopting more advanced Machine Learning (ML) methods.

One may expect that ML methods should have an advantage com-
pared to linear regression methods because they feature (1) variable 
selection, (2) model combination, and (3) regularization/shrinkage, 
which allow them to handle large sets of conditioning information and 
stabilize their predictions by making them less sensitive to outliers.

ML methods also allow to capture nonlinearities in the relations 
between the target variable and the regressors. When viewed through 
the lenses of the bias–variance trade-off, including nonlinearities allows 
for a smaller bias at the cost of a higher variance which positively 
relates to the instability of the predictions. In fact, a growing field in 
computer science, referred to as ‘‘adversarial machine learning’’, shows 
that even very small perturbations of the predictor variables can result 
in large changes in ML predictions.13

Similar effects could arise naturally in finance, where the data-
generating process relating regressands and regressors constantly
evolves. As profitable strategies are arbitraged away by smart money 
in a Schumpeterian creative destruction cycle, ML methods could 
potentially overfit certain temporary patterns that exist only in certain 
periods. This is particularly true for ML models with thousands (mil-
lions or even billions) of parameters that have been trained to capture 
deep, non-linear interactions because such a process makes them less 
adaptable to changes in the underlying dynamics of the data. These 
issues are further complicated by the fact that financial datasets are 
relatively small compared to those used in other fields, and financial 
research often faces weak signal-to-noise ratios (Kelly and Xiu, 2023). 
In these contexts, simpler models, like linear regression, could be more 
robust to changes in the data-generating process and deliver a more 
robust performance out-of-sample.

An important question is whether we should expect the advan-
tages and disadvantages of ML models compared to LR models to 
vary depending on whether the researchers use a ‘‘universe’’ versus a 
‘‘selected set’’ of predictors in their analysis. The theoretical literature 
does not provide a definitive answer to this question. Intuitively, on 
the one hand, we can expect ML methods to have a greater advantage 
compared to LR methods in the ‘‘universe’’ predictor setting than in 
the ‘‘selected’’ predictor setting because they feature regularization 
and variable selection. On the other hand, ML may have a smaller 
advantage relative to LR when deployed on a ‘‘universe’’ of predictors 
because nonlinearities and variable interactions may be less important 
in higher-dimensional settings, and ML methods may be less robust to 
time variations in the relation between regressand and regressors. We 
leave an in-depth analysis of these theoretical and empirical issues to 
further research.

2.2.3. Boosted regression trees
Our baseline specification includes 18,113 fundamental signals. We 

choose the ‘‘off-the-shelf’’ machine learning tool called Boosted Regres-
sion Trees (BRT), in particular, the LightGBM implementation (Ke et al., 
2017) for our baseline analysis.

We choose BRT as our primary machine learning method for several 
reasons. First, BRT routinely rank among the very best machine learn-
ing algorithms in both finance and non-finance applications.14 Second, 
BRT can handle large data sets with high dimensionality without 
overfitting because they simultaneously perform subsampling, model 

13 See https://en.wikipedia.org/wiki/Adversarial_machine_learning for an 
introduction to the topic and additional details.
14 See a list of Machine Learning Challenge Winning Solutions on the 
LightGBM’s website at https://github.com/microsoft/LightGBM/tree/master/
examples.

https://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data_library.html
https://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data_library.html
http://global-q.org/index.html
https://en.wikipedia.org/wiki/Adversarial_machine_learning
https://github.com/microsoft/LightGBM/tree/master/examples
https://github.com/microsoft/LightGBM/tree/master/examples
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combination, and shrinkage. Third, BRT are robust to missing values 
and outliers (Hastie et al., 2009). In particular, BRT are invariant under 
all monotone transformations of the individual input variables, making 
the forecasts generated robust to extreme values. Finally, because BRT 
are rooted in the CART framework, they possess good interpretability. 
For example, BRT return the rank and relative importance of all the 
potential regressors available, known as relative influence measures.15 
This feature distinguishes BRT from harder-to-interpret methods such 
as neural networks.
Regression Trees

A regression tree is built through a process known as binary re-
cursive partitioning, which is an iterative process that splits the data 
into partitions or branches. Suppose we have 𝑃  potential predictor 
(‘‘state’’) variables and a single dependent variable over 𝑇  observations, 
i.e., (𝑥𝑡, 𝑦𝑡+1

) for 𝑡 = 1, 2,… , 𝑇 , with 𝑥𝑡 =
(

𝑥𝑡1, 𝑥𝑡2,… , 𝑥𝑡𝑝
)

. Fitting 
a regression tree requires deciding (i) which predictor variables to 
use to split the sample space and (ii) which split points to use. The 
regression trees we use employ recursive binary partitions, so the fit of 
a regression tree can be written as an additive model:

𝑓 (𝑥) =
𝐽
∑

𝑗=1
𝑐𝑗𝐼

{

𝑥 ∈ 𝑆𝑗
}

,

where 𝑆𝑗 , 𝑗 = 1,… , 𝐽 are the regions we split the space spanned by 
the predictor variables into, 𝐼{⋅} is an indicator variable, and 𝑐𝑗 is 
the constant used to model the dependent variable in each region. 
If the 𝐿2 norm criterion function is adopted, the optimal constant is 
𝑐𝑗 = 𝑚𝑒𝑎𝑛

(

𝑦𝑡+1|𝑥𝑡 ∈ 𝑆𝑗
)

.
The globally optimal splitting point is difficult to determine, par-

ticularly in cases where the number of state variables is large. Hence, 
we use a sequential greedy algorithm. Using the full set of data, the 
algorithm considers a splitting variable 𝑝 and a split point 𝑠 so as to 
construct half-planes,
𝑆1 (𝑝, 𝑠) =

{

𝑋|𝑋𝑝 ≤ 𝑠
}

𝑎𝑛𝑑 𝑆2 (𝑝, 𝑠) =
{

𝑋|𝑋𝑝 > 𝑠
}

,

that minimize the sum of squared residuals:

min
𝑝,𝑠

[

min
𝑐1

∑

𝑥𝑡∈𝑆1(𝑝,𝑠)

(

𝑦𝑡+1 − 𝑐1
)2 + min

𝑐2

∑

𝑥𝑡∈𝑆2(𝑝,𝑠)

(

𝑦𝑡+1 − 𝑐2
)2
]

.

For a given choice of 𝑝 and 𝑠, the fitted values, 𝑐1 and 𝑐2, are

𝑐1 =
1

∑𝑇
𝑡=1 𝐼

{

𝑥𝑡 ∈ 𝑆1 (𝑝, 𝑠)
}

𝑇
∑

𝑡=1
𝑦𝑡+1𝐼

{

𝑥𝑡 ∈ 𝑆1 (𝑝, 𝑠)
}

,

𝑐2 =
1

∑𝑇
𝑡=1 𝐼

{

𝑥𝑡 ∈ 𝑆2 (𝑝, 𝑠)
}

𝑇
∑

𝑡=1
𝑦𝑡+1𝐼

{

𝑥𝑡 ∈ 𝑆2 (𝑝, 𝑠)
}

.

The best splitting pair (𝑝, 𝑠) in the first iteration can be determined 
by searching through each of the predictor variables, 𝑝 = 1,… , 𝑃 . Given 
the best partition from the first step, the data is then partitioned into 
two additional states, and the splitting process is repeated for each of 
the subsequent partitions. Predictor variables that are never used to 
split the sample space do not influence the fit of the model, so the 
choice of splitting variable effectively performs variable selection.

Regression trees are ideally suited for handling high-dimensional 
data sets, incorporating multiway interactions among predictors, and 
capturing non-linear relations between predictors and the predicted 
variable. However, the approach is sequential, and successive splits 
are performed on fewer and fewer observations, increasing the risk of 
fitting idiosyncratic data patterns. Furthermore, there is no guarantee 
that the sequential splitting algorithm leads to the globally optimal 
solution. To deal with these problems, we next consider a regularization 
method known as boosting.

15 To conserve space, we provide a description of the relative influence 
measures in Appendix  D. We also implement the relative influence measure 
on our data and report the results in Appendix  D.
6 
Boosting
Boosting is based on the idea that combining a series of simple pre-

diction models can lead to more accurate forecasts than those available 
from any individual model. Boosting algorithms iteratively re-weight 
data used in the initial fit by adding new trees in a way that increases 
the weight on observations modeled poorly by the existing collection 
of trees. From above, recall that a regression tree can be written as:


(

𝑥;
{

𝑆𝑗 , 𝑐𝑗
}𝐽
𝑗=1

)

=
𝐽
∑

𝑗=1
𝑐𝑗𝐼

{

𝑥 ∈ 𝑆𝑗
}

.

A boosted regression tree is simply the sum of regression trees:

𝑓𝐵 (𝑥) =
𝐵
∑

𝑏=1
𝑏

(

𝑥;
{

𝑆𝑏,𝑗 , 𝑐𝑏,𝑗
}𝐽
𝑗=1

)

,

where 𝑏
(

𝑥;
{

𝑆𝑏,𝑗 , 𝑐𝑏,𝑗
}𝐽
𝑗=1

)

 is the regression tree used in the 𝑏th boost-
ing iteration and 𝐵 is the number of boosting iterations. Given the 
model fitted up to the (𝑏 − 1)-th boosting iteration, 𝑓𝑏−1(𝑥), the subse-
quent boosting iteration seeks to find parameters {𝑆𝑗,𝑏, 𝑐𝑗,𝑏

}𝐽
𝑗=1 for the 

next tree to solve a problem of the form
{

𝑆̂𝑗,𝑏, 𝑐𝑗,𝑏
}𝐽
𝑗=1 =

min
{

𝑆𝑗,𝑏 ,𝑐𝑗,𝑏
}𝐽
𝑗=1

𝑇−1
∑

𝑡=0

[

𝑦𝑡+1 −
(

𝑓𝑏−1
(

𝑥𝑡
)

+ 𝑏
(

𝑥𝑡;
{

𝑆𝑗,𝑏, 𝑐𝑗,𝑏
}𝐽
𝑗=1

))]2
.

For a given set of state definitions (‘‘splits’’), 𝑆𝑗,𝑏, 𝑗 = 1,… , 𝐽 , the 
optimal constants, 𝑐𝑗,𝑏, in each state are derived iteratively from the 
solution to the problem
𝑐𝑗,𝑏 = min

𝑐𝑗,𝑏

∑

𝑥𝑡∈𝑆𝑗,𝑏

[

𝑦𝑡+1 −
(

𝑓𝑏−1
(

𝑥𝑡
)

+ 𝑐𝑗,𝑏
)]2

= min
𝑐𝑗,𝑏

∑

𝑥𝑡∈𝑆𝑗,𝑏

[

𝑒𝑡+1,𝑏−1 − 𝑐𝑗,𝑏
]2 ,

where 𝑒𝑡+1,𝑏−1 = 𝑦𝑡+1−𝑓𝑏−1
(

𝑥𝑡
) is the empirical error after 𝑏−1 boosting 

iterations. The solution to this problem is the regression tree that most 
reduces the average of the squared residuals ∑𝑇

𝑡=1 𝑒
2
𝑡+1,𝑏−1, and 𝑐𝑗,𝑏 is the 

mean of the residuals in the 𝑗th state.
Forecasts are simple to generate from this approach. The boosted 

regression tree is first estimated using data from 𝑡 = 1,… , 𝑡∗. Then, 
the forecast of 𝑦𝑡∗+1 is based on the model estimates and the value of 
the predictor variable at time 𝑡∗, 𝑥𝑡∗ . Boosting makes it more attractive 
to employ small trees (characterized by few terminal nodes) at each 
boosting iteration, reducing the risk that the regression trees will over-
fit. Moreover, by summing over a sequence of trees, boosting performs 
a type of model averaging that increases the stability and accuracy of 
the forecasts.

2.3. Implementation

We implement our BRT model by following Gu et al. (2020). We 
divide our sample period (1963–2019) into 12 years of training sample 
(1963–1974), 12 years of validation sample (1975–1986), and the 
remaining 33 years (1987–2019) for out-of-sample testing. We begin 
the out-of-sample period in 1987 in order to align with Gu et al. (2020).

We refit our model every year because our fundamental signals 
are updated annually. Each time we refit the model, we increase the 
training sample by one year while maintaining the length of the vali-
dation period at 12 years. This recursive window approach allows for 
the incorporation of all available information in generating forecasts. 
Every year, we generate return forecasts for all the stocks in our sample. 
We then construct decile portfolios based on the predicted returns. We 
hold these portfolios for 12 months and rebalance them every year. Our 
long–short strategy goes long in the decile portfolio with the highest 
BRT expected returns and short in the decile portfolio with the lowest 
BRT predicted returns.
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To generate return forecasts, we need to estimate the model’s pa-
rameters using the training data and specify two key hyper-parameters, 
i.e., the number of boosting iterations and the BRT shrinkage param-
eter (also known as the learning rate). To choose these two hyper-
parameters, we adopt the commonly used grid search with validation 
procedure (Hastie et al., 2009; Gu et al., 2020).16 We leave all other 
tuning parameters at their LightGBM default values.

Specifically, we first use the training sample to estimate the model 
under each set of hyper-parameter values. We then use the hyper-
parameters that show the best performance during the validation period 
to re-estimate the final model. For example, suppose we want to 
forecast the cross-section of stock returns for 1987. We fit models under 
different hyper-parameter values during the training period 1963–1974 
and then use the validation period 1975–1986 to gauge the perfor-
mance of these trained models. We choose the hyper-parameters that 
deliver the best performance during the validation period and then use 
these hyper-parameters to re-estimate the final model for the combined 
training and validation period 1963–1986. When we move forward 
and forecast the cross-section of stock returns for 1988, our validation 
period rolls forward by one year and stays at 12 years, i.e.,1976–1987, 
while our training period increases by one year and goes from 1963 to 
1975 (13 years).17

Our fundamental signals contain missing values. Although BRT can 
handle missing values, we pre-process the missing values to make 
BRT forecasts comparable to other machine learning methods that 
cannot handle missing values. Specifically, we follow the approach 
of Gu et al. (2020) and replace missing values with the cross-sectional 
median.18 Recall that we have normalized all non-missing fundamental 
signals to the [−1,+1] interval by using their cross-sectional ranks. By 
construction, the cross-sectional median of the transformed signals is 
zero. We, therefore, assign all missing values as zero.19
Performance Evaluation

Each year, we sort all sample stocks into deciles based on BRT 
predicted returns, construct equal- and value-weighted portfolios, and 
focus on the long–short strategy that buys stocks in the top decile 
and shorts stocks in the bottom decile. We estimate CAPM 1-factor, 
Fama–French 3-factor, Carhart 4-factor, Fama–French 5-factor, Fama–
French 5-factor + Momentum factor, and q-factor models by running 
the following time-series regressions:
𝑟𝑡 = 𝛼 + 𝛽𝑀𝐾𝑇𝑡 + 𝜖𝑡
𝑟𝑡 = 𝛼 + 𝛽𝑀𝐾𝑇𝑡 + 𝑠𝑆𝑀𝐵𝑡 + ℎ𝐻𝑀𝐿𝑡 + 𝜖𝑡
𝑟𝑡 = 𝛼 + 𝛽𝑀𝐾𝑇𝑡 + 𝑠𝑆𝑀𝐵𝑡 + ℎ𝐻𝑀𝐿𝑡 + 𝑢𝑈𝑀𝐷𝑡 + 𝜖𝑡
𝑟𝑡 = 𝛼 + 𝛽𝑀𝐾𝑇𝑡 + 𝑠𝑆𝑀𝐵𝑡 + ℎ𝐻𝑀𝐿𝑡 + 𝑟𝑅𝑀𝑊𝑡

+ 𝑐𝐶𝑀𝐴𝑡 + 𝜖𝑡
𝑟𝑡 = 𝛼 + 𝛽𝑀𝐾𝑇𝑡 + 𝑠𝑆𝑀𝐵𝑡 + ℎ𝐻𝑀𝐿𝑡 + 𝑟𝑅𝑀𝑊𝑡

+ 𝑐𝐶𝑀𝐴𝑡 + 𝑢𝑈𝑀𝐷𝑡 + 𝜖𝑡
𝑟𝑡 = 𝛼 + 𝛽𝑀𝐾𝑇𝑡 + 𝑠𝑆𝑀𝐵𝑡 + 𝑟𝑅𝑂𝐸𝑡 + 𝑖𝐼𝐴𝑡 + 𝜖𝑡
where 𝑟𝑡 is the long–short portfolio return based on BRT-generated fore-
casts for month 𝑡, and 𝑀𝐾𝑇 , 𝑆𝑀𝐵, 𝐻𝑀𝐿, 𝑈𝑀𝐷, 𝑅𝑀𝑊 , 𝐶𝑀𝐴, 𝑅𝑂𝐸, 
and 𝐼𝐴 are market, size, value, momentum, profitability, investment 
(FF5), return on equity, and investment (Q) factors (Carhart, 1997; 
Fama and French, 2015; Hou et al., 2015). We focus on the alpha 
estimates and their 𝑡-statistics estimated using Newey and West (1987) 
standard errors.

16 Our grid for the number of boosting iterations is {100, 250, 500, 750, 1000}, 
while our grid for the learning rate is {0.01, 0.05, 0.10}.
17 We show in Section 4.2 that our main results are robust to alternative 
training and validation periods.
18 Chen and McCoy (2024) provide a rigorous justification for the use 
of mean/median imputation in machine learning studies. Specifically, they 
show that mean/median and sophisticated imputation methods lead to similar 
results.
19 The performance of the BRT portfolios is similar without pre-processing 
the missing values.
7 
3. Main results

In this section, we report the main results of our paper. We start 
by reporting in Section 3.1 the baseline results that compute the 
out-of-sample realized returns for BRT portfolios using our predictor 
universe. We then report in Section 3.2 the abnormal performance of 
the BRT portfolios that control for various risk factors. Section 3.3 uses 
an alternative machine learning method, i.e., neural networks. Sec-
tion 3.4 examines whether our ML implementation can generate high 
long–short returns and Sharpe ratios using selected sets of predictors. 
Section 3.5 examines the performance of a simple recursive ranking 
strategy applied to the universe of predictors. Finally, Section 3.6 
examines the machine learning performance based on a universe of 
past-return signals.

3.1. Baseline results

Table  1 shows the results of our baseline analysis. As stated earlier, 
we sort stocks into deciles each year based on one-year-ahead BRT 
predicted returns constructed using our universe of fundamental sig-
nals. We then construct a long–short portfolio that buys stocks with 
the highest BRT predicted returns and sells stocks with the lowest 
BRT predicted returns. We track the performance of these portfolios 
for 12 months. Following Gu et al. (2020), we report in Table  1 the 
BRT predicted returns (i.e., the sorting variable), the average realized 
returns, the standard deviation of realized returns, and the annualized 
Sharpe ratios of BRT-sorted portfolios.

The left panel of Table  1 focuses on equally weighted portfolios. The 
first column shows the BRT predicted return, which is by construction 
monotonically increasing from decile 1 (−0.04% per month) to decile 
10 (1.69% per month). The second column reports the out-of-sample 
average realized return for each portfolio: our primary variable of 
interest. We find that the performance of BRT portfolios increases 
nearly monotonically from decile 1 (−0.01%) to decile 10 (0.94%). The 
long–short portfolio earns an average return of 0.95% per month (or 
11.4% per year), with a highly significant 𝑡-statistic of 6.63.20

The standard deviation of the realized returns is U-shaped across the 
BRT decile portfolios, i.e., the portfolios with the lowest and the highest 
BRT predicted returns have higher volatilities than the other portfolios. 
Not surprisingly, we find that the long–short portfolio has a much lower 
volatility than the long-only portfolios. Finally, the last column of the 
left panel reports the annualized Sharpe ratio, which ranges from −0.01 
to 0.62 across the ten BRT decile portfolios. The Sharpe ratio of the 
long–short portfolio is much higher at 1.02, which is primarily driven 
by the lower volatility of the long–short portfolio.

Equally weighted portfolios tend to overweight small-cap stocks 
that can be harder and more expensive to trade (e.g., Fama and 
French, 2008; Novy-Marx and Velikov, 2016). To mitigate this is-
sue, we examine in the right panel of Table  1 the value-weighted 
portfolio returns. The BRT predicted return is again by construction 
monotonically increasing from decile 1 (0.00%) to decile 10 (1.61%). 
More importantly, the realized average portfolio return also increases 
from decile 1 (0.40%) to decile 10 (0.80%), although the relation is 
not monotonic. The spread between decile 10 and decile 1 is 0.40% 
per month, or 4.8% per year.21 Even though this spread is less than 
half of the spread for equally weighted portfolios, it is nevertheless 
economically meaningful and statistically significant at the 5% level. 

20 Appendix  D reports the top 25 fundamental signals based on an analysis 
of variable importance. We find that signals constructed using excise tax and 
minority interest are among the most important predictors.
21 These returns are before trading costs. We report the before-trading cost 
performance of our machine learning strategies for ease of comparison with 
prior literature (e.g., Chen et al., 2024c; Freyberger et al., 2020; Gu et al., 
2020). In Section 4.4, we examine the after-trading-cost performance of our 
machine-learning strategies.
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Table 1
Performance of portfolios sorted by BRT predicted returns. This table reports the excess returns of decile portfolios sorted 
by BRT predicted returns from 1987 to 2019. We predict stock annual excess returns using 18,113 fundamental signals (as 
described in Section 2.1). We use a recursive window approach and select the optimal hyper-parameters using a cross-validation 
approach. Our initial estimation period is 1963–1986. The first 12 years is the training period and the second 12 years is 
the validation period. As we roll forward, the training period expands while the validation period stays at 12 years. The 
left panel reports equal-weighted portfolio results. In the first column of this panel we report the average predicted monthly 
returns from the BRT model (Pred). The second and third columns report the average realized monthly excess returns (Avg) 
and associated 𝑡-statistics (t-stat), computed using Newey and West (1987) standard errors with 12 lags. Finally, in the fourth 
and fifth column we report the portfolios’ return standard deviations (SD) and annualized Sharpe ratios (SR), respectively. 
The right panel reports the same results using value-weighted portfolio returns. All returns are expressed in percent per month.
 Rank Equal weight Value weight
 Pred Avg t-stat SD SR Pred Avg t-stat SD SR  
 1 (Low) −0.04 −0.01 −0.05 7.51 −0.01 0.00 0.40 1.30 6.18 0.22 
 2 0.30 0.49 1.58 6.22 0.28 0.30 0.58 2.39 5.53 0.36 
 3 0.49 0.65 2.12 6.02 0.37 0.50 0.58 2.63 4.73 0.42 
 4 0.64 0.74 2.65 5.64 0.46 0.64 0.75 3.21 4.60 0.56 
 5 0.73 0.76 2.72 5.45 0.48 0.73 0.60 2.34 4.61 0.45 
 6 0.80 0.90 3.23 5.44 0.58 0.80 0.66 2.99 4.51 0.51 
 7 0.88 0.90 3.18 5.57 0.56 0.88 0.68 2.68 4.93 0.48 
 8 0.97 0.96 3.17 5.43 0.62 0.97 0.49 1.81 4.82 0.35 
 9 1.12 0.93 2.84 5.78 0.56 1.11 0.64 2.20 5.15 0.43 
 10 (High) 1.69 0.94 2.55 6.71 0.48 1.61 0.80 2.51 5.96 0.47 
 10–1 1.74 0.95 6.63 3.26 1.02 1.61 0.40 2.34 4.68 0.30 
The Sharpe ratio exhibits a similar pattern, higher for decile 10 (0.47) 
than for decile 1 (0.22). The Sharpe ratio for the long–short portfolio 
is 0.30.

Overall, we show in Table  1 that long–short portfolios formed based 
on BRT forecasts earn economically and statistically significant returns. 
The magnitude of the long–short performance, however, is much lower 
than that documented in the prior literature. For example, the BRT 
models in Gu et al. (2020) achieve an equally weighted monthly long–
short portfolio return of 2.14% per month and a Sharpe ratio of 1.73. 
The corresponding numbers for value-weighted portfolios are 0.99% 
per month and a Sharpe ratio of 0.81.22 The long–short portfolios 
formed based on neural network forecasts perform even better in Gu 
et al. (2020), earning an average return of 3.33% per month and an 
annualized Sharpe ratio of 2.45 in equal-weighted portfolios and an 
average return of 2.26% per month and a Sharpe ratio of 1.35 in 
value-weighted portfolios.23 Similarly, Chen et al. (2024c) report an 
out-of-sample Sharpe ratio of 2.60, and Freyberger et al. (2020) report 
that their model delivers an out-of-sample Sharpe ratio of 2.75.

The main difference between our paper and prior studies is that 
we employ a universe of fundamental signals and do not feed our 
machine-learning methods a curated set of predictors. Hence, these 
results provide initial evidence that feature engineering – as a form of 
inductive bias involving the selection and transformation of predictors 
in machine-learning applications – may play a key role in determining 
the economic gains achievable by real-time investors.

3.2. Controlling for common risk factors

The results in Table  1 do not control for risk exposures. It could 
be that the long–short portfolios based on BRT forecasts have posi-
tive and significant returns because they are exposed to well-known 
sources of risk, such as value or profitability. Table  2 shows the risk-
adjusted performance of our BRT portfolios once we control for risk 
exposures using the six models described in Section 2.3. Irrespective 
of whether we use the CAPM model (columns 1–2), the Fama–French 

22 We note that we implement our BRT model using LightGBM, while Gu 
et al. (2020) implement using scikit-learn. When we implement our model 
using scikit-learn in conjunction with our fundamental signals, we obtain even 
less significant results than what we currently report in the paper.
23 We implement our strategies using neural networks in Section 3.3.
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3-factor model (columns 3–4), the Carhart 4-factor model (columns 
5–6), the Fama–French 5-factor model (columns 7–8), the Fama–French 
5-factor model augmented with momentum (columns 9–10) or the 𝑞-
factor model (columns 11–12), we find that portfolios with higher BRT 
predicted returns have higher average realized risk-adjusted returns. 
Taking the Carhart 4-factor model as an example, we find that the alpha 
of decile 1 is negative and significant at −0.71% per month (𝑡-statistic 
= −4.63), while the alpha of decile 10 is 0.37% per month (𝑡-statistic = 
2.66). The resulting long–short portfolio has a monthly alpha of 1.08% 
and is statistically significant with a 𝑡-statistic of 6.43.

The results for value-weighted risk-adjusted returns are weaker than 
the equal-weighted results—in line with the findings in Table  1. Across 
the various risk-adjustment models, the monthly abnormal performance 
ranges from a minimum of 0.46% (5.52% annualized) for the CAPM 
to a maximum of 0.80% (9.60% annualized) for the Fama–French 5-
factor model with momentum. In all cases, the alphas of the long–short 
portfolios are statistically different from zero.

Consistent with the findings reported in Section 3.1, our results 
suggest that machine learning tools indeed can help predict stock 
returns. After adjusting for standard asset pricing factors, the long–short 
returns are economically meaningful and statistically significant. Still, 
the degree of predictability is significantly lower than what has been 
reported in the literature that uses selected signals as return predictors.

3.3. Neural networks

In our baseline analysis, we use BRT, which is one of the most 
powerful machine learning methods for stock return predictions. Nev-
ertheless, one might be concerned that our main results are specific 
to BRT and may not extend to other machine-learning methods. To 
ensure this is not the case, we extend our analysis to neural networks 
(NNs) mainly because – together with boosted regression trees – NNs 
are among the top performers when it comes to return prediction (Gu 
et al., 2020; Bianchi et al., 2021). We follow Gu et al. (2020) and 
conduct our analysis using NNs with 1 to 5 hidden layers. Appendix 
A describes our NNs implementation in detail.

Our results, reported in Table  3, reveal several important findings. 
First, the equal-weighted long–short returns based on NNs are highly 
significant, while the value-weighted long–short returns are generally 
(but not always) significant. Second, among both equal- and value-
weighted portfolios, we find that shallow NNs perform better than 
deep NNs. For example, NNs with 1 hidden layer achieve long–short 
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Table 2
Risk-adjusted performance of portfolios sorted by BRT predicted returns. This table shows the risk-adjusted performance of the BRT portfolios based on the CAPM model, the 
Fama–French 3-factor model, the Carhart 4-factor model, the Fama–French 5-factor model, the Fama–French 5-factor model augmented with momentum factor, and the 𝑞-factor 
model. The BRT model specifications are the same as that in Table  1. The top panel reports results for equal-weighted portfolios, and the bottom panel reports results for 
value-weighted portfolios. All returns are expressed in percent per month.
 Equal Weight
 Rank CAPM FF3 Carhart FF5 FF5+MOM Q

 alpha t-stat alpha t-stat alpha t-stat alpha t-stat alpha t-stat alpha t-stat

 L(ow) −0.83 −3.71 −0.75 −4.89 −0.71 −4.63 −0.44 −3.39 −0.43 −3.30 −0.29 −1.76
 2 −0.21 −0.98 −0.19 −1.47 −0.17 −1.45 −0.09 −0.72 −0.08 −0.70 0.03 0.19
 3 −0.06 −0.32 −0.06 −0.60 −0.05 −0.59 −0.03 −0.32 −0.03 −0.30 0.07 0.73
 4 0.05 0.30 0.04 0.51 0.03 0.49 0.02 0.24 0.02 0.25 0.09 1.30
 5 0.11 0.60 0.08 1.08 0.08 1.12 0.03 0.38 0.03 0.44 0.09 1.21
 6 0.24 1.22 0.18 2.37 0.23 2.80 0.11 1.44 0.15 1.91 0.19 2.04
 7 0.23 1.27 0.21 3.08 0.20 2.77 0.22 2.81 0.21 2.67 0.26 3.76
 8 0.30 1.61 0.28 3.21 0.29 3.37 0.29 3.26 0.30 3.37 0.35 3.85
 9 0.22 1.34 0.22 2.25 0.29 3.10 0.35 3.26 0.39 3.75 0.45 4.88
 H(igh) 0.18 0.85 0.25 1.62 0.37 2.66 0.59 3.88 0.65 4.44 0.69 4.68
 H-L 1.01 6.29 1.01 6.34 1.08 6.43 1.03 5.40 1.08 5.58 0.98 5.10

 Value Weight
 Rank CAPM FF3 Carhart FF5 FF5+MOM Q

 alpha t-stat alpha t-stat alpha t-stat alpha t-stat alpha t-stat alpha t-stat

 L(ow) −0.36 −2.40 −0.26 −2.29 −0.31 −2.74 −0.13 −1.12 −0.18 −1.57 −0.09 −0.59
 2 −0.11 −0.76 −0.03 −0.19 −0.04 −0.28 0.01 0.08 0.00 0.00 0.08 0.54
 3 −0.05 −0.53 −0.02 −0.23 −0.03 −0.33 −0.08 −0.82 −0.08 −0.84 −0.02 −0.15
 4 0.12 1.61 0.15 2.00 0.10 1.27 0.05 0.68 0.02 0.30 0.08 0.88
 5 −0.01 −0.14 −0.01 −0.10 0.01 0.11 −0.12 −1.47 −0.10 −1.37 −0.07 −0.98
 6 0.08 0.80 0.04 0.47 0.06 0.71 −0.17 −2.03 −0.13 −1.51 −0.12 −1.69
 7 0.04 0.41 0.00 0.03 0.03 0.35 −0.13 −1.37 −0.10 −1.01 −0.11 −1.13
 8 −0.13 −1.10 −0.13 −1.02 −0.07 −0.60 −0.17 −1.26 −0.12 −0.99 −0.09 −0.61
 9 −0.02 −0.10 0.06 0.43 0.11 1.00 0.14 1.25 0.17 1.60 0.25 1.92
 H(igh) 0.10 0.46 0.20 1.23 0.34 2.37 0.54 3.80 0.62 4.24 0.58 4.03
 H-L 0.46 2.17 0.46 2.57 0.65 3.66 0.67 3.18 0.80 3.79 0.68 2.94
returns of 1.08% (𝑡-statistic = 6.09) for equal-weighted portfolios and 
0.74% per month (𝑡-statistic = 4.58) for value-weighted portfolios. 
The corresponding long–short returns for NNs with 5 hidden layers 
are much lower at 0.80% (𝑡-statistic = 3.79) and 0.21% per month 
(𝑡-statistic = 1.00), respectively. This finding is consistent with Gu 
et al. (2020), who show that shallow learning performs better than 
deep learning. Third, the performance of long–short portfolios based 
on neural network forecasts is much weaker than those documented 
by prior machine learning studies. Gu et al. (2020), for example, show 
that the long–short portfolios formed based on neural network forecasts 
earn an average return of 3.33% per month in equal-weighted portfolios 
and an average return of 2.26% in value-weighted portfolios. Overall, 
similar to BRT, our results based on neural networks suggest that 
the real-time performance of machine learning strategies based on a 
universe of predictors is more modest than that obtained by using a 
selected set of predictors, highlighting, once again, the importance of 
the choice of input variables when implementing machine learning 
investment strategies.

3.4. ML implementation

One might be concerned that the relatively weak performance of 
our machine learning strategies is perhaps due to our ML implementa-
tion not being as powerful as those employed in previous studies. To 
evaluate this possibility, we replicate our ML results – both boosted 
regression trees (BRT) and neural networks (NN) – on samples of 
published anomalies.

For ease of comparison with GKX, we use the sample of 94 anoma-
lies listed in Green et al. (2017, GHZ).24 We downloaded the SAS code 
that generates the 94 predictors from Jeremiah Green’s website at https:

24 GKX construct their data set based on GHZ’s 94 characteristics. See 
footnote 30 in Gu et al. (2020) for more details.
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//sites.google.com/site/jeremiahrgreenacctg/home. The second sam-
ple comprises the Chen and Zimmermann (2022, CZ) predictors. We 
downloaded the data from https://www.openassetpricing.com/ and 
used the March 2022 data release, which includes 207 anomaly predic-
tors.25 The out-of-sample testing period for this analysis is 1987–2019, 
the same as that for our main analyses based on fundamental signals 
and past-return signals.26

In Table  4, we report the results based on the GHZ sample of 
anomalies. We find that both BRT and neural networks (NN1 through 
NN5) deliver an out-of-sample long–short return in excess of 3.5% per 
month for equally weighted portfolios and over 1.5% per month for 
value-weighted portfolios. We also find that NNs outperform BRT, in 
line with the results in Gu et al. (2020). We obtain similar findings 
when we focus on risk-adjusted returns, as shown in the remaining 
columns of Table  4. BRT and neural networks generate a Sharpe ratio 
between 2.21 and 2.81 in equal-weighted portfolios, demonstrating 
that our ML implementation could generate similar Sharpe ratios to 
those in prior literature (e.g., Gu et al., 2020) when using published 
predictors.27

25 The definitions of these variables are available at https://www.
openassetpricing.com/march-2022-data-release/.
26 We also consider three alternative out-of-sample testing periods, namely 
1987–2016, 1991–2004, and 1991–2014 in Tables IA.8 and IA.9. The perfor-
mance of machine-learning strategies during these alternative sample periods 
is qualitatively similar to and quantitatively stronger than that for 1987–2019.
27 Note that, while rather similar, our results for BRT and NN1-NN5 in Table 
4 do not replicate exactly those in Table 7 and Table A.9 of GKX. Three 
implementation differences explain the results. First, the GKX predictions are 
generated by interacting the original 94 predictors with 8 macroeconomic 
predictors (such as the aggregate dividend-price ratio) from the Welch and 
Goyal (2008) dataset, as well as 74 industry dummies. Second, the gradient 
boosted regression trees (GBRT) in GKX is implemented using the scikit-learn 

https://sites.google.com/site/jeremiahrgreenacctg/home
https://sites.google.com/site/jeremiahrgreenacctg/home
https://sites.google.com/site/jeremiahrgreenacctg/home
https://sites.google.com/site/jeremiahrgreenacctg/home
https://sites.google.com/site/jeremiahrgreenacctg/home
https://www.openassetpricing.com/
https://www.openassetpricing.com/march-2022-data-release/
https://www.openassetpricing.com/march-2022-data-release/
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Table 3
Performance of portfolios sorted by NN predicted returns. This table shows the performance of long–short portfolios sorted by neural network (NN) predicted returns. We consider 
NN models with hidden layers that range from 1 through 5. The first three columns report average monthly returns for the long–short portfolios as well as the associated annualized 
Sharpe ratios. The remaining columns report risk-adjusted returns—see Table  2 for details. The top panel reports results for equal-weighted returns. The bottom panel reports 
results for value-weighted returns. All returns are expressed in percent per month.
 Equal Weight
 Method Returns SR CAPM FF3 Carhart FF5 FF5+MOM Q

 Avg t-stat alpha t-stat alpha t-stat alpha t-stat alpha t-stat alpha t-stat alpha t-stat

 NN1 1.08 6.09 1.16 1.17 6.51 1.11 6.17 1.14 6.78 0.97 5.71 1.01 6.18 1.01 5.59 
 NN2 1.03 4.10 0.75 1.17 4.83 1.03 4.89 1.11 6.31 0.81 2.93 0.89 3.70 0.73 2.34 
 NN3 1.17 5.32 1.10 1.30 5.55 1.17 6.21 1.15 6.40 0.89 5.35 0.90 5.41 0.86 4.53 
 NN4 0.99 5.53 0.98 1.10 5.97 1.02 5.84 1.10 7.04 0.93 4.49 0.99 5.28 0.92 4.08 
 NN5 0.80 3.79 0.74 0.89 4.17 0.80 3.94 0.84 4.77 0.56 2.79 0.61 3.30 0.54 2.37 
 Value Weight
 Method Returns SR CAPM FF3 Carhart FF5 FF5+MOM Q

 Avg t-stat alpha t-stat alpha t-stat alpha t-stat alpha t-stat alpha t-stat alpha t-stat

 NN1 0.74 4.58 0.70 0.74 4.51 0.68 4.22 0.72 3.84 0.62 3.55 0.66 3.61 0.67 3.65 
 NN2 0.32 1.42 0.23 0.48 2.07 0.36 1.85 0.43 2.17 0.12 0.52 0.19 0.83 0.12 0.48 
 NN3 0.51 2.05 0.40 0.65 2.62 0.52 2.32 0.56 2.62 0.13 0.78 0.20 1.20 0.22 1.19 
 NN4 0.42 2.47 0.36 0.51 3.15 0.47 2.93 0.58 3.07 0.44 2.42 0.53 2.75 0.55 2.77 
 NN5 0.21 1.00 0.16 0.33 1.50 0.29 1.38 0.28 1.39 0.03 0.15 0.05 0.23 0.03 0.13 
Table 4
Performance of portfolios sorted by ML predicted returns on the GHZ sample. This table reports the returns and risk-adjusted performance for the long–short portfolios sorted by 
ML-predicted returns on the GHZ sample from 1987 to 2019. We predict stock monthly excess returns using the 94 signals collected by Green et al. (2017). We use a recursive 
window approach and select the optimal hyper-parameters using a cross-validation approach. Our initial estimation period is 1963–1986. The first 12 years is the training period 
and the second 12 years is the validation period. As we roll forward, the training period expands while the validation period stays at 12 years. The risk-adjusted performance are 
calculated based on the CAPM model, the Fama–French 3-factor model, the Carhart 4-factor model, the Fama–French 5-factor model, the Fama–French 5-factor model augmented 
with momentum factor, and the 𝑞-factor model. The top panel reports results for equal-weighted portfolios. The bottom panel reports results for value-weighted portfolios. All 
returns are expressed in percent per month.
 Equal Weight
 Method Returns SR CAPM FF3 Carhart FF5 FF5+MOM Q

 Avg t-stat alpha t-stat alpha t-stat alpha t-stat alpha t-stat alpha t-stat alpha t-stat 
 BRT 3.57 8.95 2.35 3.67 9.40 3.69 9.15 3.37 8.62 3.67 7.86 3.43 8.05 3.36 6.74  
 NN1 3.64 8.37 2.62 3.69 8.18 3.67 8.47 3.42 7.78 3.48 8.13 3.32 7.53 3.40 7.87  
 NN2 4.21 8.80 2.77 4.29 8.86 4.30 8.94 4.04 8.41 4.17 8.48 3.99 8.11 4.07 8.07  
 NN3 4.16 8.65 2.64 4.25 8.71 4.26 8.75 3.99 8.39 4.15 8.31 3.96 8.18 4.03 7.92  
 NN4 4.19 8.77 2.81 4.26 8.73 4.28 8.73 3.98 8.29 4.10 8.12 3.89 7.98 3.97 7.74  
 NN5 3.73 7.99 2.21 3.83 8.18 3.86 8.29 3.45 6.97 3.76 7.18 3.47 6.55 3.55 6.35  
 Value Weight
 Method Returns SR CAPM FF3 Carhart FF5 FF5+MOM Q

 Avg t-stat alpha t-stat alpha t-stat alpha t-stat alpha t-stat alpha t-stat alpha t-stat 
 BRT 1.52 4.56 0.72 1.67 5.54 1.71 5.17 1.13 4.05 1.56 3.27 1.15 3.35 1.11 2.24  
 NN1 1.62 4.60 0.88 1.83 4.72 1.79 5.83 1.12 4.48 1.32 4.20 0.87 3.56 1.00 3.36  
 NN2 2.67 6.27 1.25 2.91 6.59 2.89 7.47 2.30 7.11 2.52 6.21 2.13 6.32 2.23 5.44  
 NN3 2.42 5.64 1.14 2.68 5.79 2.66 6.35 2.00 6.33 2.20 4.84 1.75 5.48 1.90 4.23  
 NN4 2.45 6.69 1.19 2.62 6.50 2.62 7.00 1.86 5.96 2.21 5.34 1.68 5.28 1.80 4.28  
 NN5 2.02 4.67 1.04 2.27 5.00 2.30 5.34 1.66 4.98 2.02 4.25 1.58 4.57 1.76 3.51  
In Table  5, we report the results that use the Chen and Zimmermann 
(2022) covariates. The results for this set of covariates are even more 
impressive. For example, BRT generate an equal-weighted long–short 
return of 5.14% per month and a VW long–short return of 2.32% per 
month. Adjusting for risk using standard models reveals very similar 
findings. Furthermore, BRT deliver an equally-weighted Sharpe ratio 
of 3.64. The results for shallow neural networks are somewhat lower 
than those of BRT but still very strong.

Taken together, these results indicate that our ML implementation 
is capable of generating rather strong performance when we use pub-
lished predictors. The fact that we are able to replicate the strong 

package in Python. We instead use the LightGBM implementation in Python. 
Third, despite our best efforts to replicate GKX’s implementation of neural 
networks, it is possible that some differences remain.
10 
ML performance of previous studies when we use published predictors 
indicates that our ML implementation is not the reason why the perfor-
mance of ML strategies based on our universe of fundamental signals 
is relatively weak. Overall, this analysis confirms that the performance 
differences between our machine-learning strategies and those in recent 
studies are primarily driven by the choice of input features rather than 
the specific machine-learning implementations used.

3.5. A simple recursive ranking strategy

Our findings suggest that the economic benefits for real-time in-
vestors from applying our machine-learning strategies are relatively 
modest. However, Yan and Zheng (2017, Table 3) have shown evidence 
that investors could obtain large economic gains by learning from a 
universe of return signals. In this section, we construct a simple recur-
sive ranking strategy following Yan and Zheng (2017). Specifically, we 
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Table 5
Performance of portfolios sorted by ML predicted returns on the CZ sample. This table reports the returns and risk-adjusted performance for the long–short portfolios sorted by ML-
predicted returns on the CZ sample from 1987 to 2019. We predict stock monthly excess returns using the March 2022 data release from https://www.openassetpricing.com/data/, 
which contains the 207 signals collected by Chen and Zimmermann (2022). We use a recursive window approach and select the optimal hyper-parameters using a cross-validation 
approach. Our initial estimation period is 1963–1986. The first 12 years is the training period and the second 12 years is the validation period. As we roll forward, the training 
period expands while the validation period stays at 12 years. The risk-adjusted performance are calculated based on the CAPM model, the Fama–French 3-factor model, the Carhart 
4-factor model, the Fama–French 5-factor model, the Fama–French 5-factor model augmented with momentum factor, and the 𝑞-factor model. The top panel reports results for 
equal-weighted portfolios. The bottom panel reports results for value-weighted portfolios. All returns are expressed in percent per month.
 Equal Weight
 Method Returns SR CAPM FF3 Carhart FF5 FF5+MOM Q

 Avg t-stat alpha t-stat alpha t-stat alpha t-stat alpha t-stat alpha t-stat alpha t-stat 
 BRT 5.14 10.35 3.64 5.28 10.40 5.23 10.79 4.91 10.85 5.02 10.00 4.81 10.32 4.84 9.53  
 NN1 4.66 9.43 3.46 4.78 9.33 4.75 9.74 4.62 9.49 4.62 9.39 4.55 9.39 4.60 8.83  
 NN2 4.91 10.07 3.57 5.05 10.03 5.00 10.48 4.85 10.21 4.78 10.01 4.69 10.03 4.73 9.67  
 NN3 4.65 10.06 3.41 4.78 9.98 4.74 10.21 4.57 9.99 4.57 9.64 4.47 9.72 4.49 9.30  
 NN4 4.62 9.40 3.37 4.73 9.25 4.69 9.73 4.59 9.33 4.53 9.45 4.47 9.25 4.51 9.00  
 NN5 4.57 9.50 3.29 4.67 9.45 4.66 9.66 4.53 9.24 4.58 9.38 4.49 9.24 4.54 8.65  
 Value Weight
 Method Returns SR CAPM FF3 Carhart FF5 FF5+MOM Q

 Avg t-stat alpha t-stat alpha t-stat alpha t-stat alpha t-stat alpha t-stat alpha t-stat 
 BRT 2.32 7.21 1.25 2.59 8.41 2.59 8.09 1.92 9.01 2.30 5.67 1.83 7.49 1.96 4.60  
 NN1 2.30 6.65 1.40 2.43 6.66 2.39 7.02 1.89 6.41 2.23 5.51 1.87 5.95 1.95 4.87  
 NN2 2.84 8.69 1.75 3.08 9.33 3.02 9.93 2.51 9.04 2.71 8.08 2.36 8.47 2.40 7.57  
 NN3 2.25 6.39 1.33 2.46 6.75 2.40 6.95 1.95 6.63 2.06 5.61 1.76 5.92 1.86 5.22  
 NN4 2.34 6.37 1.29 2.49 6.49 2.45 7.22 1.99 6.56 2.17 7.57 1.86 6.93 1.93 6.51  
 NN5 2.27 7.70 1.41 2.43 8.08 2.38 8.02 1.99 7.40 2.21 6.54 1.93 6.90 1.99 5.74  
follow Yan and Zheng (2017) and first construct a long–short strategy 
of stocks based on each fundamental signal in our sample. We then 
sort all signals each year into deciles based on the 𝑡-stat of their past 
long–short portfolio alphas using a recursive window. Finally, we form 
an equal-weighted portfolio of signals by going long in those signals 
ranked in the highest 𝑡-stat decile and shorting those signals ranked 
in the lowest 𝑡-stat decile. Unlike Yan and Zheng (2017), we apply 
a recursive-window approach instead of dividing the sample period 
into two halves. These portfolios are held for one year and rebalanced 
annually. To align with our machine-learning strategies, the out-of-
sample evaluation begins in 1987. This strategy would have been 
accessible to real-time investors since it relies solely on historical data 
to form the portfolios. Importantly, this procedure can be viewed as a 
crude machine-learning strategy that selects a subset of predictors to be 
included in the final investment strategy out of the universe of available 
ones using the 𝑡-statistic of their past univariate performance.

Table  6 presents the out-of-sample performance of the recursive-
ranking strategy. As in earlier tables, we provide both raw returns and 
a range of risk-adjusted returns, along with the Sharpe ratios. Panel A 
displays results for equal-weighted portfolios, while Panel B reports the 
results for value-weighted portfolios. Overall, the results highlight the 
strong performance of this investment strategy. For instance, the equal-
weighted long–short portfolio generates an average monthly return of 
0.87% with a 𝑡-statistic of 9.05 and a Sharpe ratio of 1.60. Notably, 
this Sharpe ratio exceeds those of our machine-learning strategies (1.02 
for BRT and 1.16 for NN1). Similarly, the value-weighted long–short 
portfolio delivers an average monthly return of 0.80%, with a 𝑡-statistic 
of 6.60 and a Sharpe ratio of 1.17, again outperforming our machine-
learning strategies, which had Sharpe ratios of 0.30 for BRT and 0.70 
for NN1.

The fact that feeding the universe of predictors to our machine-
learning methods results in performance that is not only inferior to the 
same methods that use curated sets of predictors but also worse than a 
simple recursive ranking strategy that incorporates feature engineering 
underscores the importance of imposing an appropriate structure or 
‘‘inductive bias’’ on machine-learning algorithms (Goyal and Bengio, 
2022). Inductive biases encompass preferences or constraints imposed 
on the hypothesis space to guide learning and improve generalization 
in machine learning methods. This effectively shapes the learning 
11 
process by narrowing the focus of machine learning methods to specific 
predictor variables, thereby enhancing their performance and leading 
to greater economic gains for real-time investors.

3.6. Past-return signals

Our analyses so far have focused on fundamental signals. The main 
reason for this focus is that we can construct a ‘‘universe’’ of fundamen-
tal signals (Yan and Zheng, 2017). Past return-based signals represent 
another class of signals for which we can construct an ‘‘exhaustive’’ list. 
In this section, we follow Martin and Nagel (2022) and construct a uni-
verse of past return-based signals and then repeat our main analyses.28 
Specifically, we include in our universe the monthly returns during 
the past 120 months, excluding the most recent month. Martin and 
Nagel (2022) exclude the most recent month to avoid microstructure 
effects. Therefore, we have 119 past return-based signals in our baseline 
analysis. To gauge the impact of short-term reversal, we also repeat our 
analysis by adding the most recent month’s return to the predictor set.

Our stock sample for this analysis consists of the NYSE, AMEX, and 
NASDAQ common stocks (with a CRSP share code of 10 or 11) with 
valid past return data. We exclude those stocks with a share price lower 
than $1 at the end of month 𝑡 − 1. For ease of comparison with our 
analysis of fundamental signals and previous machine learning studies, 
the sample period of our past-return analysis spans from July 1963 to 
December 2019. We employ the same training, cross-validation, and 
out-of-sample testing periods as in our study of fundamental signals.

We continue to use BRT as the primary machine-learning method 
but also examine neural networks with 1 to 5 hidden layers. As in our 
analysis of fundamental signals, we form long–short portfolios of stocks 
based on the machine learning predicted returns. Specifically, we go 
long in the stocks with the highest predicted returns and short in the 
stocks with the lowest predicted returns. We track the performance 
of these portfolios for one month and compute the return spread 
between the long and short portfolios. For performance evaluation, 
we report alphas for the long–short portfolio using the CAPM, the 

28 Moritz and Zimmermann (2016) and Murray et al. (2024) also examine 
machine learning strategies based on past-return signals.

https://www.openassetpricing.com/data/
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Table 6
Performance of portfolios sorted using a simple recursive ranking strategy. This table reports the returns and risk-adjusted performance for decile and long–short portfolios 
constructed using a simple recursive ranking strategy from 1987 to 2019. We use the baseline samples in Table  1, and conduct the analysis using a recursive window specification. 
We first construct a long–short strategy based on each fundamental signal and then perform a simple recursive ranking of all signals according to their past strategy performance. 
Finally, we form decile and long–short portfolios based on this ranking. The first three columns report average monthly returns for the long–short portfolios as well as the associated 
annualized Sharpe ratios. The risk-adjusted performance is calculated based on the CAPM model, the Fama–French 3-factor model, the Carhart 4-factor model, the Fama–French 
5-factor model, the Fama–French 5-factor model augmented with momentum factor, and the 𝑞-factor model. The top panel reports results for equal-weighted portfolios. The bottom 
panel reports results for value-weighted portfolios. All returns are expressed in percent per month.
 Equal Weight
 Rank Returns SR CAPM FF3 Carhart FF5 FF5+MOM Q

 Avg t-stat alpha t-stat alpha t-stat alpha t-stat alpha t-stat alpha t-stat alpha t-stat

 L(ow) −0.48 −8.34 −1.47 −0.54 −6.18 −0.51 −6.45 −0.44 −6.67 −0.41 −5.49 −0.36 −6.02 −0.38 −5.11
 2 −0.25 −9.66 −1.71 −0.26 −6.56 −0.26 −7.02 −0.24 −7.43 −0.24 −7.45 −0.23 −7.90 −0.24 −6.21
 3 −0.15 −6.89 −1.22 −0.14 −5.12 −0.16 −6.68 −0.16 −6.86 −0.17 −7.45 −0.16 −7.38 −0.17 −5.78
 4 −0.07 −2.12 −0.37 −0.04 −1.12 −0.06 −2.15 −0.08 −2.98 −0.11 −3.60 −0.12 −3.96 −0.13 −3.44
 5 −0.01 −0.40 −0.07 0.01 0.41 −0.01 −0.33 −0.03 −1.34 −0.07 −2.60 −0.08 −2.96 −0.09 −2.69
 6 0.06 1.51 0.27 0.10 2.52 0.07 2.79 0.03 1.26 0.00 −0.12 −0.03 −0.85 −0.04 −1.06
 7 0.14 4.11 0.73 0.16 4.75 0.15 6.30 0.11 4.96 0.08 3.25 0.05 2.24 0.05 1.68
 8 0.22 4.45 0.79 0.26 5.23 0.24 6.76 0.18 5.84 0.13 4.09 0.10 3.12 0.09 2.27
 9 0.29 7.96 1.41 0.32 7.86 0.30 9.61 0.26 9.99 0.22 7.38 0.20 7.30 0.20 6.00
 H(igh) 0.39 8.88 1.57 0.44 6.75 0.41 8.42 0.35 9.15 0.29 7.02 0.26 8.07 0.28 7.27
 H-L 0.87 9.05 1.60 0.97 6.64 0.91 7.47 0.79 7.96 0.70 6.25 0.63 7.17 0.66 6.15

 Value Weight
 Rank Returns SR CAPM FF3 Carhart FF5 FF5+MOM Q

 Avg t-stat alpha t-stat alpha t-stat alpha t-stat alpha t-stat alpha t-stat alpha t-stat

 L(ow) −0.37 −5.65 −1.00 −0.45 −4.20 −0.40 −5.19 −0.34 −4.88 −0.26 −5.17 −0.22 −4.94 −0.24 −4.44
 2 −0.20 −7.27 −1.29 −0.22 −4.45 −0.21 −5.25 −0.18 −4.90 −0.16 −5.31 −0.15 −4.91 −0.16 −4.92
 3 −0.13 −5.24 −0.93 −0.11 −3.95 −0.12 −4.74 −0.11 −4.45 −0.11 −4.78 −0.11 −4.48 −0.12 −4.29
 4 −0.07 −2.90 −0.51 −0.04 −1.89 −0.05 −2.79 −0.06 −3.04 −0.08 −3.55 −0.08 −3.73 −0.08 −3.35
 5 −0.03 −0.96 −0.17 0.01 0.25 −0.01 −0.63 −0.02 −1.47 −0.05 −2.89 −0.06 −3.34 −0.06 −3.00
 6 0.04 1.20 0.21 0.08 2.34 0.06 2.61 0.04 1.73 0.00 −0.18 −0.02 −1.15 −0.02 −0.83
 7 0.10 2.77 0.49 0.15 3.45 0.12 4.34 0.09 3.60 0.05 2.25 0.03 1.40 0.03 1.24
 8 0.18 3.61 0.64 0.25 3.97 0.22 5.02 0.17 4.56 0.10 4.14 0.07 3.70 0.08 2.63
 9 0.28 5.36 0.95 0.35 4.55 0.32 5.63 0.27 5.54 0.20 5.73 0.17 6.00 0.18 4.97
 H(igh) 0.43 7.00 1.24 0.50 4.53 0.47 5.55 0.40 5.54 0.32 5.66 0.29 5.96 0.30 5.44
 H-L 0.80 6.60 1.17 0.95 4.44 0.87 5.51 0.74 5.39 0.58 5.70 0.51 5.84 0.54 5.21
Fama–French three-factor model, and the Carhart four-factor model, 
the Fama–French five-factor alphas, Fama–French five-factor plus mo-
mentum factor alphas, and 𝑞-factor alphas. We report results for both 
equal-weighted and value-weighted portfolios.

Table  7 report the results. Panel A reports the results for our baseline 
sample that excludes the most recent month, i.e., 119 past return 
signals, while Panel B reports the results for 120 past return signals that 
include the most recent month. In each panel, we report the results for 
BRT as well as neural networks with 1–5 hidden layers. As in previous 
tables, we report raw returns, risk-adjusted returns, and Sharpe ratios.29

In Panel A, we find that the BRT strategy based on past-return 
signals earns an average return of 1.38% per month (𝑡-statistic = 4.93) 
and exhibits an annualized Sharpe ratio of 1.04 in equal-weighted port-
folios.30 The performance of value-weighted portfolios is significantly 
weaker. The average long–short return is 0.78% per month (𝑡-statistic 
= 2.41), while the Sharpe ratio is 0.46. The results based on neu-
ral network forecasts are qualitatively similar, with shallow networks 
(NN1 and NN2) performing similarly to BRT and deep networks (NN3 
through NN5) performing worse than BRT.

Risk-adjusted returns indicate that the performance is significantly 
reduced when we control for the momentum factor. For example, the 
Carhart alpha is 1.09% (𝑡-statistic = 6.62) for equal-weighted portfo-
lios and 0.63% (𝑡-statistic = 3.05) for value-weighted portfolios. The 
FF5+MOM alpha is even lower, at 0.78% (𝑡-statistic = 5.83) for equal-
weighted portfolios and 0.28% (𝑡-statistic = 1.55) for value-weighted 

29 For brevity, we only report the long–short portfolio returns in this table.
30 Appendix  D reports the top 25 past-return signals. Return during month 

𝑡−24 is the most important predictor, followed by return during month 𝑡−12. 
Overall, the list is dominated by past returns during the past two years.
12 
portfolios. The smaller Carhart alpha and the smaller FF5+MOM alpha 
are not surprising because much of the predictive ability of past returns 
is related to the momentum effect of Jegadeesh and Titman (1993).

The results reported in Panel B, which includes the short-term rever-
sal, are measurably higher than those reported in Panel A. Specifically, 
we find that the BRT strategy earns an average return of 1.81% per 
month (𝑡-statistic = 6.40) and exhibits an annualized Sharpe ratio of 
1.77 in equal-weighted portfolios. The average long–short return for 
value-weighted portfolios is 0.98% per month (𝑡-statistic = 3.14), while 
the Sharpe ratio is 0.66. The results based on neural network forecasts 
are qualitatively similar. We again find that shallow networks (NN1 
and NN2) perform better than deep networks. Risk-adjusted returns 
continue to indicate that the performance is significantly reduced when 
we control for the momentum factor.

Overall, our results based on past-return signals are broadly con-
sistent with those based on fundamental signals. Specifically, we find 
significant long–short returns for our machine learning strategies, sug-
gesting that real-time investors benefit from machine learning forecasts. 
However, the performance of these real-time machine-learning strate-
gies is weaker or significantly weaker than those reported in the prior 
literature. For example, Moritz and Zimmermann (2016) and Murray 
et al. (2024) use past 12 or 24 monthly returns to construct predictive 
signals and find Sharpe ratios of 2.96 (equal-weighted) and 0.78 (value-
weighted), respectively. In comparison, our past-return-based machine 
learning strategies deliver a Sharpe ratio of 1.04 for EW portfolios 
and 0.46 for VW portfolios when we exclude short-term reversal, and 
a Sharpe ratio of 1.77 for EW portfolios and 0.66 for VW portfolios 
when we include short-term reversal. It is important to note that the 
higher Sharpe ratios of Moritz and Zimmermann (2016) and Murray 
et al. (2024), like those of our machine-learning strategies, are avail-
able to real-time investors. Comparing our Sharpe ratios with those 
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Table 7
Performance of portfolios constructed using past-return signals. This table reports the returns and risk-adjusted performance for the long–short portfolios sorted by ML-predicted 
returns based on past-return signals from 1987 to 2019. We predict stock monthly excess returns using 119 or 120 past-return signals (PR119 and PR120 as described in Section 3.6). 
Our sample starts in 1963, and the out-of-sample periods begin in 1987, which is consistent with our baseline specifications on fundamental signals. We use a recursive window 
approach and select the optimal hyper-parameters using a cross-validation approach. Our initial estimation period is 1963–1986. The first 12 years is the training period, and 
the second 12 years is the validation period. As we roll forward, the training period expands while the validation period stays at 12 years. The risk-adjusted performance is 
calculated based on the CAPM model, the Fama–French 3-factor model, the Carhart 4-factor model, the Fama–French 5-factor model, the Fama–French 5-factor model augmented 
with momentum factor, and the 𝑞-factor model. The top panel reports results for equal-weighted portfolios. The bottom panel reports results for value-weighted portfolios. All 
returns are expressed in percent per month.
 Panel A: PR119
 Method Returns SR CAPM FF3 Carhart FF5 FF5+MOM Q

 Avg t-stat alpha t-stat alpha t-stat alpha t-stat alpha t-stat alpha t-stat alpha t-stat 
 Equal Weight
 BRT 1.38 4.93 1.04 1.63 5.86 1.56 6.90 1.09 6.62 1.09 4.82 0.78 5.83 0.78 3.89  
 NN1 1.37 5.49 1.01 1.51 6.51 1.55 6.82 0.89 6.41 1.27 4.58 0.81 5.20 0.84 2.87  
 NN2 1.52 6.07 1.09 1.66 7.54 1.71 7.75 1.02 8.66 1.43 4.95 0.95 6.65 0.99 3.12  
 NN3 1.06 4.20 0.86 1.17 4.97 1.19 5.41 0.63 4.53 0.93 3.74 0.54 3.51 0.59 2.13  
 NN4 1.19 6.54 1.09 1.29 6.86 1.33 7.44 0.87 8.20 1.10 5.85 0.77 7.29 0.87 4.82  
 NN5 0.66 4.23 0.68 0.76 5.28 0.77 5.26 0.44 3.11 0.58 2.84 0.35 2.32 0.35 1.60  
  
 Value Weight
 BRT 0.78 2.41 0.46 1.17 4.00 1.07 4.23 0.63 3.05 0.56 2.37 0.28 1.55 0.28 1.36  
 NN1 0.99 3.34 0.58 1.12 3.96 1.22 4.28 0.42 2.18 1.00 2.77 0.44 2.13 0.60 1.55  
 NN2 1.11 3.97 0.63 1.28 4.75 1.39 5.24 0.58 3.27 1.19 3.67 0.61 3.53 0.82 2.26  
 NN3 0.74 2.28 0.48 0.83 2.72 0.90 2.91 0.26 1.12 0.80 2.24 0.34 1.34 0.44 1.09  
 NN4 0.79 3.97 0.56 0.91 4.17 1.01 5.13 0.52 2.62 0.91 4.37 0.56 3.01 0.72 3.39  
 NN5 0.56 3.17 0.46 0.70 4.17 0.72 4.51 0.33 1.99 0.53 2.85 0.26 1.58 0.39 1.73  
  
 Panel B: PR120
 Method Returns SR CAPM FF3 Carhart FF5 FF5+MOM Q

 Avg t-stat alpha t-stat alpha t-stat alpha t-stat alpha t-stat alpha t-stat alpha t-stat 
 Equal Weight
 BRT 1.81 6.40 1.77 1.83 6.21 1.76 6.76 1.67 6.08 1.57 6.67 1.52 5.98 1.47 5.13  
 NN1 1.83 8.43 1.77 1.77 8.06 1.80 8.22 1.49 7.48 1.71 8.47 1.49 7.22 1.50 6.98  
 NN2 1.87 7.85 1.83 1.84 7.89 1.88 7.91 1.56 6.84 1.80 7.97 1.58 6.68 1.58 6.58  
 NN3 1.46 6.43 1.41 1.44 6.43 1.46 6.68 1.13 5.70 1.36 6.85 1.13 5.45 1.10 5.49  
 NN4 1.41 5.80 1.46 1.39 5.75 1.41 5.88 1.16 4.92 1.32 5.87 1.14 4.85 1.15 4.59  
 NN5 1.46 6.53 1.45 1.46 6.15 1.46 6.45 1.22 5.55 1.33 6.29 1.16 5.18 1.15 4.88  
  
 Value Weight
 BRT 0.98 3.14 0.66 1.13 3.61 1.04 3.77 0.74 2.76 0.72 3.17 0.52 2.14 0.42 1.50  
 NN1 1.13 4.96 0.79 1.13 4.78 1.21 5.31 0.69 3.59 1.15 5.29 0.77 3.55 0.84 3.56  
 NN2 1.32 5.32 0.94 1.35 5.48 1.42 5.91 0.86 4.65 1.34 5.46 0.94 4.47 0.98 3.81  
 NN3 1.04 3.69 0.72 1.03 3.65 1.09 3.99 0.57 3.03 0.97 3.41 0.60 3.12 0.66 2.40  
 NN4 1.00 3.97 0.74 1.04 4.06 1.12 4.47 0.69 3.15 1.07 4.28 0.75 3.23 0.84 3.23  
 NN5 0.75 3.56 0.58 0.74 3.36 0.80 3.69 0.37 2.10 0.76 3.14 0.45 2.15 0.54 2.16  
documented by Moritz and Zimmermann (2016) and Murray et al. 
(2024) suggests that using a curated set of inputs – a form of feature 
engineering – is critical for the performance of ML strategies.

4. Additional results

In this section, we provide several extensions and robustness tests 
of our baseline analysis. Section 4.1 employs rolling windows in-
stead of recursive windows in estimating the BRT model. Section 4.2 
studies whether our results are robust to alternative training and valida-
tion periods. Section 4.3 examines the performance of BRT long–short 
portfolios separately for large and small stocks. Section 4.4 examines 
the after-trading-cost performance of our machine-learning strategies. 
Finally, Section 4.5 investigates whether the performance of BRT port-
folios varies with economic and market conditions. In all cases, we use 
our universe of fundamental signals as input for our machine-learning 
methods. For brevity, we report the results of these additional analyses 
in the Internet Appendix.

4.1. Rolling windows

We use recursive windows in our baseline specification to align 
ourselves with the majority of the literature (e.g., Gu et al., 2020). 
13 
Recursive windows allow for incorporating all available information 
in generating forecasts, but they can lead to poor forecasts if the 
data-generating process changes over time. An alternative to recursive 
windows is rolling windows that generate forecasts based on less in-
formation and hence are potentially less precise but are more robust 
to time variations in the relation between fundamental signals and 
returns. If the relation between the fundamental signals and stock 
returns is time-varying, rolling windows may improve the predictive 
power of machine learning algorithms. To assess this possibility, we 
repeat our main analysis using the rolling window approach described 
below.

We set the initial estimation period to 24 years so that our out-
of-sample test period starts from 1987, the same as in the recursive 
window approach. To select the optimal hyper-parameters, we split the 
24 years into training and validation periods following our baseline 
specification. In particular, our training period is 12 years, and the 
validation period is 12 years.31 After obtaining the optimal hyper-
parameters, we re-estimate the final model using the 24-year window. 
Each year we refit the model by moving the 24-year window forward 

31 We have considered several alternative training and validation periods 
and find our results to be qualitatively similar.
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by one year. The estimation period is fixed at 24 years under the 
rolling window approach. In comparison, under the recursive window 
approach, the estimation period expands as we roll forward.

Table IA.1 presents the performance of BRT portfolios for the rolling 
window approach. We find that the equally weighted portfolios achieve 
a long–short return of 0.83% per month (𝑡-statistic = 4.27) and a Sharpe 
ratio of 0.77. These numbers are lower than their counterparts for the 
recursive window approach. Specifically, in Table  1 we report that 
the equal-weighted portfolios exhibit a long–short return of 0.95% (𝑡-
statistic = 6.63) and a Sharpe ratio of 1.02. The risk-adjusted returns for 
the rolling window approach are also correspondingly lower than those 
for the recursive window approach. The results for value-weighted 
portfolios paint a similar picture. For example, the average long–short 
return is 0.33% (𝑡-statistic = 1.35) under the rolling window approach, 
compared to the 0.40% (𝑡-statistic = 2.34) under the recursive window 
approach. Overall, we find that the performance of BRT portfolios 
based on a universe of predictors is somewhat weaker for the rolling 
window approach than for the recursive window approach.

4.2. Alternative training and validation periods

In our baseline specification, we use an initial training period of 
12 years and a validation period of 12 years. In comparison, Gu et al. 
(2020) employ an initial training period of 18 years and a validation 
period of 12 years. As explained earlier, we choose an initial training 
period of 12 years because we want to start our out-of-sample test 
period in 1987, the same as in Gu et al. (2020). In this section, we 
examine whether our results are robust to our choices of the initial 
training period and validation period. Specifically, we consider nine 
alternative specifications in which the initial training period varies 
from 10 to 18 years, while the validation period varies from 10 to 
14 years. We examine the performance of BRT portfolios under each 
of these alternative specifications.

Table IA.2 presents the results. The top panel reports the results 
for equal-weighted portfolios, while the bottom panel reports the re-
sults for value-weighted portfolios. For convenience, we reproduce the 
results for our baseline specification in the first row of each panel. 
Our baseline specification is denoted as ‘‘12+12’’, meaning 12 years 
of initial training period and 12 years of validation period. We denote 
the alternative specifications similarly. For example, ‘‘18+12’’ means 
18 years of initial training and 12 years of validation period.

Overall, our results are highly robust across all alternative spec-
ifications. For example, the equal-weighted long–short returns range 
from 0.87% to 1.02% across the alternative specifications, compared 
to 0.95% for the baseline specification. Similarly, the value-weighted 
long–short returns range from 0.37% to 0.55% across the alternative 
specifications, compared to 0.40% for the baseline specification. The 
level of statistical significance for the long–short returns is also similar 
between the baseline and alternative specifications. Finally, the results 
on risk-adjusted returns are also robust to alternative specifications of 
initial training and validation periods.

4.3. Focusing on stocks with different market capitalizations

To evaluate whether the performance of our machine learning 
strategies varies across stocks with different capitalizations, each year 
we divide our sample stocks into two groups based on the median 
market capitalization: those above the median are large stocks and 
those below the median are small stocks. We then repeat our baseline 
analysis for each of these two groups of stocks and report the results in 
Table IA.3.

The top panel of Table IA.3 reports the results for equal-weighted 
portfolios. We find that the raw and risk-adjusted long–short returns 
are positive and significant for both large and small stocks. More im-
portantly, the long–short performance is significantly higher for small 
stocks than for large stocks. Specifically, the long–short return is 0.63% 
14 
per month (𝑡-statistic = 2.93) for large stocks and is 1.13% (𝑡-statistic 
= 6.14) for small stocks. The lower predictive performance for large 
stocks is not surprising. These stocks are likely to incorporate new 
information more quickly and are hence less likely to be predictable 
using machine learning algorithms.

The results for value-weighted portfolios are qualitatively similar. 
The average long–short return for large stocks is only 0.27% (𝑡-statistic 
= 1.23). The long–short returns for large stocks do become marginally 
significant when we control for risks using the Carhart 4-factor model, 
the Fama–French 5-factor model, the Fama–French 5-factor augmented 
with momentum, and the 𝑞-factor model. In comparison, the average 
long–short return for small stocks is economically and statistically sig-
nificant whether we examine raw or risk-adjusted returns. For example, 
the average long–short return for small stocks is 1.16% (𝑡-statistic = 
5.50).

Overall, the results in Table IA.3 indicate that the long–short per-
formance of BRT portfolios is weaker for large stocks than for small 
stocks. This finding suggests that machine learning methods based on 
a universe of predictors are better at predicting the returns of smaller 
stocks, for which news is incorporated more slowly into asset prices.

4.4. After-trading-cost performance

For ease of comparison with prior literature (e.g., Gu et al., 2020; 
Freyberger et al., 2020; Chen et al., 2024c), we focus on the gross 
performance of our machine learning strategies in this paper. There 
is, however, growing attention to trading costs in the anomaly lit-
erature and ML literature (e.g., Novy-Marx and Velikov, 2016; Chen 
and Velikov, 2022; Jensen et al., 2022). In this section, we provide a 
simple analysis of the net performance (after-trading-cost returns) of 
our machine-learning strategies based on a universe of predictors.

We follow the general approach of Chen and Velikov (2022) to 
calculate turnover, trading costs, and net returns to long–short trad-
ing strategies. We also use their low-frequency (LF) measures of ef-
fective spreads as our trading cost measure.32 These four LF mea-
sures are (i) (Hasbrouck, 2009)’s Gibbs sampler estimate, (ii) (Corwin 
and Schultz, 2012)’s high-low measure, (iii) (Kyle and Obizhaeva, 
2016)’s volume-over-volatility measure, and (iv) (Abdi and Ranaldo, 
2017)’s close-high-low measure. Following Chen and Velikov (2022), 
we use the average of the four low-frequency (LF) measures of effective 
spreads.

In Table IA.4, we show that the turnover rate for our BRT strategy 
based on fundamental signals is fairly low, with a two-sided turnover 
of 14% per month for both EW portfolios and VW portfolios. These 
relatively low turnover rates are not surprising because most of the fun-
damental signals are updated annually and we rebalance our portfolios 
once a year. We find that trading costs account for significantly less 
than half of the gross returns to our ML strategy. The net returns to the 
BRT strategy remain positive, at 0.73% per month for EW portfolios 
and 0.25% for VW portfolios. The net returns of NN strategies are 
also positive and of similar magnitude. We note that the gross returns 
reported here are slightly different from those of our baseline analysis. 
This is because the trading cost data is available only up to 2017, so 
the sample period for this analysis is slightly shorter than our baseline 
analysis.

Table IA.5 reports the corresponding results for our past-return-
based machine-learning strategies. In contrast to those for fundamental 
signals, we find that the turnover rate for past-return-based machine-
learning strategies is extremely high, well over 100% in both equal- and 
value-weighted portfolios. As a consequence, we find that net returns to 

32 Due to the data availability issue, we do not adopt their high-frequency 
(HF) measures of effective spreads. We download the LF data from Andrew 
Chen’s website at https://sites.google.com/site/chenandrewy/. We note their 
data is available up to 2017, so our analysis ends in 2017.

https://sites.google.com/site/chenandrewy/
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machine learning strategies are consistently negative. For example, the 
net return for BRT strategies is −0.97% per month for equal-weighted 
portfolios and −0.29% for value-weighted portfolios. Adding short-term 
reversal to the predictor set improves the gross returns but makes the 
net returns even worse. Specifically, the net return is −1.48% per month 
for equal-weighted portfolios and −0.40% for value-weighted portfolios 
after including the short-term reversal. The results for NN strategies are 
similar to those for BRT strategies.

Chen and Velikov (2022) note that LF spreads are biased upward 
by 25–50 basis points (compared to HF effective spreads) post deci-
malization. As such, the net returns to our machine learning strategies 
reported in Table IA.4 and Table IA.5 may be too low. We decided not 
to make an ad-hoc adjustment related to this bias because despite their 
upward bias relative to HF spreads, the LF spreads may underestimate 
the total trading costs because they do not include other important 
components of trading costs, such as the cost of short selling and price 
impact. The shorting cost is particularly important for us because our 
machine learning strategies are long–short strategies.

Overall, we show that the net performance of ML strategies based on 
a universe of predictors is positive for fundamental signals and negative 
for past-return signals. We acknowledge that our analysis is exploratory 
and preliminary. An in-depth trading cost analysis that incorporates HF 
spreads, shorting cost, and price impact is a promising area of future 
research in the machine learning literature.33

4.5. Testing for time-varying predictability

In Table IA.7, we examine whether the profitability of BRT strate-
gies varies with economic and market conditions. Specifically, we split 
our sample period based on investor sentiment,34 the VIX index also 
known as the ‘‘fear-gauge’’, market liquidity (Pástor and Stambaugh, 
2003), business cycle indicators as published by NBER, and market 
state—proxied by the cumulative market returns over the previous 24 
months. We also divide our sample period into two halves (1987–2003 
and 2003–2019) to examine whether the predictability declines over 
time.

Panel A shows the long–short portfolio returns for high- and low-
sentiment periods. When examining equal-weighted returns, we find 
significant predictability during both high- and low-sentiment periods. 
In contrast, value-weighted returns are only marginally significant 
during low-sentiment periods and insignificant during high-sentiment 
periods. Whether we look at equal- or value-weighted returns, the dif-
ference in long–short returns between high- and low-sentiment periods 
is statistically insignificant. We find similar results in Panel B, where we 
divide the sample period into high- and low-VIX periods, and in Panel 
C, where we divide periods into high- and low-liquidity periods. In each 
panel, we find significant equal-weighted returns across both subperi-
ods. The value-weighted returns, however, are either insignificant or 
marginally significant. As in Panel A, we find little significant evidence 
of differential predictability across subperiods. We also find little dif-
ference in predictability between recession and expansion periods in 
Panel D.

In Panel E, we split the sample period into UP and DOWN market 
states based on previous 24-month cumulative market returns. We 
find that the long–short return is higher during UP states than during 
DOWN states. Specifically, the equal-weighted long–short return is 
1.24% during UP states and 0.67% during DOWN states. Similarly, the 
value-weighted long–short return is 0.79% during UP states and 0% 
during DOWN states. The differences in long–short returns between the 

33 We also examine the after-trading cost performance of machine-learning 
strategies based on the GHZ and CZ samples of published anomalies. For 
brevity, we report the results in Table IA.6 in the Internet Appendix.
34 We obtain the investor sentiment’s data from Wurgler’s website at http:
//people.stern.nyu.edu/jwurgler/.
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UP and DOWN states are economically large and statistically marginally 
significant. In Panel F, we divide our sample period into two halves 
and find no statistically significant difference in predictability during 
the first and second half of our sample period.

Overall, the results in Table IA.7 indicate that the return predictabil-
ity implied by our machine learning strategies based on a universe 
of predictors does not change significantly with investor sentiment, 
market volatility, market liquidity, or business cycle. However, there 
is some evidence that the profitability of our BRT strategies varies 
systematically with the state of the market. Finally, we find no evidence 
that the return predictability differs significantly across the two halves 
of our sample period.

5. Conclusions

We develop real-time machine-learning strategies based on a broad 
universe of fundamental signals. These strategies exhibit out-of-sample 
performance that is both economically meaningful and statistically 
significant; however, their long–short returns and Sharpe ratios are 
considerably lower than those reported in earlier studies that use 
curated sets of signals as return predictors. Our findings suggest that 
the difference in performance is driven by the differences in input data 
rather than differences in the implementation of the machine learning 
algorithms. We also show that strategies employing a simple recursive 
ranking based on each signal’s past performance achieve substantially 
better out-of-sample results. The fact that feeding the universe of 
predictors to our machine-learning methods results in performance 
that is not only inferior to the same methods that use curated sets 
of predictors but also worse than a simple recursive ranking strategy 
that incorporates feature engineering underscores the importance of 
imposing an appropriate structure or ‘‘inductive bias’’ for machine 
learning algorithms to perform effectively in cross-sectional prediction 
tasks. As Domingos (2012) puts it, ‘‘feature engineering is the key’’ 
in machine learning applications. Our analyses using past-return sig-
nals yield similar conclusions to those based on fundamental signals. 
Specifically, while our real-time machine learning strategies produce 
economically meaningful and statistically significant performance, us-
ing curated sets of inputs can significantly enhance this performance 
for real-time investors. In summary, our results suggest that employing 
machine learning methods is beneficial for real-time investors, and that 
feature engineering plays a vital role in substantially elevating these 
benefits.
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Table A.1
Grids of hyper-parameters for cross validation and implementation details for BRT and NN. This 
table shows the grids of hyper-parameters used in the cross validation of boosted regression trees 
(BRT) and neural networks (NN). We follow Gu et al. (2020) to select the grids of hyper-parameters. 
 BRT NN  
 # of iteration ∈ {100, 
250, 500, 750, 1000}
learning rate ∈ {0.01, 
0.05, 0.1}

L1 penalty 𝜆1 ∈ {10−5, 10−3}
Learning Rate LR ∈ {0.001, 0.01}
Batch Size = 10000
Epochs = 100
Patience = 5 
Ensemble = 10
Adam Para. = Default

 

Appendix A

We implement BRT using LightGBM package in Python (version: 
3.1.1) using the hyper-parameters’ grid reported in Table  A.1 and 
minimizing the standard L2 objective function.

For the implementation of neural networks, we follow Gu et al. 
(2020) and Chen and McCoy (2024) and build 5 neural networks, 
including NN1 to NN5. NN1 has hidden layers with 32 neurons, NN2 
has hidden layers with 32 and 16 neurons, NN3 has hidden layers 
with 32, 16, and 8 neurons, NN4 has hidden layers with 32, 16, 8, 
and 4 neurons, and NN5 has hidden layers with 32, 16, 8, 4, and 2 
neurons. All layers are connected with the ReLU activation function. 
The objective is L2 with an L1 penalty to weight parameters and the 
minimization is performed using the Adam extension of the Stochastic 
Gradient Descent under early stopping with a patience parameter 5 and 
batches of 10,000, for 100 epochs. We also include batch normaliza-
tion. Finally, we construct the final forecasts as the ensemble average 
of 10 neural network forecasts.

Appendix B

See Table  B.1. 

Appendix C

See Table  C.1. 

Appendix D. Relative influence measures

One criticism of machine learning algorithms is that they are ‘‘Black 
Boxes’’ that do not provide a lot of intuition to the researcher and the 
reader. This criticism hardly applies to BRT that feature very useful 
and intuitive visualization tools. The first commonly used measure is 
referred to as the ‘‘relative influence’’ measure. Consider the reduction 
in the empirical error every time one of the covariates 𝑥𝑙,⋅ is used to split 
the tree. Summing the reductions in empirical errors (or improvements 
in fit) across the nodes in the tree gives a measure of the variable’s 
influence (Breiman et al., 1984):

𝐼𝑙 ( ) =
𝐽
∑

𝑗=2
𝛥𝑒 (𝑗)2 𝐼 (𝑥 (𝑗) = 𝑙) ,

where 𝛥𝑒 (𝑗)2 = 𝑇 −1 ∑𝑇
𝑡=1

(

𝑒𝑡 (𝑗 − 1)2 − 𝑒𝑡 (𝑗)2
) is the reduction in the 

squared empirical error at the 𝑗th node and 𝑥 (𝑗) is the regressor chosen 
at this node, so 𝐼 (𝑥 (𝑗) = 𝑙) equals 1 if regressor 𝑙 is chosen, and 0
otherwise. The sum is computed across all observations, 𝑡 = 1,… , 𝑇 , 
and over the 𝐽 − 1 internal nodes of the tree.

The rationale for this measure is that at each node, one of the 
regressors gets selected to partition the sample space into two sub-
states. The particular regressor at node 𝑗 achieves the greatest reduction 
in the empirical risk of the model fitted up to node 𝑗−1. The importance 
of each regressor, 𝑥 , is the sum of the reductions in the empirical 
𝑙,⋅

16 
errors computed over all internal nodes for which it was chosen as the 
splitting variable. If a regressor never gets chosen to conduct the splits, 
its influence is zero. Conversely, the more frequently a regressor is used 
for splitting, and the bigger its effect on reducing the model’s empirical 
risk, the larger its influence.

This measure of influence can be generalized by averaging over 
the number of boosting iterations, 𝐵, which generally provides a more 
reliable measure of influence:

𝐼𝑙 =
1
𝐵

𝐵
∑

𝑏=1
𝐼𝑙
(

𝑏
)

.

This is best interpreted as a measure of relative influence that can be 
compared across regressors. We therefore report the following measure 
of relative influence, 𝑅𝐼 𝑙, which sums to 1:

𝑅𝐼 𝑙 =
𝐼𝑙

∑𝐿
𝑙=1 𝐼𝑙

.

Figure IA.1 shows the relative influence of the top 25 signals in 
the baseline BRT model estimated in the paper. We first compute the 
signals’ relative influence in each year of the test period,1987–2019, 
and average their values across all test years. Note that the relative 
importance measure across all signals sums to one every year. We then 
rank and plot the signals according to their average relative influence. 
The 𝑌 -axis reports the 25 most important signals, while the 𝑋-axis 
presents each signal’s average relative influence measure.

Figure IA.2 shows the relative influence of the top 25 signals in 
the baseline BRT model on past return signals. We first compute the 
signals’ relative influence in each month of the test period,1987–2019, 
and average their values across all test months. Note that the relative 
importance measure across all signals sums to one every month. We 
then rank and plot the signals according to their average relative 
influence. The 𝑌 -axis reports the 25 most important signals in terms of 
lags, while the 𝑋-axis presents each signal’s average relative influence 
measure.

Appendix E. Supplementary data

Supplementary material related to this article can be found online 
at https://doi.org/10.1016/j.jfineco.2025.104138.

Data availability

Replication_Package_LRYZ_Machine_Learning_Feature_Engineering (Ref
erence data) (Mendeley Data)
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Table B.1
List of accounting variables. This table lists the 240 accounting variables used in this study and their descriptions. Our sample period is 
1963–2019. We begin with all accounting variables on the balance sheet, income statement, and cash flow statement included in the annual 
Compustat database. We exclude all variables with fewer than 20 years of data or fewer than 1,000 firms with non-missing data on average per 
year. We exclude per-share-based variables such as book value per share and earnings per share. We remove LSE (total liabilities and equity), 
REVT (total revenue), OIBDP (operating income before depreciation), and XDP (depreciation expense) because they are identical to TA (total 
assets), SALE (total sale), EBITDA (earnings before interest) and DFXA (depreciation of tangible fixed assets) respectively. Please refer to Yan 
and Zheng (2017) for more details.
 # Variable Description Missing rate Start year
 1 ACCHG Accounting changes - cumulative effect 39.29% 1988
 2 ACO Current assets other total 0.76% 1963
 3 ACOX Current assets other sundry 2.20% 1963
 4 ACT Current assets - total 2.13% 1963
 5 AM Amortization of intangibles 33.03% 1965
 6 AO Assets – other 0.06% 1963
 7 AOLOCH Assets and liabilities other net change 38.36% 1988
 8 AOX Assets – other - sundry 2.22% 1963
 9 AP Accounts payable – trade 4.88% 1963
 10 APALCH Accounts payable & accrued liabilities increase/decrease 53.14% 1988
 11 AQC Acquisitions 12.98% 1972
 12 AQI Acquisitions income contribution 32.50% 1975
 13 AQS Acquisitions sales contribution 32.26% 1975
 14 AT Assets – total 0.01% 1963
 15 BAST Average short-term borrowing 74.28% 1978
 16 CAPS Capital surplus/share premium reserve 2.08% 1963
 17 CAPX Capital expenditure 2.18% 1963
 18 CAPXV Capital expenditure PPE Schedule V 1.39% 1963
 19 CEQ Common/ordinary equity - total 1.54% 1963
 20 CEQL Common equity liquidation value 1.62% 1963
 21 CEQT Common equity tangible 1.64% 1963
 22 CH Cash 12.33% 1963
 23 CHE Cash and short-term investments 0.72% 1963
 24 CHECH Cash and cash equivalents increase/decrease 28.77% 1972
 25 CLD2 Capitalized leases - due in 2nd year 46.55% 1985
 26 CLD3 Capitalized leases - due in 3rdyear 46.44% 1985
 27 CLD4 Capitalized leases - due in 4thyear 46.18% 1985
 28 CLD5 Capitalized leases - due in 5thyear 46.15% 1985
 29 COGS Cost of goods sold 0.09% 1963
 30 CSTK Common/ordinary stock (capital) 1.96% 1963
 31 CSTKCV Common stock-carrying value 28.31% 1963
 32 CSTKE Common stock equivalents – dollar savings 0.06% 1963
 33 DC Deferred charges 28.45% 1965
 34 DCLO Debt capitalized lease obligations 10.08% 1965
 35 DCOM Deferred compensation 72.02% 1980
 36 DCPSTK Convertible debt and stock 2.85% 1963
 37 DCVSR Debt senior convertible 9.89% 1970
 38 DCVSUB Debt subordinated convertible 11.96% 1970
 39 DCVT Debt – convertible 5.80% 1963
 40 DD Debt debentures 10.55% 1965
 41 DD1 Long-term debt due in one year 5.05% 1963
 42 DD2 Debt Due in 2nd Year 23.27% 1974
 43 DD3 Debt Due in 3rd Year 23.32% 1974
 44 DD4 Debt Due in 4th Year 23.16% 1974
 45 DD5 Debt Due in 5th Year 24.04% 1974
 46 DFS Debt finance subsidiary 79.68% 1992
 47 DFXA Depreciation of tangible fixed assets 65.07% 1970
 48 DILADJ Dilution adjustment 62.54% 1994
 49 DILAVX Dilution available excluding extraordinary items 62.54% 1994
 50 DLC Debt in current liabilities - total 0.72% 1963
 51 DLCCH Current debt changes 60.86% 1974
 52 DLTIS Long-term debt issuance 10.50% 1972
 53 DLTO Other long-term debt 9.96% 1965
 54 DLTP Long-term debt tied to prime 38.66% 1975
 55 DLTR Long-term debt reduction 9.84% 1972
 56 DLTT Long-term debt - total 0.20% 1963
 57 DM Debt mortgages &other secured 33.76% 1981
 58 DN Debt notes 10.56% 1965
 59 DO Income (loss) from discontinued operations 3.66% 1963
 60 DONR Nonrecurring discontinued operations 71.10% 1994
 61 DP Depreciation and amortization 0.24% 1963
 62 DPACT Depreciation , depletion and amortization 0.44% 1963
 63 DPC Depreciation and amortization (cash flow) 8.59% 1972
 64 DPVIEB Depreciation ending balance (schedule VI) 19.34% 1970
 65 DPVIO Depreciation other changes (schedule VI) 65.12% 1970
 66 DPVIR Depreciation retirements (schedule VI) 65.14% 1970
 67 DRC Deferred revenue current 73.42% 1994

 (continued on next page)
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Table B.1 (continued).
 # Variable Description Missing rate Start year
 68 DS Debt-subordinated 9.93% 1965
 69 DUDD Debt unamortized debt discount and other 29.51% 1963
 70 DV Cash dividends (cash flow) 8.55% 1972
 71 DVC Dividends common/ordinary 0.11% 1963
 72 DVP Dividends - preferred/preference 0.06% 1963
 73 DVPA Preferred dividends in arrears 17.95% 1964
 74 DVPIBB Depreciation beginning balance (schedule VI) 60.82% 1970
 75 DVT Dividends – total 0.11% 1963
 76 DXD2 Debt (excl capitalized leases) due in 2nd year 49.31% 1985
 77 DXD3 Debt (excl capitalized leases) due in 3rd year 49.25% 1985
 78 DXD4 Debt (excl capitalized leases) due in 4thyear 48.96% 1985
 79 DXD5 Debt (excl capitalized leases) due in 5thyear 49.36% 1985
 80 EBIT Earnings before interest and taxes 1.36% 1963
 81 EBITDA Earnings before interest 0.21% 1963
 82 ESOPCT ESOP obligation (common) - total 40.69% 1980
 83 ESOPDLT ESOP debt - long term 49.09% 1990
 84 ESOPT Preferred ESOP obligation - total 41.01% 1964
 85 ESUB Equity in earnings -unconsolidated subsidiaries 12.33% 1963
 86 ESUBC Equity in net loss earnings 22.05% 1972
 87 EXRE Exchange rate effect 38.46% 1988
 88 FATB Property, plant, and equipment buildings 51.33% 1985
 89 FATC Property, plant and equipment construction in progress 47.36% 1985
 90 FATE Property, plant, equipment and machinery equipment 53.32% 1985
 91 FATL Property, plant, and equipment leases 57.58% 1985
 92 FATN Property, plant, equipment and natural resources 47.37% 1985
 93 FATO Property, plant, and equipment other 52.84% 1985
 94 FATP Property, plant, equipment and land improvements 51.25% 1985
 95 FIAO Financing activities other 38.35% 1988
 96 FINCF Financing activities net cash flow 38.35% 1988
 97 FOPO Funds from operations other 7.83% 1972
 98 FOPOX Funds from operations - Other excl option tax benefit 76.37% 1992
 99 FOPT Funds from operations total 69.42% 1972
 100 FSRCO Sources of funds other 70.81% 1972
 101 FSRCT Sources of funds total 71.27% 1972
 102 FUSEO Uses of funds other 70.81% 1972
 103 FUSET Uses of funds total 71.61% 1972
 104 GDWL Goodwill 47.13% 1989
 105 GP Gross profit (loss) 0.09% 1963
 106 IB Income before extraordinary items 0.05% 1963
 107 IBADJ IB adjusted for common stock equivalents 0.05% 1963
 108 IBC Income before extraordinary items (cash flow) 7.82% 1972
 109 IBCOM Income before extraordinary items available for common 0.05% 1963
 110 ICAPT Invested capital – total 1.54% 1963
 111 IDIT Interest and related income - total 42.18% 1965
 112 INTAN Intangible assets – total 10.02% 1963
 113 INTC Interest capitalized 16.78% 1963
 114 INTPN Interest paid net 43.82% 1988
 115 INVCH Inventory decrease (increase) 43.46% 1988
 116 INVFG Inventories finished goods 41.28% 1970
 117 INVO Inventories other 52.52% 1984
 118 INVRM Inventories raw materials 40.27% 1969
 119 INVT Inventories – total 1.43% 1963
 120 INVWIP Inventories work in progress 43.69% 1970
 121 ITCB Investment tax credit (balance sheet) 3.20% 1963
 122 ITCI Investment tax credit (income account) 37.65% 1963
 123 IVACO Investing activities other 38.35% 1988
 124 IVAEQ Investment and advances – equity 9.07% 1963
 125 IVAO Investment and advances other 7.07% 1963
 126 IVCH Increase in investments 13.68% 1972
 127 IVNCF Investing activities net cash flow 38.35% 1988
 128 IVST Short-term investments – total 12.35% 1963
 129 IVSTCH Short-term investments change 48.38% 1988
 130 LCO Current liabilities other total 4.76% 1963
 131 LCOX Current liabilities other sundry 6.10% 1963
 132 LCOXDR Current liabilities-other-excl deferred revenue 72.40% 1994
 133 LCT Current liabilities – total 1.69% 1963
 134 LIFR LIFO reserve 22.04% 1976
 135 LO Liabilities – other – total 0.72% 1963
 136 LT Liabilities – total 0.50% 1963
 137 MIB Minority interest (balance sheet) 6.37% 1963
 138 MII Minority interest (income account) 10.24% 1963
 139 MRC1 Rental commitments minimum 1styear 27.85% 1975
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Table B.1 (continued).
 # Variable Description Missing rate Start year
 140 MRC2 Rental commitments minimum 2ndyear 28.34% 1975
 141 MRC3 Rental commitments minimum 3rdyear 28.46% 1975
 142 MRC4 Rental commitments minimum 4th year 28.61% 1975
 143 MRC5 Rental commitments minimum 5th year 30.38% 1975
 144 MRCT Rental commitments minimum 5 year total 29.51% 1975
 145 MSA Marketable securities adjustment 18.18% 1976
 146 NI Net income (loss) 0.06% 1963
 147 NIADJ Net income adjusted for common stock equiv. 2.24% 1963
 148 NIECI Net income effect capitalized interest 59.92% 1976
 149 NOPI Non-operating income (expense) 0.10% 1963
 150 NOPIO Non-operating income (expense) other 0.10% 1963
 151 NP Notes payable short-term borrowings 0.80% 1963
 152 OANCF Operating activities net cash flow 38.36% 1988
 153 OB Order backlog 64.22% 1971
 154 OIADP Operating income after depreciation 0.07% 1963
 155 PI Pre-tax income 0.06% 1963
 156 PIDOM Pretax income domestic 74.94% 1981
 157 PIFO Pretax income foreign 75.36% 1981
 158 PPEGT Property, plant, and equipment – total (gross) 0.45% 1963
 159 PPENB Property, plant, and equipment buildings (net) 70.38% 1970
 160 PPENC Property plant equipment construction in progress (net) 65.66% 1970
 161 PPENLI Property plant equipment land and improvements (net) 70.26% 1970
 162 PPENME Property plant equipment machinery and equipment (net) 69.73% 1970
 163 PPENNR Property plant equipment natural resources (net) 69.31% 1970
 164 PPENO Property plant and equipment other (net) 69.26% 1970
 165 PPENT Property, plant, and equipment – total (net) 0.11% 1963
 166 PPEVBB Property plant equipment beginning balance (schedule V) 57.03% 1963
 167 PPEVEB Property, plant, and equipment ending balance 15.25% 1963
 168 PPEVO Property, plant, and equipment other changes (schedule V) 62.50% 1963
 169 PPEVR Property, plant and equipment retirements (schedule V) 62.50% 1963
 170 PRSTKC Purchase of common and preferred stock 12.98% 1972
 171 PSTK Preferred/preference stock (capital) – total 0.24% 1963
 172 PSTKC Preferred stock convertible 4.96% 1963
 173 PSTKL Preferred stock liquidating value 0.05% 1963
 174 PSTKN Preferred/preference stock – non-redeemable 1.48% 1963
 175 PSTKR Preferred/preference stock - redeemable 20.89% 1964
 176 PSTKRV Preferred stock redemption value 0.06% 1963
 177 RDIP In process R&D expense 65.68% 1994
 178 RE Retained earnings 2.04% 1963
 179 REA Retained earnings restatement 10.33% 1970
 180 REAJO Retained earnings other adjustments 30.06% 1983
 181 RECCH Accounts receivable decrease (increase) 41.58% 1988
 182 RECCO Receivables – current – other 3.21% 1963
 183 RECD Receivables – estimated doubtful 29.03% 1970
 184 RECT Receivables – total 1.45% 1963
 185 RECTA Retained earnings cumulative translation adjustment 30.39% 1983
 186 RECTR Receivables – trade 17.96% 1967
 187 REUNA Retained earnings unadjusted 29.89% 1983
 188 SALE Sales/turnover (net) 0.05% 1963
 189 SEQ Stockholders’ equity – total 2.24% 1963
 190 SIV Sale of investments 16.24% 1972
 191 SPI Special items 3.93% 1963
 192 SPPE Sale of property 28.92% 1972
 193 SPPIV Sale of property plant equipment investments gain (loss) 38.36% 1988
 194 SSTK Sale of common and preferred stock 9.55% 1972
 195 TLCF Tax loss carry forward 23.48% 1963
 196 TSTK Treasury stock – total (all capital) 16.37% 1970
 197 TSTKC Treasury stock – common 26.38% 1974
 198 TSTKP Treasury stock – preferred 25.51% 1963
 199 TXACH Income taxes accrued increase/decrease 56.69% 1988
 200 TXBCO Excess tax benefit stock options -cash flow 76.43% 1992
 201 TXC Income tax – current 16.78% 1963
 202 TXDB Deferred taxes (balance sheet) 3.34% 1963
 203 TXDBA Deferred tax asset - long term 73.84% 1993
 204 TXDBCA Deferred tax asset - current 73.11% 1994
 205 TXDBCL Deferred tax liability - current 74.46% 1994
 206 TXDC Deferred taxes (cash flow) 10.38% 1972
 207 TXDFED Deferred taxes-federal 48.37% 1985
 208 TXDFO Deferred taxes-foreign 45.98% 1985
 209 TXDI Income tax – deferred 6.99% 1963
 210 TXDITC Deferred taxes and investment tax credit 3.34% 1963
 211 TXDS Deferred taxes-state 48.91% 1985
 212 TXFED Income tax federal 16.78% 1963
 213 TXFO Income tax foreign 19.02% 1970
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Table B.1 (continued).
 # Variable Description Missing rate Start year
 214 TXNDB Net deferred tax asset (liab) - total 69.95% 1994
 215 TXNDBA Net deferred tax asset 72.66% 1994
 216 TXNDBL Net deferred tax liability 72.67% 1994
 217 TXNDBR Deferred tax residual 72.05% 1994
 218 TXO Income taxes - other 33.11% 1963
 219 TXP Income tax payable 5.93% 1963
 220 TXPD Income taxes paid 45.36% 1988
 221 TXR Income tax refund 10.40% 1963
 222 TXS Income tax state 17.76% 1963
 223 TXT Income tax total 0.06% 1963
 224 TXW Excise taxes 24.39% 1976
 225 WCAP Working capital (balance sheet) 2.15% 1963
 226 WCAPC Working capital change other increase/decrease 72.51% 1972
 227 WCAPCH Working capital change total 74.62% 1972
 228 XACC Accrued expenses 19.16% 1963
 229 XAD Advertising expense 64.98% 1963
 230 XDEPL Depletion expense (schedule VI) 68.80% 1970
 231 XI Extraordinary items 1.60% 1963
 232 XIDO Extra. items and discontinued operations 0.06% 1963
 233 XIDOC Extra. items and disc. operations (cash flow) 9.44% 1972
 234 XINT Interest and related expenses – total 5.05% 1963
 235 XOPR Operating expenses – total 0.09% 1963
 236 XPP Prepaid expenses 43.96% 1963
 237 XPR Pension and retirement expense 25.03% 1963
 238 XRD Research and development expense 47.01% 1963
 239 XRENT Rental expense 14.34% 1963
 240 XSGA Selling, general and administrative expense 12.13% 1963
Table C.1
List of financial ratios and configurations. This table lists the 76 financial ratios and configurations used in this study. Our sample period is 1963–2019. We 
begin with all accounting variables on the balance sheet, income statement, and cash flow statement included in the annual Compustat database. We exclude all 
variables with fewer than 20 years of data or fewer than 1,000 firms with non-missing data on average per year. We exclude per-share-based variables such as 
book value per share and earnings per share. ‘‘X’’ represents the 240 accounting variables listed in Table B.1. ‘‘Y’’ represents the fifteen base variables, including 
AT (total assets), ACT (total current assets), INVT (inventory), PPENT (property, plant, and equipment), LT (total liabilities), LCT (total current liabilities), DLTT 
(long-term debt), CEQ (total common equity), SEQ (stockholders’ equity), ICAPT (total invested capital), SALE (total sale), COGS (cost of goods sold), XSGA 
(selling, general, and administrative cost), EMP (number of employees), and MKTCAP (market capitalization). Please refer to Yan and Zheng (2017) for more 
details. 
 # Description # Description # Description # Description # Description  
 1 X/AT 16 𝛥 in X/AT 31 %𝛥 in X/AT 46 𝛥X/LAGAT 61 %𝛥 in X − %𝛥 in AT  
 2 X/ACT 17 𝛥 in X/ACT 32 %𝛥 in X/ACT 47 𝛥X/LAGACT 62 %𝛥 in X − %𝛥 in ACT  
 3 X/INVT 18 𝛥 in X/INVT 33 %𝛥 in X/INVT 48 𝛥X/LAGINVT 63 %𝛥 in X − %𝛥 in INVT  
 4 X/PPENT 19 𝛥 in X/PPENT 34 %𝛥 in X/PPENT 49 𝛥X/LAGPPENT 64 %𝛥 in X − %𝛥 in PPENT  
 5 X/LT 20 𝛥 in X/LT 35 %𝛥 in X/LT 50 𝛥X/LAGLT 65 %𝛥 in X − %𝛥 in LT  
 6 X/LCT 21 𝛥 in X/LCT 36 %𝛥 in X/LCT 51 𝛥X/LAGLCT 66 %𝛥 in X − %𝛥 in LCT  
 7 X/DLTT 22 𝛥 in X/DLTT 37 %𝛥 in X/DLTT 52 𝛥X/LAGDLTT 67 %𝛥 in X − %𝛥 in DLTT  
 8 X/CEQ 23 𝛥 in X/CEQ 38 %𝛥 in X/CEQ 53 𝛥X/LAGCEQ 68 %𝛥 in X − %𝛥 in CEQ  
 9 X/SEQ 24 𝛥 in X/SEQ 39 %𝛥 in X/SEQ 54 𝛥X/LAGSEQ 69 %𝛥 in X − %𝛥 in SEQ  
 10 X/ICAPT 25 𝛥 in X/ICAPT 40 %𝛥 in X/ICAPT 55 𝛥X/LAGICAPT 70 %𝛥 in X − %𝛥 in ICAPT  
 11 X/SALE 26 𝛥 in X/SALE 41 %𝛥 in X/SALE 56 𝛥X/LAGSALE 71 %𝛥 in X − %𝛥 in SALE  
 12 X/COGS 27 𝛥 in X/COGS 42 %𝛥 in X/COGS 57 𝛥X/LAGCOGS 72 %𝛥 in X − %𝛥 in COGS  
 13 X/XSGA 28 𝛥 in X/XSGA 43 %𝛥 in X/XSGA 58 𝛥X/LAGXSGA 73 %𝛥 in X − %𝛥 in XSGA  
 14 X/EMP 29 𝛥 in X/EMP 44 %𝛥 in X/EMP 59 𝛥X/LAGEMP 74 %𝛥 in X − %𝛥 in EMP  
 15 X/MKTCAP 30 𝛥 in X/MKTCAP 45 %𝛥 in X/MKTCAP 60 𝛥X/LAGMKTCAP 75 %𝛥 in X − %𝛥 in MKTCAP 
 76 %𝛥 in X  
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