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ABSTRACT
Periodic frequent pattern (PFP) mining, the process of discovering
frequent patterns that occur at regular periods in databases, is an
important data mining task for various decision-making. Although
several algorithms have been proposed for discovering PFPs, most
of these algorithms often employ a two-stage approach to mining
these periodic frequent patterns. That is, by firstly deriving the set
of periods of a pattern from its coverset and subsequently
evaluating the patterns’ periodicity from the derived set of periods.
This two-stage approach in discovering periodic frequent patterns
as a result make existing algorithms inefficient in both runtime and
memory usage. This paper presents solutions towards reducing the
runtime, as well as, memory usage in discovering periodic frequent
patterns. This is achieved by evaluating the periodicity of patterns
without deriving the set of periods from their coversets.
Experimental analysis on benchmark datasets show that the
proposed solutions are efficient in reducing both the runtime and
memory usage in mining periodic frequent patterns.
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1. Introduction

Frequent pattern mining (the process of discovering patterns which occur frequently
together) over the past years has been widely studied for knowledge discovery in data-
bases for various decision making. Several algorithms based on various approaches
have been developed for mining frequent patterns from database. Typical of such
include algorithms that use the: apriori candidate generation approach (Agrawal, Imie-
liński, & Swami, 1993; Zaki, Parthasarathy, Ogihara, & Li, 1997); frequent pattern growth
approach (Han, Pei, & Yin, 2000; Pei et al., 2001); vertical representation approach
(Shenoy et al. 2000; Zaki, 2000; Zaki & Gouda, 2003) and hierarchical approach (Tseng,
2013). Though the frequent pattern mining approaches can reveal the frequently occur-
ring patterns in databases, the frequency measure alone in these algorithms often fail
in revealing the occurrence shapes of patterns. For example, in crime data or customer
transaction analysis, though the frequent pattern mining algorithms will reveal the fre-
quent crimes or customer purchases, they will fail to report the periodic occurrence
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shapes of crimes or customer transactions. However, the ability to detect and understand
the periodic occurrence shapes of patterns in databases could be vital in decision-making,
for instance, in curbing crime or preventing customer attrition. This limitation in frequent
pattern mining algorithms and the relevance of patterns’ occurrence shapes in decision-
making resulted in the start of research on periodic frequent pattern mining.

Periodic frequent pattern (PFP) mining from transactional datasets has been widely
researched on in works such as: Fournier-Viger et al. (2017), Kiran and Reddy (2010),
Kiran and Kitsuregawa (2013), Nofong (2016), Surana, Kiran, and Reddy (2012) and
Tanbeer, Ahmed, Jeong, and Lee (2009). Several algorithms have been proposed for dis-
covering periodic frequent patterns in transactional databases. Notwithstanding the use-
fulness of these algorithms in discovering periodic frequent patterns from transactional
databases, they are faced with the following challenges:

. Algorithms for mining periodic frequent patterns proposed in works such as: Kiran and
Kitsuregawa (2013, 2014), Kiran and Reddy (2010) and Surana et al. (2012) that discover
periodic frequent patterns using the maximum periodicity threshold (proposed in
Tanbeer et al., 2009) will often miss some important periodic frequent patterns if
such patterns have just one periodic (occurrence) interval being greater than the
user desired maximum periodicity threshold.

. Algorithms for mining periodic frequent patterns proposed in works such as Kumar and
Valli-Kumari (2013) and Rashid, Gondal, and Kamruzzaman (2013) that discover periodic
frequent patterns using the maximum variance threshold (proposed in Rashid, Karim,
Jeong, & Choi, 2012) will often report a set of periodic frequent patterns having distinct
periods for decision-making.

. Most existing algorithms for mining periodic frequent patterns often use a two-stage
process to evaluate the periodicity of patterns. That is, they firstly derive the set of
periods of a pattern from its coverset and subsequently evaluate the periodicity from
the derived set of periods. This thus make existing algorithms employing this two-
stage process in mining periodic frequent patterns inefficient in both runtime and
memory usage.

Although some of these challenges have been addressed in some recent works, the
case of time and memory inefficiency in the discovery of periodic frequent patterns due
to the two-stage process, to the best of our knowledge, is yet to be addressed. This
paper presents effective and efficient solutions towards mining periodic frequent patterns
without employing the two-stage approach in evaluating the periodicity of patterns. Elim-
inating this two-stage process will in turn reduce the runtime and memory used mining
periodic frequent patterns from transactional databases.

The main contributions of this paper towards PFP discovery in transactional databases
include:

. It proposes effective and efficient techniques for evaluating the periodicity of patterns
without the traditional two-stage approach used in existing works.

. The proposed techniques are incorporated on existing periodic frequent pattern
mining algorithms which showed a reduction in both runtime and memory usage in
mining periodic frequent patterns.
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The rest of this paper is organized as follows. Section 2 discusses related work while the
proposed periodicity evaluation measures are introduced in Section 3. Section 4 presents
the experimental analysis and Section 5 draws the conclusion and outlines some future
works.

2. Related work

The associated notations for periodic frequent pattern discovery in transactional data-
bases can be given as follows.

Let I = 〈i1, i2, . . . , in〉 be a set of literals, called items. Then, a transaction is a nonempty
set of items. A pattern S is a set of items satisfying some conditions of measures like fre-
quency. A pattern is of length-k if it has k items, for example, S = {b, c, d, e} is a length-4
pattern.

Given a transactional database of k transactions, D = 〈n1, n2, n3, . . . , nk〉, where each
nm in D is identified by m called transaction identifier (TID), the cover of a pattern S in
D, covD(S), is the set of TIDs of transactions that contain S. That is,

covD(S) = {m : nm [ D ^ S # nm}, (1)

where |covD(S)| is often referred to as the support count of S [ D.
The support of a pattern S [ D, supD(S), is defined as,

supD(S) = |covD(S)|
|D| (2)

Given a user desired minimum support (ε), a pattern S [ D is said to be frequent if
supD(S) ≥ 1.

For any given pattern S in a transactional database D with covD(S) as its coverset, the
notation e.covD(S) is used to indicate the extension of covD(S) by inserting a starting
time 0 and the last time m to covD(S). That is,

e.covD(S) = {0< covD(S)<m}, (3)

where m = |D|. The last time, m will be duplicated if it is already in covD(S). For instance,
given |D| = 7 and covD(S) = {1, 2, 4, 7}, then, e.covD(S) = {0}< {1, 2, 4, 7}< {7} =
{0, 1, 2, 4, 7, 7}.

Let (mj , mj+1) [ e.covD(S) be two consecutive transaction IDs (occurrence times) of S in
D, then pSj = mj+1 −mj is the jth period of S in D. The set of all periods of S, that is, PS,
obtained from its extended cover is denoted as:

PS = {pS1, p
S
2, . . . , p

S
r−1, p

S
r }, (4)

where r = |e.covD(S)| − 1.
For example, given e.covD(S) = {0, 1, 2, 4, 7, 7}, then pS1 = (1− 0) = 1, pS2 = (2− 1) = 1,

pS3 = (4− 2) = 2, pS4 = (7− 4) = 3, pS5 = (7− 7) = 0, giving PS = {1, 1, 2, 3, 0}. Thus, for
any pattern S, it can be derived that:

|PS| = |covD(S)| + 1. (5)

To discover the set of patterns in transactional databases with periodic occurrence shapes,
Tanbeer et al. (2009) introduced a periodicity measure on patterns as follows.
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Definition 2.1 (Tanbeer et al., 2009): Given a database D, a pattern S and its set of
periods PS in D, the periodicity of S, Per(S) is defined as, Per(S) = max {p|p [ PS}.

With the periodicity measure proposed in Definition 2.1, Tanbeer et al. (2009) sub-
sequently defined a periodic frequent pattern as a frequent pattern whose periodicity is
not greater than a user defined maximum periodicity threshold, maxPer.

Given a pattern S and its set of periods PS, the approach in Tanbeer et al. (2009) returns S
as periodic if the maximal occurring period (that is, the maximal time interval between any
two consecutive occurrence times) of S is not greater than the maximum periodicity
threshold, maxPer. This idea of discovering periodic frequent patterns using the
maximal occurring period as proposed in Tanbeer et al. (2009) have been used in periodic
frequent pattern mining in transactional databases in works such as: Kiran and Kitsure-
gawa (2014), Kiran and Reddy (2010, 2011), Lin, Zhang, Fournier-Viger, Hong, and Zhang
(2017) and Surana et al. (2012).

Rashid et al. (2012) however argued that discovering periodic frequent patterns using
the periodicity measure proposed in Tanbeer et al. (2009) is inappropriate as it returns the
maximum time-interval (period) for which a pattern does not appear in a database as its
periodicity. Rashid et al. (2012) thus defined the periodicity of a pattern under the name
regularity as follows.

Definition 2.2 (Rashid et al., 2012): Given a database D, a pattern S and its set of
periods PS in D, the regularity of S, Reg(S) is defined as Reg(S) = var(PS), where var(PS) is
the variance of PS.

Based on the regularity (periodicity) measure proposed in Definition 2.2, Rashid et al.
(2012) defined a regular (periodic) frequent pattern as a frequent pattern whose variance
among its set of periods is not greater than a user desired maximum regularity threshold,
maxReg. This concept of discovering regular frequent patterns based on the proposition in
Rashid et al. (2012) has been used in discovering regular frequent patterns in works such as
Kumar and Valli-Kumari (2013) and Rashid et al. (2013).

Nofong (2016) however argued that, though the proposition in Rashid et al. (2012) will
not miss interesting periodic frequent patterns as in Tanbeer et al. (2009), algorithms that
mine periodic frequent patterns using the propositions in both Tanbeer et al. (2009) and
Rashid et al. (2012) will always report periodic frequent patterns having totally distinct
periods. To report only periodic frequent patterns with similar periods for decision-
making, Nofong (2016) defined a periodic frequent pattern as follows.

Definition 2.3 (Nofong, 2016): Given a database D, minimum support threshold ε,
periodicity threshold p, difference factor p1, a pattern S and PS, S is a periodic frequent
pattern if supD(S) ≥ 1, (p− p1) ≤ Prd(S)− std(PS) and Prd(S)+ std(PS) ≤ (p+ p1).

Where, Prd(S) is the periodicity of S (defined as the mean of PS, that is, Prd(S) = �x(PS))
and std(PS) the standard deviation in PS.

With Definition 2.3, though PFPs having similar periodic shapes will be mined and
reported, Nofong (2016) observed that some of the reported periodic frequent patterns
may be periodic due to random chance without inherent item relationship. To ensure
only periodic frequent patterns having inherent item relationships are mined and
returned, the productiveness measure (proposed in Webb, 2010) was incorporated by
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Nofong (2016) in defining the productive periodic frequent patterns as the set of periodic
frequent patterns with inherent item relationship.

Fournier-Viger et al. (2017) introduced PFPM, an efficient algorithm having novel
pruning techniques for discovring periodic frequent patterns in transactional data-
bases. PFPM unlike the proposed techniques in Nofong (2016), Rashid et al.
(2012) and Tanbeer et al. (2009), Fournier-Viger et al. (2017) proposed three periodicity
measures (that is, the minimum, maximum and average periodicity measures) for
mining user desired periodic frequent patterns. The three measures proposed in Four-
nier-Viger et al. (2017) for periodic frequent pattern mining in transactional datasets
thus give users the advantage of more flexibility in discovering periodic frequent
patterns.

As mentioned previously, the propositions in Fournier-Viger et al. (2017), Nofong (2016),
Rashid et al. (2012) and Tanbeer et al. (2009) and works based on these propositions (Kiran
& Kitsuregawa, 2014; Kiran & Reddy, 2010, 2011; Kumar & Valli-Kumari, 2013; Rashid et al.,
2013; Surana et al., 2012) are faced with the challenges of time and memory inefficiency
and difficulty in finding early termination mechanisms in periodic frequent pattern discov-
ery in transactional databases.

3. Proposed periodicity evaluation measures

We adopt the periodic frequent pattern definition (Definition 2.3) proposed in Nofong
(2016). To enable the mining of PFPs based on Definition 2.3 while addressing the time
and memory inefficiencies in discovering periodic frequent patterns, we show that the
periodicity of a pattern can be evaluated directly from its coverset and the size of the data-
base as follows.

Lemma 3.1: Given a database D = 〈n1, n2, n3, . . . , nk〉 from which a pattern S is mined,
the periodicity of S in D can be expressed as PrdD(S) = |D|/(|covD(S)| + 1).

Proof. Let covD(S) = (n1, n2, n3, . . . , nm−1, nm), then based on Equation (3), e.covD(S)
becomes e.covD(S) = (0, n1, n2, n3, . . . , nm−1, nm, |D|). Hence, PS becomes,
PS = ((n1 − 0), (n2 − n1), (n3 − n2), . . . , (nm − nm−1), (|D| − nm)). As such, PrdD(S) (that is,
PrdD(S) =

∑|PS|
i=1 P

S
i /|PS|) can thus be expressed as,

PrdD(S) = (n1 − 0)+ (n2 − n1)+ (n3 − n2)+ · · · + (nm − nm−1)+ (|D| − nm)
|PS| .

This simplifies to PrdD(S) = |D|/|PS|. However, from Equation (5), since |PS| = |covD(S)| + 1,
then the periodicity of S, PrdD(S) can be expressed as PrdD(S) = |D|/(|covD(S)| + 1).

For instance, given |D| = 7 and covD(S) = {2, 3, 7} (that is, |covD(S)| = 3), then, based on
Lemma 3.1, PrdD(S) = 7/(3+ 1) = 1.75. Though the periodicity of S, PrdD(S) can be evalu-
ated using the traditional two-stage process1 without Lemma 3.1, more time and memory
will be required in evaluating PrdD(S) without Lemma 3.1 as explained below.

Let D be a dataset and n the set of frequent patterns in D whose periodicities are to be
evaluated. The functions for evaluating the periodicities based on Lemma 3.1 (Function 1)
and without Lemma 3.1 (Function 2) are as shown below.
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Analysing both Functions 1 and 2 based on the Big-O notation, Function 1 employs only
one for-loop in evaluating the periodicity of all potential periodic frequent patterns while
Function 2 uses a nested for-loop for the same purpose. As such, the runtime complexity of
Function 1 based on Lemma 3.1 turns out as O(n) while that of Function 2 turns out as
O(n2). Hence, there will be a significant reduction in runtime if Lemma 3.1 is employed
in evaluating the periodicity of patterns.

It is, however, worth nothing that, though Lemma 3.1 will evaluate the periodicity of a
pattern, it will not be able to evaluate the standard deviation2 among the set of periods of
patterns. In existing works on discovering periodic frequent patterns, the set of periods for
each pattern are often derived from their coversets before evaluating the standard devi-
ation among the derived set of periods. As mentioned previously, deriving the set of
periods from a pattern’s coverset and subsequently evaluating its periodicity from the
derived set of periods make existing algorithms on discovering periodic frequent patterns
inefficient in both runtime and memory usage.

To eliminate the two-stage process in periodic frequent pattern discovery, we show
how the standard deviation among the set of periods can be directly derived from the cov-
erset without necessarily evaluating the set of periods as follows.

Lemma 3.2: Given covD(S) = {n1, n2, n3, . . . , nm−1, nm}, the standard deviation among the
set of periods of S can be evaluated as std(PS) = ���������������������������������

(XS + YS + ZS)/(|covD(S)| + 1)
√

where:

XS = n21 + Prd(S)2, (6)

YS = n2m + |D|2 + Prd(S)2 − 2|D|(nm + Prd(S)), (7)

ZS =
∑m−1

j=2

(n2j + n2j−1 + Prd(S)2 − 2njn j−1). (8)

Proof. Let �x = Prd(S). Given covD(S) = {n1, n2, n3, . . . , nm−1, nm}, then the set of periods
of S becomes PS = {n1 − 0, n2 − n1, n3 − n2, . . . , nm − nm−1, |D| − nm}. As such, the
variance among the set of periods of S, that is, var(PS) = ∑|PS|

i=1 ((P
S
i − �x)2/|PS|) expands to

var(PS) = ((n1 − 0)− �x)2 + ((n2 − n1)− �x)2 ++((nm − nm−1)− �x)2 + ((|D| − nm)− �x)2

|covD(S)| + 1
.

Expanding the expressions in the numerator gives:
((n1 − 0)− �x)2 = n21 + �x2 − 2n1�x.
((n2 − n1)− �x)2 = n21 + n22 + �x2 − 2n1n2 − 2n2�x + 2n1�x.
((n3 − n2)− �x)2 = n22 + n23 + �x2 − 2n2n3 − 2n3�x + 2n2�x.
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.

.
((nm − nm−1)− �x)2 = n2m−1 + n2m + �x2 − 2nm−1nm − 2nm�x + 2nm−1�x.
((|D| − nm)− �x)2 = n2m + |D|2 + �x2 − 2nm|D| − 2|D|�x + 2nm�x.
Summing the above expansion results in the following:

XS = n21 + Prd(S)2 (for the first expansion) …

where XS is the variance value for the first period in PS.

YS = n2m + |D|2 + Prd(S)2 − 2nm|D| − 2|D|Prd(S)(for the last expansion) . . .

where YS is the variance value for the last period in PS.

ZS =
∑m−1

j=2 (n2j + n2j−1 + Prd(S)2 − 2njn j−1) (for any other period in PS) . . .

where ZS is the variance value for any other period in PS which is not the first or last period.
Hence for any given pattern S and its coverset, the variance and standard deviation

among its periods can be obtained respectively as:

var(PS) = XS + YS + ZS
|covD(S)| + 1

and;

std(PS) =
��������������
XS + YS + ZS
|covD(S)| + 1

√
.

We compare the proposed techniques for evaluating the periodicity of patterns, that is,
Lemmas 3.1 and 3.2 (as Function 3) vis-a-vis the existing two-stage approach of evaluating
the periodicity of patterns (as Function 4) as follows.

Let D be a dataset and n the set of frequent patterns in D whose periodicities are to be
evaluated. With the Big-O notation analysis on Functions 3 and 4, the runtime complexity
of Function 3 (based on Lemmas 3.1 and 3.2) turns out to be O(n2) while that of Function 4
is O(3n2). However, in the worse case scenario, both Functions 3 and 4 will have same
runtime complexities of O(n2).
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4. Experimental analysis

To show the effectiveness of our proposed periodicity evaluation measures, we incorpor-
ate them on existing algorithms for mining periodic frequent patterns and test their effec-
tiveness on benchmark datasets. The effectiveness of our proposed measures were
analysed with regards to runtime (execution time) and memory usage in discovering per-
iodic frequent patterns.

For our experimental analysis,3 the following implementations were used:

. PFP*: PFP* is our implementation of the technique for mining all periodic frequent pat-
terns. For any given user thresholds and a given dataset, PFP* discovers and returns the
set of all periodic frequent patterns having similar periodicities.

. PFP+: PFP+ is our improved implementation of PFP* which incorporates our proposed
periodicity evaluation measures. For any given user thresholds and a given dataset, PFP
+ discovers and returns the set of all periodic frequent patterns having similar
periodicities.

. PPFP: PPFP is an implementation of the periodic frequent pattern mining technique
proposed in Nofong (2016). For any given user thresholds and a given dataset, PPFP dis-
covers and returns all productive periodic frequent patterns having similar periodicities.

. PPFP+: PPFP+ is our improved implementation of PPFP which incorporates our pro-
posed periodicity evaluation measures. For any given user thresholds and a given
dataset, PPFP+ discovers and returns the set of all productive periodic frequent patterns
having similar periodicities.

For the above four algorithms, experimental analysis were conducted with regards to (i)
execution time and (ii) memory usage. The following datasets described below were used
for our experimental analysis.

. Accident Dataset: This was obtained from the FIMI repository. The Accident dataset
which consists of 7593 transactions is by nature very dense.

. Kosarak10K Dataset: This was obtained from SPMF (Fournier-Viger et al., 2016). The
Kosarak10K which is partly dense consists of 10,000 transactions.

. Kosarak45K Dataset: This was obtained from SPMF (Fournier-Viger et al., 2016). The
Kosarak45K which is partly dense consists of 45,000 transactions.

. Tafeng Nov. 2000 Dataset: This was obtained from the AIIA Lab. Consisting of 31,807
transactions in the month of November 2000, this dataset is very sparse.

It is worth noting that the compared algorithms were implemented in Java and the exper-
iments carried on a 64-bit Windows 10 PC (Intel Core i7, CPU 2.10GHz, 12GB).

The results of the experimental analysis with regards to execution time and memory
usage are discussed below.

4.1. Execution time

For scalability and time performance, we compare the four implementations mentioned
above on the datasets described above. The values recorded and plotted for each
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dataset are average values of the experiments which were run ten (10) times. Figures 1–4
show the execution comparison of the above mentioned implementations in mining per-
iodic frequent patterns from the Kosarak10K, Kosarak45k, Accident and Tafeng datasets
respectively.

As can be seen in Figures 1–4, incorporating our proposed periodicity evaluation
techniques on existing periodic frequent pattern mining algorithms significantly
reduces the runtime required in periodic frequent pattern discovery. For instance, in
Figures 1(a) and 2(a), PFP+ which is an implementation based on our proposed tech-
niques is almost twice as efficient as PFP* with regards to the time required in discover-
ing periodic frequent patterns. Also, as can be seen in Figures 1(b), 2(b), 3 and 4, PFP+
and PPFP+ (which are all implementations incorporating our proposed techniques) are
also slightly more efficient compared to PFP* and PPFP in periodic frequent pattern
discovery.

Figure 1. PFP discovery: runtime Kosarak10K dataset. (a) PFP* vs PFP+, (b) PPFP vs PPFP+.

Figure 2. PFP discovery: runtime Kosarak45K dataset. (a) PFP* vs PFP+, (b) PPFP vs PPFP+.
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4.2. Memory usage

We also compare the memory used in discovering periodic frequent patterns by the four
mentioned implementations on the datasets described above. The values recorded and
plotted for each dataset are average values of the experiments which were run ten (10)
times. Figures 5–8 show the memory usage comparison of the four implementations on
the Kosarak10K, Kosarak45K, Accident and Tafeng datasets respectively.

As can be seen in Figures 5–8, incorporating our proposed periodicity evaluation tech-
niques on existing periodic frequent pattern mining algorithms significantly reduces the
memory usage in periodic frequent pattern discovery. In Figures 5–7 for instance, both
PFP+ and PPFP+ (which are implementations incorporating our proposed techniques)
are almost twice as efficient in memory usage compared to PFP* and PPFP in periodic fre-
quent pattern discovery.

Figure 3. PFP discovery: runtime accident dataset. (a) PFP* vs PFP+, (b) PPFP vs PPFP+.

Figure 4. PFP discovery: runtime Tafeng dataset. (a) PFP* vs PFP+, (b) PPFP vs PPFP+.
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Figure 5. PFP discovery: memory usage Kosarak10K dataset. (a) PFP* vs PFP+, (b) PPFP vs PPFP+.

Figure 6. PFP discovery: memory usage Kosarak45K dataset. (a) PFP* vs PFP+, (b) PPFP vs PPFP+.

Figure 7. PFP discovery: memory usage accident dataset. (a) PFP* vs PFP+, (b) PPFP vs PPFP+.
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5. Conclusion

Despite the usefulness of periodic frequent patterns in revealing useful occurrence shapes
in databases, existing algorithms for their discovery often employ a two-stage process,
thus making them inefficient in runtime and memory usage. This paper proposes
effective and efficient techniques towards reducing the runtime and memory used in dis-
covering periodic frequent patterns from databases. Incorporating these techniques on
existing periodic frequent pattern mining algorithms, we show experimentally on bench-
mark datasets that our proposed techniques are efficient in reducing both the runtime and
memory used in periodic frequent pattern discovery. Our future works will be towards
further improvement of the algorithm through pseudo-projection in order to reduce
the memory used in periodic frequent pattern mining.

Notes

1. That is, deriving the set of periods and subsequently evaluating the periodicity from the set of
periods.

2. Which will be required to identify periodic frequent patterns with similar periodicities – see
Definition 2.3.

3. We do not compare our implementations with that proposed in Tanbeer et al. (2009) since
PPFP in Nofong (2016) is shown to outperform the proposition in Tanbeer et al. (2009).
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