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Abstract—Finding High Utility Itemsets (HUIs) in databases
is crucial for identifying items that are of high importance (like
profit) for decision-making. However, current High Utility Itemset
Mining (HUIM) algorithms often ignore the interest or target of
users in favor of effectively identifying categories of HUIs using
various measures and constraints. As a result, these techniques
usually return a set of HUIs that are either too large or small
to employ in decision making. Nevertheless, it is apparent that
users are often interested in a select group of HUIs which may be
among the set of HUIs reported using existing techniques. While
some recent and early works have offered methods for discovering
user-targeted HUIs, these methods are neither memory- nor time-
efficient as they depend on post-processing or pattern matching.
Additionally, throughout the discovery process, these techniques
are required to scan the database twice. To address these issues,
this paper proposes an efficient Target High Utility Itemset Miner
(TarHUIM). In contrast to current methods, TarHUIM uses the
users’ target list and a single database scan to significantly
reduce the search space and amount of time needed to find
the user-targeted HUIs. Extensive experimental analysis show
that TarHUIM is efficient and effective in discovering the set of
targeted HUIs.

Index Terms—frequent itemsets, high utility itemsets, target
high utility itemsets.

I. INTRODUCTION

Frequent Itemset Mining (FIM) was introduced in [1] with

the aim of identifying patterns in customer transactions for

market basket analysis. The goal in FIM (for any given

database) is to identify items that co-occur frequently for a

given user threshold. Frequent itemset mining is a relevant

task as the discovered items that co-occur frequently in a

database could reveal insights about events within the database

for decision making. For instance, in market basket analy-

sis, a frequent itemset such as {apple, pear} in a customer

transaction database simply implies that, customers often buy

apple and pear together. Knowledge of this frequent itemset

{apple, pear} can be vital to support marketing decisions

such as co-promoting apple and pear. Since its inception,

research on frequent itemset mining has led to the development

of a number of techniques and methodologies ( [15], [22],

[24], [29]) for mining different types of frequent itemsets for

different decision-making.

Although frequent itemset mining techniques are able to

reveal co-occurring patterns in databases, in some decision

making, for instance, where interest is on items that return

high profits when sold together, traditional FIM techniques

will not be applicable. This is because frequent itemset mining

techniques solely rely on the “frequency” threshold as the

criterion of interest. As such, some of the frequent itemsets

reported with traditional FIM techniques will not always be

the high profit yielding itemsets needed in decision making.

The idea of High Utility Itemset Mining (HUIM) was thus

developed to address the inapplicability of FIM techniques

in revealing the high profit yielding itemsets required in

some decision making. Unlike frequent itemset mining (where

frequency is important), high utility itemset mining (which is a

generalization of frequent itemset mining) seeks to reveal co-

occurring itemsets in databases that are of high utility. For

example, in market basket analysis, while frequent itemset

mining techniques will report the frequent co-occurring item-

sets, HUIM techniques will return the high profit yielding co-

occurring itemsets. Over the past years, several techniques and

approaches have been proposed for discovering HUIs in works

such as [4], [12], [14], [16]–[18], [23], [25], [26], [28].

Most of the current HUIM approaches, however, often

ignore the interest or target of users when discovering HUIs.

As such, they often report either too many HUIs or too few

HUIs to users for decision making. However, it is evident that

users are often interested in a select group of HUIs which may

be reported alongside those that are not of interest, or may not

be reported at all (since the targeted HUIs may not meet the

thresholds in existing techniques). Consequently, users have to

either search through several reported HUIs to identify those

of interest or keep adjusting the utility threshold until those

of interest are reported.

Despite the fact that some early works on HUIM consider

users’ targets to mine targeted HUIs, they face the following

challenges. To the best of our knowledge, existing works on
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targeted high utility itemset mining either use post-processing
( [20]) or pattern matching ( [21]) during the discovery

process to identify the targeted HUIs. Relying on either post-
processing or pattern matching make these techniques ineffi-

cient in both memory usage and runtime as they mostly do

not reduce the search space during the discovery process (see

Example 11). As such, the search space in discovering targeted

HUIs especially those using the post-processing techniques

is the same as discovering all HUIs. It is also worth noting

that, existing techniques which use either the post-processing
or pattern matching always have to scan the database twice:

first to get the information about unique items and second

to compute the Transaction Weighted Utility (TWU) of all

items before subsequently sorting all transactions based on

the TWUs. Scanning the database twice makes existing algo-

rithms inefficient and time consuming in discovering targeted

HUIs. Additionally, computing the TWUs of all items renders

existing target HUIM techniques inefficient as some items may

never co-occur with the user targeted items.

To address the aforementioned issues in existing targeted

HUIM techniques, this paper proposes an efficient Target High

Utility Itemset Miner (TarHUIM). Unlike existing techniques,

TarHUIM scans the database once and drastically reduces the

search space for the target HUIM based on the users’ targeted

items. Consequently, only transactions in which the targeted

items co-occur are searched to identify the user targeted HUIs.

The main contributions of this paper are summarized as

follows:

• An efficient Target High Utility Itemset Miner

(TarHUIM) is proposed for mining the set of user-

targeted high utility itemsets from databases.

• We present a strategy that enables a single database scan

and effectively reduces the search space for target high

utility itemset mining based on the users’ target.

• Extensive experiments performed on benchmark datasets

to evaluate the performance of TarHUIM show that

TarHUIM is efficient and effective in discovering user

targeted HUIs and can drastically reduce the search space

for targeted HUIM compared to existing techniques.

The rest of this paper is organized as follows. Section

II presents an overview of related work while Section III

describes the problem of targeted high utility itemset mining.

Section IV presents the proposed Target High Utility Itemset

Miner (TarHUIM) and Section V discusses the experimental

analysis as well as the results. Section VI finally concludes

the paper and with some remarks and future works.

II. RELATED WORK

Mining high utility itemsets in databases was proposed in

[2] to tackle the inability of frequent itemset mining techniques

to discover patterns that are of high utility (importance). Au-

thors in [28], however, developed the mathematical technique

to enable mine HUIs from databases. Since its proposition,

HUIM has been widely researched on using various techniques

and constraints for mining categories of HUIs for domain

specific decision making. Such techniques and constraints can

be found in works for mining: a.) concise representations of

HUIs ( [4], [10], [11], [27]), b.) HUIs with length constraints (

[12]), c.) HUIs with negative utilities ( [3], [18]), d.) correlated

HUIs ( [6], [8], [13], [14]), e.) top-k HUIs ( [5]) and f.)

traditional HUIs using various techniques ( [7], [19], [30]).

To a large extent however, existing works on high utility

itemset mining focus mainly on the efficient discovery of

categories of HUIs for domain specific applications while

ignoring the target (interest) of users. Consequently, users

interested in a select group of HUIs will often have to search

through a large set of reported HUIs (if the thresholds are set

low) or a small set of reported HUIs (if the thresholds are set

high). In most cases, users of traditional HUIMs techniques

often have to repeatedly vary the thresholds and search among

the reported HUIs to identify those of interest to them.

Quite recently, to address this issue and enable the mining

of targeted HUIs, the works in [20], [21] proposed some initial

techniques for mining HUIs based on user targets using either

post-processing or pattern matching. Though these works are

able to discover and report target HUIs, they are inefficient

in both memory and runtime during the discovery of these

targeted HUIs as follows.

Firstly, for targeted HUIM techniques that employ post-
processing [20], all high utility itemsets (based on the set

thresholds) need to be discovered, and a search using the

users’ target is conducted among the discovered HUIs to

report the target HUIs. This approach of mining all HUIs and

subsequently searching based on the users’ target makes target-

oriented HUIM techniques using post-processing both memory

and time inefficient. Secondly, for targeted HUIM techniques

that use pattern matching techniques [21], all unique items (in

the database) are assigned serial numbers during the discovery

process. This is counter-intuitive, making such techniques

inefficient in both memory and time, as not all unique items

are relevant in target HUIM - only items that co-occur with the

users’ target should be serialized, not all unique items. Thirdly,

to the best of our knowledge, existing target HUIM techniques

(that use either pattern matching or post-processing), always

scan the database twice. These techniques have to firstly scan

the database to obtain the information about the unique items

in the database as well as compute their respective Transaction
Weighted Utilities (TWUs). Again, computing the TWUs of all

items in the database is counter-intuitive and thus make these

techniques both memory and time inefficient since some items

may never co-occur with the users’ target (see Examples 10

and 11). In the second scan of the database (aimed at reducing

the search space using the users’ target), all transactions are

compared with the target of the user before being sorted using

the computed TWUs. Though this reduces the search space for

the target HUIM, it is time consuming since some transactions

which do not contain the users’ target are still compared with

the users’ target before they are pruned from the search space

(see Examples 10 and 11).

To address these challenges faced by existing target HUIM

techniques mentioned previously, this paper proposes and

implements a novel algorithm named TarHUIM (Target High
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Utility Itemset Miner). Unlike existing target HUIM tech-

niques ( [20], [21]), TarHUIM scans the database only once

and subsequently reduces the search space using the users’

target (see Example 13). Additionally, TarHUIM mines and

reports the set of target HUIs without creating the utility list,

without computing the TWUs or the remaining utilities of

all items (as is done in existing techniques) and as a result,

making TarHUIM efficient in terms of memory and runtime.

III. PRELIMINARIES AND PROBLEM STATEMENT

This section introduces the concepts and preliminary steps

in mining frequent and high utility itemsets. Subsequently, the

problem of targeted high utility itemset mining is presented.

A. Frequent Itemset Mining

The notations associated with frequent itemset mining are

as follows.

Let I = {i1, i2,..., im} be a set of literals, called items. A

set X1 = {ia, . . . , ij} ⊆ I (such that a ≤ j and a, j ∈ [1,m]),
is called a pattern (or an itemset). A transaction database is

a set of transactions D = {T1, T2, T3, . . . , Tk} such that for

each transaction Ta, Ta ⊆ I and Ta has a unique identifier a
called its transaction ID (TID).

Example 1: Let Table I be the transaction database of a store,

where the set of items for this database is I = {a, b, c, d, e, f}.

Transaction T3 in Table I which has a transaction ID of 3 and

three items (that is, a, b and c) is a length-3 itemset. �

TABLE I: Sample Customer Transactions

TID Transaction
T1 {d, e, f}
T2 {b, d, f}
T3 {a, b, c}
T4 {b, d, e, f}
T5 {a, c, d}

The coverset (cov(S)) of an itemset, S, in a database, D is

defined as cov(S) = {TID|∀TTID ∈ D ∧ S ⊆ TTID}
Example 2: In Table I, given, S = {b, f}, then cov(S) =

{2, 4} since {b, f} occurs in transactions T2 and T4. �
The support count (also referred to as count) of a pattern S

in D (denoted as |cov(S)|) is defined as the number of times S
appears in the database. The support (also known as absolute
support) of S (denoted as sup(S)) is defined as follows:

sup(S) =
|cov(S)|

|D| (1)

where |D| is the size of the database.

Example 3: In Table I, given S = {b, f}, then support
count of S becomes 2 since {b, f} occurs in two transactions.

The support of S, that is, sup(S) can thus be evaluated as

sup(S) = 2
5 = 0.4 since |cov(S)| = |{2, 4}| = 2 and the

database size, that is, | D |= 5. �
A frequent itemset is defined by [1] as follows:

Definition 1: (Frequent itemset [1]) Given a user defined

minimum support threshold of frequency, minsup (such that,

0 < minsup ≤ 1) and a database D, an itemset S, is a

frequent itemset if the support of S is greater than or equal to

the minimum support threshold of frequency, that is, sup(S) ≥
minsup.

The problem of Frequent Itemset Mining is defined as

follows:

Definition 2: (Frequent itemset mining [1]). Given a set

of items I , a transaction database D, and a minimum support

threshold (minsup) set by the user, the problem of Frequent

Itemset Mining (FIM) is to discover all frequent itemsets in

the transaction database D.

Example 4: Considering the customer transactions in Table I

and a minimum support of 0.6, the set of frequent itemsets and

their respective supports from Table I will be: {b} : 0.6, {d} :
0.8, {f} : 0.6 and {d, f} : 0.6. �
B. High Utility Itemset Mining (HUIM)

The notations for HUIM are the same as those of frequent

pattern mining with the following additions.

Given I = {i1, i2,..., im} as a set of literals, called items. A

quantitative transaction database, D, is a set of transactions,

denoted as D = {T1, T2, . . . , Tk}, where each transaction Tc

is a set of items such that Tc ⊆ I , and has a unique identifier c
called its Transaction ID (TID). Each item i ∈ I is associated

with a positive number eu(i), called its external utility. The

external utility of an item is a positive number representing

the unit profit of the item. Moreover, every item i appearing

in a transaction Tc has a positive number n(i, Tc), called its

internal utility, representing the purchase quantity of item i in

transaction Tc.

Example 5: Let Table II be a quantitative transaction

database of a store, the set of items for this database is

I = {a, b, c, d, e, f, g}. Table III depicts the profit of each item,

that is, the external utility of each item in Table II. In Table

II, transaction T1 which is ‘d e f:7:4 2 1’ correspondingly

imply that, the customer bought 4 units (pieces) of d, 2 units

(pieces) of e and 1 unit (piece) of f with 7 as the total number

of items bought (that is, 4 + 2 + 1). Table III which contains

the external utility imply that the profit gained for a unit of a
sold is 3 while the profit gained for a unit of f sold is 9. �

TABLE II: Sample Quantitative Customer Transactions

TID Transaction
T1 d e f:7:4 2 1
T2 b d:4:1 3
T3 a b c:3:1 1 1
T4 b d e f:7:1 3 1 2
T5 a c d:6:1 4 1
T6 b d e f:5:1 1 1 2
T7 a d g:7:1 2 4
T8 a b d g:6:2 1 2 1
T9 a c d g:7:3 1 1 2
T10 b d g:8:2 2 4

A utility function is used to compute the utility of each

item - that is, a measure of the relevance of an item in a

database to the user. The utility in this case is defined as the

profit generated by items that are bought together. Formally,

the utility of an item in a transaction is defined as:

Definition 3: (Utility of an item) The utility of an item

i in a transaction Tc (denoted as u(i, Tc)) is the product of
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TABLE III: External Utilities∗ of Items in Table II

Item External Utility
a 3
b 2
c 5
d 3
e 7
f 9
g 10

∗The external utility database, in reality, stores items and their utilities in the
form item:utility per line, e.g., b:2

the external utility and internal utility of the item in that

transaction, formally expressed as:

u(i, Tc) = eu(i)× n(i, Tc) (2)

Example 6: Given the item {d} which occurs in transaction

T1, based on Tables II and III, its utility in T1 will be evaluated

using Equation 2 as u(d, T1) = 3× 4 = 12. �
The utility of an itemset in a transaction is defined as:

Definition 4: (Utility of an itemset) The utility of an itemset

S in a transaction Tc (denoted as u(S, Tc)) is the sum of the

products of the external and internal utilities of the items in

S for transaction Tc, formally expressed as:

u(S, Tc) =
∑

i∈S

u(i, Tc) (3)

Example 7: Given the itemset S = {a, b} which was bought

in transaction T3, based on Tables II and III, its utility will be

evaluated using Equation 3 as:

u(a, b, T3) = u(a, T3) + u(b, T3) = (3× 1) + (2× 1) = 5.�

The total utility of an itemset in a database is defined as:

Definition 5: (Total utility of an itemset) The total utility of

an itemset S in a database D (denoted as u(S,D)) is the sum

of the products of the external and internal utilities of items

in the itemset S for all transactions in D where S appears,

formally expressed as:

u(S,D) =
∑

Tc∈p(S)

u(S, Tc) (4)

where p(S) ⊆ D is the set of all transactions in the database

containing itemset S.

For brevity, we use u(S) as the total utility for the rest of the

paper.

Example 8: Given the itemset S = {a, b} in Table II, its

total utility will be evaluated using Equation 4 as:

u({a, b}) =
∑

Tc∈p({a,b})
u({a, b}, Tc)

= u({a, b}, T3) + u({a, b}, T8))

= 5 + 8

hence, u(a, b) = 13

�

Formally, a high utility itemset is defined as:

Definition 6: (High utility itemset) [8] An itemset S is a

high-utility itemset if its total utility u(S) is no less than a

user-specified minimum utility threshold (denoted as minutil)
set by the user (i.e., u(S) ≥ minutil). Otherwise, S is a

low-utility itemset.

Example 9: For the quantitative customer transactions in

Table II, their external utility values shown in Table III, given

minutil = 10, a total of 36 high-utility itemsets will be

reported as listed in Table IV. �

TABLE IV: HUIs from Table II given minutil =10

S u(S) S u(S) S u(S) S u(S)
{a} 24 {a, d} 39 {d, f} 69 {b, d, e} 30
{b} 14 {a, g} 88 {d, g} 131 {b, d, f} 52
{c} 30 {b, d} 45 {e, f} 73 {b, d, g} 68
{d} 57 {b, e} 18 {a, b, c} 10 {b, e, f} 54
{e} 28 {b, f} 40 {a, b, d} 14 {c, d, g} 28
{f} 45 {b, g} 56 {a, b, g} 18 {d, e, f} 97
{g} 110 {c, d} 31 {a, c, d} 43 {a, b, d, g} 24
{a, b} 13 {c, g} 25 {a, c, g} 34 {a, c, d, g} 37
{a, c} 45 {d, e} 52 {a, d, g} 103 {b, d, e, f} 66

In Example 9, a total of 36 HUIs are reported for the given

thresholds from a database with only ten (10) transactions

(comprising of 7 unique items). It is worth noting that, if the

unique items should increase alongside with the number of

transactions, the reported HUIs can be exponential. In such a

situation, it will be a burden to decision makers if all HUIs are

reported, as not all reported HUIs might be needed in decision

making to the user who might be interested in only a select

group of HUIs. This thus calls for the the need to selectively

mine user targeted high utility itemsets.

Though some recent works have proposed techniques for

mining user targeted HUIs, as mentioned previously, they are

inefficient in memory consumption and runtime as explained

in the Examples 10 and 11.

Example 10: For works that employ the post-processing
technique [20], given the user target HUIs must contain {e, f},

with the database in Table II, such techniques will mine all

the 36 HUIs reported in Example 9 and subsequently search

among the 36 reported HUIs to return the target HUIs as

{e, f}, {b, e, f}, {d, e, f} and {b, d, e, f}. The post-processing
technique searches the entire database to mine all HUIs and

subsequently search for and report the target HUIs. However,

from Table II, it is only in transactions T1, T4 and T6 that target

items {e} and {f} co-occur. As such, it becomes pointless

and a waste of time to search for the targeted HUIs among

transactions that do not contain the targeted items. �
Example 11: For works that employ the pattern matching

techniques [21], given the target HUIs must contain {e, f},

with the database in Table II, such techniques will scan the

database to compute the TWUs and remaining utilities of all

unique items though some items may not co-occur with the

target items. For instance, with {e, f} as the target, though

items {a}, {c} and {g} never co-occur with the target items

in the entire database, their TWUs and remaining utilities will

still be computed. Additionally, all transactions are scanned
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twice, including transactions that do not contain the target

items {e, f}. That is, transactions T2, T3, T5, T7, T8, T9 and

T10 will still be scanned twice even though the target items

do not co-occur in these transactions. Therefore, it is a waste of

both time and memory; computing the TWUs and remaining

utilities of items that never co-occur with the users’ target,

as well as scanning and comparing transactions that do not

contain the target items. �

C. Problem Statement

HUIM techniques always discover and report all itemsets

that are of high utility (based on thresholds) in the database.

However, users, in some cases, are only interested in HUIs

that contain some targeted items. As illustrated in Examples

10 and 11, techniques that use either post-processing or pattern
matching to discover targeted HUIs are not efficient as they,

in most cases, still search for the targeted HUIs in transactions

that do not contain the target of users, hence the need for an

efficient approach to discover targeted HUIs.

Problem Statement: The goal of targeted high utility

itemsets mining is to efficiently identify all HUIs based on

users’ targeted list of items (as well as utility thresholds)

among the set of transactions that contain the users’ target

list of items while ignoring those that do not contain the

users’ target list. For example, given that the target HUIs

must contain {e, f}, with the database in Table II, only in

transactions T1, T4 and T6 (in which {e} and {f} co-occur)

should be used in mining the set of targeted HUIs.

Section IV presents details of our proposed Target High

Utility Itemset Miner (TarHUIM) - which addresses the above

problem statement.

IV. THE TARHUIM ALGORITHM

Our proposed Target High Utility Itemset Miner (TarHUIM)

for mining user targeted high utility itemsets is shown in

Algorithm 1. TarHUIM which takes as input the quantita-

tive transaction database (D), the external utility database

(eD), the user target list (TargetList - for our running ex-

ample, TargetList = {e, f}), the minimum utility threshold

(minUtil) and a user threshold (α), discovers and reports the

Target High Utility Itemsets (THUIs) as follows.

For any given inputs (D, eD,minUtil, TargetList, α),

Line 1 (of Algorithm 1) creates the required data structures

needed. That is,

• iCov: a dictionary for storing the unique itemsets and an

ordered list of their respective coversets.

• eUtil: a dictionary for storing the unique length-1 items

and their respective external utilities.

• iUtil: a dictionary for storing the unique length-1 items

and an ordered list of their respective internal utilities.

• iList: for storing the candidate high utility itemsets.

• TarIDs: for storing the TIDs of transactions where the

users’ targeted items co-occur.

• THUIs: for storing the discovered targeted HUIs.

Subsequently, Line 2 creates the variables cLine and cLen
to keep track of the transaction IDs (in D) and the number

Algorithm 1: TarHUIM(D, eD, minUtil, TargetList, α)

Input: D, eD, minUtil, TargetList, α
Output: Target high utility itemsets, THUI

1 Create iCov, eUtil, iUtil, iList, TarIDs, THUI

2 Create cLine = 0, cLen = 0
3 FindLen1Items(D, iCov, iUtil, cLine)

4 FindTargetTransIDs(iCov, TargetList, TarIDs)

5 if len(TarIDs) < 1 then
6 GetExtUtil(eD, eUtil, TargetList)
7 FindLen1THUIs(TargetList, eUtil, iUtil)
8 else
9 PruneSearchSpace(iList, iCov, TarIDs)

10 GetExtUtil(eD, eUtil, iList)
11 FindLen1THUIs(TargetList, eUtil, iUtil)
12 cLen = len(iList)
13 MineRemTHUIs(cLen, iList, eUtil, iUtil)
14 return THUI

of items in iList respectively. Function 2 (FindLen1Items()) in

Line 3 obtains the unique length-1 items and their respective

coversets as well as quantities (which are stored in iCov and

iUtil respectively) while Function 3 (FindTargetTransIDs())

in Line 4 is employed to identify the transaction IDs of

transactions in which the users’ target list of items co-occur

(see Example 13 for illustration). Given the target list of items

do not co-occur in the database (that is, |TarIDs| < 1), Line

6 obtains the external utilities of the target items from the ex-

ternal utility database, and Line 7 subsequently mines length-1

THUIs (based on the users’ target) and TarHUIM terminates. If

the users’ target list of items co-occur in the database (that is,

len(TarIDs) ≥ 1)), Function 4 (PruneSearchSpace()) in Line

9 is used to identify the set of transactions which will be used

in the target HUIM and subsequently add the unique items

which co-occur with the users’ target list to iList. Line 10

obtains the external utilities of the items that co-occur with the

items in the target list while Line 11 mines the length-1 target

HUIs. Function 7 (MineRemTHUIs()) in Line 13 subsequently

mines the remaining target HUIs that have lengths more than

one (1). When all targeted HUIs are mined, Line 14 returns

THUI, the set of all discovered targeted high utility itemsets

based on the users’ target.

The following subsections discuss in details how the sub-

functions in TarHUIM (Algorithm 1) work in mining the user

targeted high utility itemsets.

A. Finding Length-1 Items

Function 2 (FindLen1Items()) is used in TarHUIM (see Line

3 of Algorithm 1) to find the set of length-1 items with their

respective coversets and internal utilities from the quantitative

transaction database (D). Taking as input the quantitative

database (D), the dictionaries iCov and iUtil, and the variable

cLine, Function 2, returns the set of length-1 items with their

respective coversets and internal utilities from D as follows.
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Function 2: FindLen1Items()

Input: D, iCov, iUtil, cLine
Output: iCov, iUtil

1 for each transaction, Tk in D do
2 cLine+ = 1
3 Let Lsp = Tk.split(“:”)

4 Let trans = Lsp[0].split(“ ”)

5 Let transUtil = Lsp[2].split(“ ”)

6 for each index, i in trans do
7 Let item = trans[i] and inutil = transUtil[i]
8 if item is not in iCov then
9 iCov[item] = [cLine]

10 iUtil[item] = [inutil]
11 else
12 iCov[item].update([cLine])
13 iUtil[item].update([inutil])
14 return iCov, iUtil

For each transaction in the dataset D, Lines 3, 4 and 5

split the transactions into the items bought (trans) and their

respective internal utilities (transUtil). Take for example the

first transaction, T1 = d e f:7:4 2 1 in Table II, Lines 3, 4 and

5 will result in trans = [‘d’, ‘e’, ‘f ’] and transUtil = [‘4’,

‘2’, ‘1’].

In Lines 6 through 13, the dictionaries iCov, and iUtil are

updated as follows. Line 7 gets the item at ith index in trans
with its corresponding internal utility (inutil) at the ith index

in transUtil. If the item is not in iCov, Line 9 creates a new

entry in iCov with the key as “item” and value as an ordered

list containing “cLine” (the variable cLine keeps track of the

transaction IDs of items) while Line 10 creates a new entry in

iUtil with the key as “item” and the value as an ordered list

containing “inutil”. If on the other hand, the item is found in

iCov, Line 12 updates the ordered coverset of item in iCov
with “cLine” while Line 13 updates the ordered internal utility

of item in iUtil with “inutil”.

For illustration purposes, Figure 1 shows the content of

iCov (Figure 1a) and iUtil (Figure 1b) respectively after

Function 2 scans Table II.

a [3, 5, 7, 8, 9]

b [2, 3, 4, 6, 8, 10]

c [3, 5, 9]

d [1, 2, 4, 5, 6, 7, 8, 9, 10]

e [1, 4, 6]

f [1, 4, 6]

g [7, 8, 9, 10]

(a) iCov

a [1, 1, 1, 2, 3]

b [1, 1, 1, 1, 1, 2]

c [1, 4, 1]

d [4, 3, 3, 1, 1, 2, 2, 1, 2]

e [2, 1, 1]

f [1, 2, 2]

g [4, 1, 2, 4]

(b) iUtil

Fig. 1: iCov and iUtil after Function 2 Scans Table II

B. Finding Target Transactions

TarHUIM uses Function 3 (FindTargetTransIDs()) to iden-

tify all transaction IDs in which the users’ target list of items

co-occur in the database as follows.

Function 3: FindTargetTransIDs()

Input: iCov, TarIDs, TargetList
Output: TarIDs

1 if TargetList contains only one item, i then
2 Get cov(i) from iCov, update TarIDs ← cov(i)
3 else
4 Get coversets of all items in TargetList from iCov
5 Get intersection of coversets of items in TargetList
6 Update TarIDs ← {intersection of coversets}
7 return TarIDs

If the list of user targeted items, TargetList has only one

item, its coverset is obtained from iCov and subsequently

stored in TarIDs in Line 2. If TargetList has more than

one item, the set of target transaction IDs are obtained from

Lines 4 to 6 by getting the coversets of each item from iCov
and subsequently finding the intersection of all coversets. The

intersection of all coversets (which is the set of all transactions

in which all the target items co-occur) is then added to

TarIDs in Line 6 while Line 7 returns the set of targeted

transaction IDs.

Example 12: In our running example, with the target list of

items as {e, f}, that is, TargetList = {e, f}, from Figure 1a,

Line 5 will return the intersection as [1, 4, 6] since cov(e) =
[1, 4, 6] and cov(f) = [1, 4, 6]. Subsequently, [1, 4, 6] will be

added to TarIDs in Line 6 while in Line 7, TarIDs =
[1, 4, 6] will be returned as the set of targeted transactions IDs

needed in the targeted HUI mining.

C. Pruning Search Space

TarHUIM uses Function 4 (PruneSearchSpace()) to identify

the set of all length-1 items which co-occur with the targeted

transactions IDs obtained in Function 3. Function 4, which

does not scan the database again as existing works, only

searches in iCov to identify the length-1 items that occur in

the obtained targeted transactions (TarIDs) as follows.

For every item, i in iCov, for a given threshold (α), if i oc-

curs in the targeted transactions (that is, |cov(i)∩TarIDs| ≥
α, where α is a user threshold), i is added to iList in Line

4 while: a.) Line 5 updates the entry of i in iCov with

new values (cov(i) ∩ TarIDs, that is, an ordered list of the

transaction IDs of i in the targeted transactions), and b.) Line 6

updates the entry of i in iUtil with the ordered corresponding

internal utilities of i in the targeted transactions. If the item i
does not occur in the targeted transactions, its entry is removed

from both iCov and iUtil in Line 8. Line 9 then sorts iList
in ascending order while Line 10 returns the sorted iList as

well as the updated iCov and iUtil. We illustrate this process

in Example 13.
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Function 4: PruneSearchSpace()

Input: iList, iCov, TarIDs, α
Output: iList, iCov

1 for each item, i in iCov do
2 Get cov(i) from iCov
3 if cov(i)∩ TarIDs ≥ α then
4 Add i to iList
5 Update iCov[i] = [cov(i) ∩ TarIDs]
6 Update iUtil[i] = [corresponding utilities]
7 else
8 Remove i entry from both iCov and iUtil
9 Sort iList in ascending order

10 return iList, iCov, iUtil

Example 13: From our running example, where the target

items, TargetList= {e, f}, iCov and iUtil in Figures 1a and

1b respectively, the obtained TarIDs = [1, 4, 6] and α = 2,

item {a} and its entries will be removed from iCov and iUtil
since |cov(a)∩TarIDs| < 2 (that is, [3, 5, 7, 8, 9]∩ [1, 4, 6] =
∅ in Line 3). After searching through the rest of the items in

iCov, Line 10 will return iList = {b, d, e, f} with the updated

iCov and iUtil as shown in Figures 2a and 2b respectively.

b [4, 6]

d [1, 4, 6]

e [1, 4, 6]

f [1, 4, 6]

(a) iCov

b [1, 1]

d [4, 3, 1]

e [2, 1, 1]

f [1, 2, 2]

(b) iUtil

Fig. 2: Updated iCov and iUtil after Running Function 4

The updated iCov and iUtil in Figure 2 are what will be

used in the targeted high utility itemset mining. Compared to

existing techniques [20], [21], TarHUIM drastically reduces

the search space based on the targeted items. For instance,

items {a}, {c} and {g} which do not co-occur in the database

with the user target list will not be employed in the discovery

process. Additionally, the targeted HUIs will not be searched

for in transactions T2, T3, T5, T7, T8, T9 and T10 since the

target list of items do not occur these transactions. �

D. Getting External Utilities

The external utilities of items are obtained from the external

utility database in TarHUIM using Function 5 as follows.

For each line in the external utility database, it is split into

the item and its external utility in Lines 2 and 3. If the item
is found in iList1 (that is, the item occurs in the targeted

transactions containing the targeted items), eUtil is updated

in Line 5 with the item and its external utility. After scanning

the content in eD, Line 6 returns eUtil which contains the

external utilities of only items co-occurring with the targeted

1Note that if len(TarIDs) < 1, TargetList will be used instead of iList

Function 5: GetExtUtil(eD, eUtil, iList)
Input: eD, eUtil, iList
Output: eUtil

1 for each line, Ln in eD do
2 Lsplit = Ln.split(“:”)

3 Let item = Lsplit[0] and utility = Lsplit[1]

4 if item is in iList then
5 eUtil[item] = utility
6 return eUtil

items. For our running example where iList = {b, d, e, f} and

the external utility database in Table III, Line 6 will return

eUtil = {b : 2, d : 3, e : 7, f : 9}
E. Mining Length-1 Target HUIs

TarHUIM uses Function 6 (that is, FindL1THUIs()) to mine

the length-1 targeted HUIs. Though the target list might occur

with some other length-1 items, this function only evaluates

the utilities of only the targeted length-1 items since the user

is only interested in the utility of the target items. Function 6

mines the length-1 target high utility itemsets as follows.

Function 6: FindLen1THUIs()

Input: TargetList, eUtil, iUtil
Output: THUI

1 for each item, i in TargetList do
2 Let i exUtil = eUtil[i]
3 Let i utiList = iUtil[i]
4 Compute total utility, u(i) of i
5 if u(i) ≥ minUtil then
6 THUI[i] = u(i)
7 return THUI

For each item, i in the TargetList, its external and internal

utilities are obtained from eUtil and iUtil in Lines 2 and 3

to compute the total utility in Line 4. Given the total utility

computed is not less than the minimum utility threshold, the

item is added to the set of targeted HUIs in Line 6.

For our running example, where {e} is in TargetList, Lines

2 and 3 will return {e} exUtil = [7] and {e} utiList =
[2, 1, 1]. The total utility of {e} will then be computed using

Equation 4 as u(e) = (7 × 2) + (7 × 1) + (7 × 1) = 28.

Given the minimum utility threshold is 10, {e} will be added

to THUI. In our running example, after scanning all items in

TargetList, Line 7 will return THUI = {{e} : 28, {f} : 45}
F. Mining the Remaining Target HUIs

The remaining targeted HUIs are then mined using Function

7 from iList, TarIDs, eUtil and iUtil as follows.

Firstly, if the number of items in the target list of items

that co-occur with the user targeted list (iList) is less than

or equal to one (1) (that is, is cLen ≤ 1, the targeted HUIM

terminates and only the set of length-1 THUIs is returned in

Line 19. If the number of items in iList is greater than one
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Function 7: MineRemTHUIs()

Input: cLen, iList, eUtil, iUtil, TarIDs, α
Output: THUI

1 while cLen > 1 do
2 Create temList as a List

3 for each item, S1 in iList do
4 for each item, S2 in iList do
5 if S1 & S2 meet cand gen property then
6 Get cov(S1) & cov(S2) from iCov
7 Let cov(S) = cov(S1) ∩ cov(S2)
8 if |cov(S) ∩ TarIDs| ≥ α then
9 Let S = S1 ∪ S2

10 iCov[S] = [cov(S)]
11 Update temList ← {S}
12 if |S ∩ TargetList| > 0 then
13 Find total utility u(S) of S
14 if u(S) ≥ minUtil then
15 THUI[S] = u(S)

16 iList.clear()
17 Copy items in temList into iList
18 Set cLen = len(iList)
19 return THUI

(1) the remaining THUIs are mined from Lines 1 to 18 as

follows.

While iList has more than one item (that is, cLen > 1),

a temporary list, temList is created in Line 2 and the

targeted HUIs are repeatedly mined from iList as follows.

For any two pair of items in iList, S1 and S2, cov(S1),
cov(S2), and cov(S) (where S = S1 ∪ S2) are obtained in

Lines 6 and 7 respectively, provided they satisfy the Apriori

candidate generation property. If the candidate target high

utility itemset co-occurs with the users’ targeted items (that

is, |cov(S) ∩ TarIDs| ≥ α in Line 8), then the candidate

itemset S is generated in Line 9 and iCov updated in Line 10

with S and its coverset. The candidate HUI S is also added

to temList in Line 11. If the candidate THUI, S contains

any of the target items (that is, |S ∩ TargetList| > 0), its

total utility, u(S) is computed in Line 13 using eUtil and

iUtil. Given the total utility of S is greater than the minimum

utility threshold, it is added to THUI in Line 15. After iterating

through all items in iList, the content in iList is cleared in

Line 16. In Line 17, the content of temList2 is copied into

iList. The variable cLen is again assigned to the length of

iList (that is, number of items in iList). Given that cLen is

greater than 1, the process from Lines 2 to 18 is repeated until

cLen ≤ 1 when the targeted HUIM process terminates. Line

14 of Algorithm 1 (TarHUIM) thus returns THUI as the set of

all targeted HUIs. We illustrate this process in Example 14.

Example 14: Given iList = {b, d, e, f} with the updated

iCov and iUtil in Figures 2a and 2b as well as eUtil =
{b : 2, d : 3, e : 7, f : 9}, the remaining target HUIs are

2temList will always contain items to be used in generating the next
candidate THUIs

mined using Function 7 as follows. Since cLen = 4, in the

first instance, {b} will be picked as S1 while {d} as S2 (Note

that the selections of S1 and S2 are based on the position

indexes; as such, for any given index, S1 �= S2). Since {b}
and {d} meet the Apriori candidate generation property, cov(b)
and cov(d) will be obtained from iCov as cov(b) = [4, 6]
and cov(d) = [1, 4, 6] respectively (hence, cov(b, d) = [4, 6]).
Given |cov(b, d)∩TarIDs| = |[4, 6]| is not less than α (which

is 2), S = {b, d} will be created in Line 9 while iCov updated

with {b, d} : [4, 6] in Line 10 and {b, d} added to temList in

Line 11. In Line 12, given |S ∩ TargetList| = ∅, the utility

of {b, d} is not computed since {b, d} does not contain any of

the users’ targeted items.

With S1 still as {b} the next item in iList is selected as

S2, that is, {e}. The process described above is repeated for

{b} and {e}. For {b} and {e}, iCov will be updated with

{b, e} : [4, 6] in Line 10 while {b, e} added to temList in Line

11. Since {b, e}∩TargetList = {e}, the utility of {b, e} will

be computed. Here, the internal utilities of {b} and {e} will be

obtained from iUtil using cov(b, e) (that is, with cov(b, e) =
[4, 6]) as {b} : [1, 1] and {e} : [1, 1]. Equation 4 will then

be used to compute the total utility based on their external

utilities. Given u(b, e) = 18 which is greater than minUtil
(which is 10), {b, e} : 18 is added to THUI in Line 15.

After the first nested for-loops, iList is cleared in Line 16

and the content in temList is copied into iList in Line 17.

The process repeats until there is no itemset in iList or only

one itemset. For our running example, given minUtil = 10
and TargetList = {e, f}, the set of discovered target high

utility itemsets will be as shown in Table V.

TABLE V: THUIs from Table II given minutil =10 and

TargetList = {e, f}
S u(S) S u(S) S u(S) S u(S)
{e} 28 {b, f} 40 {e, f} 73 {b, e, f} 54
{f} 45 {d, e} 52 {b, d, e} 30 {d, e, f} 97
{b, e} 18 {d, f} 69 {b, d, f} 52 {b, d, e, f} 66

Section V discusses the experimental setup and analysis

performed on TarHUIM to illustrate its effectiveness in dis-

covering targeted high utility itemsets.

V. EXPERIMENTAL ANALYSIS

A. Experimental Setup

TABLE VI: Features of Experimental Datasets

Dataset Total Transactions Unique Items Nature
Foodmart 4,141 1,559 Sparse
Kosarak10k 10,000 10,094 Sparse
Mushroom 8,416 119 Partly Dense
Chess 3,196 75 Very Dense

Experiments were conducted on four datasets3 with the

characteristics as shown in Table VI.

3These datasets were obtained from [9] with only the internal utilities as
such we synthetically generated the external utilities.
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The algorithms used in the experimental analysis are

TarHUIM and D2SUP [19] since the authors of [20] and [21]

did not readily make available their implementations for com-

parison. However, it is worth noting that, though [20] and [21]

will report same targeted HUIs as TarHUIM, in the best case

scenario, the runtimes as well as memory used by both [20]

and [21] will be same as D2SUP. TarHUIM is implemented

in Python while D2SUP (one of the fastest HUIM techniques

available - obtained from [9]) is implemented in Java.

For the sparse datasets (Foodmart and Kosarak10k), we set

α = 1, which means, an item must occur at least once in the

transactions in which the users’ target list of items co-occur.

Also, in Line 12 of Function 7, the threshold of intersection is

set to 1 (meaning, the candidate item must have at least one of

the users’ targeted items). For the dense datasets (Mushroom

and Chess), we set α = len(TarID), meaning the item must

occur in all the transactions that the users’ targeted items

co-occur. Additionally, the threshold of intersection is set to

len(TargetList) in Line 12 of Function 7. The thresholds

are set above for the dense datasets to avoid reporting an

exponential number of THUIs. All experiments were carried

out on a Core i7 Windows 10 PC with 16 GB of RAM. The

following subsections details the findings of our experimental

analysis.

B. Runtime Efficiency

The runtime comparison of TarHUIM (for different target

items) and D2HUP are shown in Figure 3.
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Fig. 3: Runtime Comparison

It can be observed that irrespective of the type of dataset

(dense or sparse), the runtime to discover HUIs is directly

affected by the minimum utility threshold. That is, the smaller

the threshold, the longer the runtime and vice versa. However,

as can be observed in Figures 3a, 3b, 3c and 3d, TarHUIM is

more efficient compared to D2HUP irrespective of the target

list. It is worth noting that though TarHUIM’s implementation

is a modified version of the Apriori technique, it is more

efficient due to the drastic search space reduction technique

employed. It was observed (reference to Figures 3a, 3b, 3c

and 3d) that, though the runtime for TarHUIM for the given

target list were not significantly different, its runtime is directly

affected by the number unique items that co-occur with the

users’ target list. That is, the more the number of unique items

co-occurring with the users’ target, the more time TarHUIM

takes to discover the targeted HUIs.

C. Reported HUIs and Memory Analysis

1) Reported HUIs: We compare the number of reported

targeted high utility itemsets using TarHUIM based on users’

target with that of all high utility itemsets reported with

D2HUP. Table VII shows the reported HUIs for the respective

minimum utility thresholds.

TABLE VII: Reported High Utility Itemsets

Dataset and Reported HUIs at Given Utility
Foodmart Mushroom Chess
10 6250 60K 140K 200K 600K

D2HUP 233231 4710 4722776 343836 90002856 583
TarHUIM T1 63 52 36 9 258 1
TarHUIM T2 15 10 14 9 131 4
T1 and T2 are the user target list for TarHUIM as shown in the legends
of Figures 3a, 3b and 3c

As can be observed in Table VII, for any given threshold

and users’ target list, TarHUIM, as expected, reports a smaller

number of targeted HUIs compared to all HUIs reported by

D2HUP. For both TarHUIM and D2HUP, as expected and

shown in Table VII, the higher the minimum utility thresholds,

the smaller the number of reported HUIs and vice versa. It

is worth noting that, for targeted HUIM techniques that use

the post-processing, all the HUIs reported by D2HUP will be

detected for the given thresholds before the search among the

reported HUIs is performed to identify the targeted HUIs.

2) Memory Usage: For lack of space, we only show the

memory usage for the Foodmart and Mushroom datasets.
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Fig. 4: Memory Usage Comparison
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As can be observed in Figures 4a and 4c, TarHUIM is more

memory efficient compared to D2HUP. Again this memory

efficiency in TarHUIM is due to the search space reduction

technique employed. Figure 4b and 4d show in details the

memory used by TarHUIM based on the users’ target list. It

was observed that in the dense datasets (reference to Figure 4d,

TarHUIM uses more memory compared to the sparse dataset

(reference to Figure 4b since more unique items co-occur with

the users’ target list in the dense datasets compared to the

sparse datasets.

VI. CONCLUSION

In this paper, we have proposed a one phase Target High

Utility Itemset Miner (TarHUIM). Unlike existing target high

utility itemset mining techniques, TarHUIM scans the database

once and drastically reduce the search space to mine users’

targeted high utility itemsets. Preliminary experimental anal-

ysis on benchmark datasets show that TarHUIM is efficient

and can effectively discovers the set of targeted high utility

itemsets based on users’ targets. Our future works will be

towards further improvement of TarHUIM through pseudo-

projection and implementing TarHUIM using the FP-growth

technique. Additionally, other variations of TarHUIM will be

implemented to meet users desire of mining targeted high

utility itemsets, for instance, discovering targeted high utility

itemsets containing only targeted items.
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