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INTRODUCTION 

Creating images with embedded text, such as posters, flyers, and book covers, often demands 

significant time, skill, and financial investment. Most individuals lack the expertise of graphic 

designers or artists, and hiring professionals may exceed the budgets of small business owners 

and aspiring creators. This limitation hinders their ability to market products effectively or 

convey their ideas visually. The need for automated tools that can generate images with 

accurately placed and visually coherent text is growing, particularly in publishing and marketing 

industries, where text-integrated visuals are crucial for communication. 

Self-publishing authors, in particular, face challenges designing book covers that reflect their 

book’s plot while attracting readers. The cover must balance visual appeal and textual 

information, such as the title and author’s name, in a harmonious layout. Reducing the time and 

cost involved in this design process can empower authors to produce high-quality covers more 

efficiently and creatively. 

Recent advancements in AI image generation, such as DALL-E 2, Imagen, and Stable Diffusion, 

have significantly improved the quality and realism of synthesized images. However, these tools 

fall short of the needs of this community in several areas. First, these models struggle with 

embedding text into images with proper placement, legibility, and coherence. Early research 

relied on Generative 

Adversarial Networks 

(GANs), which faced 

issues of stability during 

training. Diffusion 

models, particularly 

Latent Diffusion Models 

(LDMs), have shown 

promise in generating 

high-resolution images 

efficiently. However, 

integrating text 

seamlessly into these 

images remains a 

challenge. 

Second, these models struggle with accurately representing the text, including in multiple 

languages, as the examples in Figure 1 illustrate. 

 



Finally, these models give limited ability for the creator to control the style of the generated 

image to match the tone of the content, for example to communicate a business book or a 

production of a musical from the 50’s. 

This paper introduces PosterAI, a new innovation that attempts to create a new tool for this 

community that addresses these challenges. The central research question posed by this paper 

is: can existing technologies be leveraged to enable users to quickly and efficiently generate 

high-quality images with accurately embedded and contextually appropriate text in complex 

visual environments, using both text prompts and image inputs, while maintaining legibility, 

precise text placement, visual coherence and style control?  

To do this, Poster API attempts to combine several existing open source technologies including a 

general language model (GLM) for interpreting source images; transformer-based layout 

generation mechanisms for predicting optimal text placement, ensuring coherence with the 

overall visual design; latent diffusion models (LDM) for generating new images; a 

character-aware loss function to maintain text clarity and sharpness. Specialized denoising 

techniques were used to prevent text distortion, ensuring high-quality outputs. Finally, a new 

custom training set made up of 250 book covers were created using manual data captioning and 

OCR-based text segmentation. 

By combining these technologies in innovative new ways, PosterAI addresses key challenges like 

text prompt generation, layout control, legibility, and denoising. Users are able to use an image 

similar to their desired style as an input prompt.  

By building on diffusion models and integrating novel methods for text positioning, quality 

control, and image prompting, PosterAI aims to bridge the gap between image synthesis and 

text generation, offering a robust solution for automated design tasks. 

 

RELATED WORK 

General Image Generation 

Recent advancements in text-to-image generation and diffusion models have significantly 

enhanced the ability to produce high-quality, photorealistic images from textual descriptions. 

Models like DALL-E 2 (Ramesh et al., 2022), Imagen (Saharia et al., 2022), and Stable Diffusion 

(Rombach et al., 2022) have demonstrated the power of diffusion-based approaches to create 

complex visuals guided by text prompts.
1, 2, 3

 These models employ large pre-trained language 

models and CLIP embeddings to generate detailed images, but they face challenges in 

integrating text seamlessly within visual contexts, particularly regarding layout control and text 

coherence. 

Diffusion Models/Latent Diffusion Models 

Diffusion Models have become a core technology in image synthesis. They are generative models 

that create images by learning to reverse a gradual noising process. During training, random 

 



Gaussian noise is added until the image becomes a pure noise. The model is then trained to 

undo the noise step-by-step through a denoising process, refining the image back to its original 

form. This stepwise approach allows diffusion models to generate images with intricate details 

and realistic features. The model’s ability to produce coherent outputs make them effective for 

tasks like image synthesis, inpainting, and text-to-image generation.  

The introduction of Denoising Diffusion Probabilistic Models (DDPMs) by Ho et al. (2020) laid 

the groundwork for these techniques, which progressively refine noisy data through iterative 

denoising.
4
 Further advancements by Nichol and Dhariwal (2021) improved the efficiency and 

quality of image synthesis, while Latent Diffusion Models (LDMs) (Rombach et al., 2022) 

optimized the process by operating in lower-dimensional latent spaces, reducing computational 

overhead while enabling high-resolution image generation.
5, 3

 LDMs 0perate in a 

lower-dimensional latent space to improve computational efficiency. LDMs are an extension of 

traditional diffusion models that operate in a compressed latent space instead of the 

full-resolution pixel space. During training, an image is first encoded into a lower-dimensional 

latent representation using a Variational Autoencoder (VAE). The diffusion process then occurs 

within this latent space, making the generation process much more computationally efficient. 

Once the denoising process is complete, the latent representation is decoded back into a 

high-resolution image. This approach allows LDMs to maintain high image quality while 

reducing the computational cost of generating detailed images. Despite these improvements, 

embedding legible and well-placed text within images remains a significant challenge.  

In the realm of text-to-image generation, models like DALL-E 2 and Imagen excel at generating 

visuals from prompts but struggle with layout coherence and accurate text rendering. Although 

these models can produce images containing text, the placement, alignment, and sharpness of 

the text are often inconsistent. This limitation hinders their application for tasks requiring 

precise text integration, such as book covers and advertisements. 

Transformer-Based Models 

Transformer-based models have revolutionized the field of artificial intelligence, particularly in 

natural language processing (NLP) and beyond. These neural network architectures, introduced 

in 2017, have become fundamental in various AI applications due to their ability to process and 

understand sequential data effectively. A notable example is BERT (Bidirectional Encoder 

Representations from Transformers), which uses deep bidirectional representations to carry out 

a wide range of tasks.  

Layout and OCR Generation 

Layout and OCR Generation play a critical role in text-embedded image synthesis. OCR is a 

technology that converts various types of text-containing images into machine-readable text. 

Tools like EasyOCR (Jaided AI, 2020) and models like LayoutLM (Xu et al., 2022) have 

advanced OCR capabilities and layout understanding in structured documents.
6, 7

 Recent 

research on OCR methods have focused on using segmentation masks and bounding boxes to 

determine regions of interest (Zhu et al., 2022).
8
  

 



However, these tools primarily focus on recognizing and interpreting existing text rather than 

generating new layouts. Integrating OCR-based segmentation and layout prediction into the 

generative process remains an area with untapped potential. This paper focused on bounding 

boxes and character-level segmentation masks methods to generate layout. Bounding boxes are 

rectangular markers used in computer vision to define the position and size of objects within an 

image. They help models identify where specific objects or regions of interest are located, 

facilitating tasks like object detection, segmentation, and text placement. In text-to-image 

generation, bounding boxes ensure that text is positioned accurately within an image, 

preventing overlap with other elements. Accurate bounding boxes are crucial for maintaining 

legibility and contextual relevance in complex visual designs. Character-Level Segmentation 

Masks are binary masks indicating where text should appear in the image.Unlike word-level or 

bounding-box methods, these masks provide fine-grained detail by showing the border of 

individual character shapes and positions. This approach ensures accurate text placement, 

legibility, and seamless integration of text with surrounding visual elements. In text-to-image 

generation, character-level segmentation masks help models avoid issues like overlapping or 

misaligned characters. They are essential for applications requiring high precision, such as 

generating complicated typography.   

General Language Models 

The GLM-4V-9B (Zeng et al., 2024) is an open-source, state-of-the-art multimodal model 

developed by Tsinghua University, capable of processing both text and visual inputs.
9
 It 

supports high-resolution images and excels in tasks like image captioning and optical character 

recognition. This model generates descriptive prompts based on visual inputs, which aids in 

creating accurate and contextually relevant text layouts. Its bilingual capabilities in English and 

Chinese enhance its versatility for diverse applications. 

 

METHODS 

Despite recent advancements, current AI tools lack the ability to seamlessly integrate text within 

generated images while maintaining legibility and coherence. Issues like style control, blurred 

text, inconsistent alignment, and poor layout control remain prevalent. This research paper 

attempts to address these gaps by creating a new data set of book covers that can be used to 

train an AI model. It then incorporates layout generation, OCR-based segmentation, and 

text-aware denoising directly into the diffusion process for creating new images. This approach 

ensures accurate text placement and legibility, advancing the capabilities of text-to-image 

synthesis models.  

Training Data 

The data collection process for PosterAI involved several steps to create a high-quality dataset 

that would allow the model to accurately learn to generate text in image, with a particular focus 

on book covers. This section outlines how the data was curated, organized, and processed to 

 



achieve a diverse and contextually rich dataset, supporting both visual and textual learning for 

the model.  

For this project, I started with an open-source image generation model called TextDiffuser from 

JingyeChen. The open-source model made by JingyeChen used MARIO-10M to train their 

data.
10

 This is a large-scale dataset that includes 10M images with text, including premade OCR 

for each image that includes character-level segmentation annotations for training. The goal was 

to enhance this model with a new data set relevant to the project’s specific goals.  

Image Collection and Organization  

The first step was to select a diverse set of book covers. The dataset used in this research was 

compiled from publicly available image sources and conforms to the licensing terms provided by 

the original creators. Images were used solely for 

research purposes and were modified to include 

bounding boxes and segmentation masks as part 

of this study. All images appearing in this paper 

have been clearly labeled with detailed copyright 

information. 

The diversity of the selection was important to 

ensure that the model could generalize well 

across different styles and learn different layouts. 

This includes covers with varying typography, 

colors, and text placement. This also included 

books of different genres and authors. The 

images were first downloaded as a jpeg file 

before being processed. Once the images were 

collected, they were renamed for consistency and 

placed into organized folders. Each folder 

corresponded to a specific image and contained 

additional components required for training, 

such as captions, OCR (Optical Character 

Recognition) segmentations, and visual 

representation of text bounding boxes. The 

caption provides semantic information to the 

model and acts as input prompts that guide the 

mode in generating layout and content. The OCR 

file helps the model understand where text appears in the image. It stores both the content and 

the spatial location of the text in the image. This allows the model to learn the placement of text 

in relation to the visual elements of the image. The character-level segmentation file contains a 

segmentation mask as a binary image where each pixel either belongs to text or the background. 

This file helps the model guide the model on where each character should be placed within the 

image and helps the model focus on the regions of the image that contain text. A NumPy file is 

lightweight and optimized for storing array data, making it ideal for saving binary masks. This 

 



organization helped maintain consistency and ensured the model could access relevant 

information during training.  

 

Captions creation 

To help the model understand the context and unique features of each book cover, captions were 

manually created for each image. These captions included information about the plot, which 

provided background context, unique aspects of the book cover, and all words present on the 

cover to help the model associate text with visual elements. The captions served as a bridge 

between the semantic meaning of the text and the visual characteristics of the image. By 

embedding this information, the model could learn to associate textual elements with visual 

cues, improving its ability to generate text that complements the image’s visual design.  

Identifying Text 

The next step was to use OCR tools to detect and recognize words present in the image. OCR is a 

technology that converts various types of text-containing images into machine-readable text. 

OCR was critical for teaching the model where text appeared relative to the image’s other 

elements. OCR segmentations were created to define the exact location of words. This involved 

binarization of the input image, deskewing any tilted text, eliminating distortion for clearer text, 

and adjusting the image to make the text stand out. There was then feature extraction and 

character recognition, where OCR extracts important features from each segmented character 

image and compares extracted features with pre-defined templates of characters. 

For this task, I used PaddleOCR, an open-source, end-to-end OCR system, for its ability to 

clearly identify handwritten words or words with hard fonts. This is especially useful for the 

needs of processing and creating book covers.  

PaddleOCR has two main steps: Text Detection and Text Recognition.  

The Text Detection stage detects text regions in the input image. First the input image is resized 

and normalized to bring the pixel values into a suitable range. The image then underwent 

feature extraction, where a convolutional neural network (RESNET) was used to extract 

hierarchical features from the image, creating a backbone. These features captured the 

characteristics of the text and background to make the text detection more accurate. Next, the 

features from the different layers of the backbone are combined in a multi-scale feature 

aggregation using a Feature Pyramid Network (FPN). This method ensures that the model 

detects text with various sizes, such as large headings and smaller text. The model then predicts 

the regions of the text by creating a probability map that indicates the likelihood of each pixel 

belonging to a text region. The probability map is then converted into a binary map using 

Differentiable Binarization (DB) to segment text regions from the background. DB is used in the 

model as it is suitable for training deep neural networks. It uses a sigmoid function to 

approximate the binarization process, making it differentiable and trainable end-to-end.  

 𝑃
𝑏
(𝑥,  𝑦) =  1

1+𝑒−β(𝑃(𝑥, 𝑦)−𝑡)

 



The result is a pseudo-binary map during training, and a hard binary map during inference. The 

binary map is then processed to extract contours or polygons that outline the text regions. 

Contour detection helps identify the boundaries of connected components in the binary map. 

Polygon approximation helps approximate the shape of text regions using few points. These 

polygons or bounding boxes are the final output of the detection step. The output is a list of 

coordinates that correspond to detected text regions, with a confidence score indicating the 

model’s certainty.  

The second stage is Text Recognition. This is where PaddleOCR is responsible for converting 

cropped text regions (from the text detection section) into readable and meaningful text. The 

model handles variable text lengths and accurately recognizes the text in challenging scenarios.  

The outputs of cropped regions of interest containing the text from the text detection module are 

used as inputs into the text recognition step. Each cropped image is resized to a fixed height 

while maintaining its aspect ratio. This ensures consistent input dimensions for the recognition 

model.  

The model does a feature extraction (also called the backbone) where important visual features 

are extracted from the input image. A ResNet (Residual Network) is used during this process 

where the input image is passed through multiple convolutional layers where these layers 

capture low-level (e.g., edges) and high-level (e.g., text structures) features. A ResNet (Residual 

Network) is a deep learning architecture designed to address the challenges of training a very 

deep neural network. It prevents problems like vanishing or exploding gradients and 

degradation problems by introducing residual learning, where the network learns to model the 

residual (difference) between the input and output of a layer, rather than the complete 

transformation. The cropped image is passed through a convolutional network to produce a 2D 

feature map. The feature map retains spatial information about the text but compresses the 

image into a compact, high-dimensional representation.  

The “Neck” of the model is sequence modeling, where the model models the sequential nature of 

text from the 2D feature map. The 2D feature map is collapsed along the vertical axis (height 

dimension) to create a 1D feature sequence. A BiLSTM (Bidirectional Long Short-Term 

Memory) layer is applied to capture dependencies between characters in the text sequence. The 

layer models both forward and backward dependencies in the sequence, improving recognition 

accuracy for complex text patterns.  

The model then goes to the head or prediction step where it maps the 1D sequence of features to 

a sequence of character probabilities The model uses a pre-defined character set for the desired 

language (in this case, English), including alphanumeric characters and special symbols. The 

output is a probability distribution over all possible characters for each position in the sequence.   

Finally, the model takes the raw output of the prediction model, a matrix of probabilities where 

each row corresponds to a character in the sequence, and uses a Connectionist Temporal 

Classification (CTC) to decode it. A CTC allows the model to handle sequences of varying length 

and handles cases where some characters are missing or repeated. The model predicts blank 

tokens between characters to account for gaps or variations in text length. These blank tokens 

are removed during post-processing to produce the final character sequence. The recognition 

 



model is trained using CTC Loss that aligns the predicted sequences with the ground truth by 

summing over all possible alignments.  

The final output from this stage is a sequence of characters decoded from the predicted 

probabilities.  

Text Segmentation 

OCR segmentations were created to define the exact location of words. This involved 

binarization of the input image, deskewing any tilted text, eliminating distortion for clearer text, 

and adjusting the image to make the text stand out. There was then feature extraction and 

character recognition, where OCR extracts important features from each segmented character 

image and compares extracted features with pre-defined templates of characters. In the end, 

bounding boxes around each word or phrase in the image were produced. For each image, the 

bounding box coordinates of the detected text were saved in a text file (named ocr.txt). This file 

contained the precise positions of the text within the image, ensuring that the model could later 

use this information to determine where text should be placed in new image generations. This 

step laid the foundation for integrating the text layout into the image, teaching the model the 

relationship between text and its visual environment.  

The next task involved creating a NumPy character segmentation file (charseg.npy) using the 

bounding boxes and coordinates generated during the OCR process. The character segmentation 

file is a binary mask that highlights the locations of the text within the image.  

The first step involves cleaning and preparing the image using binarization to convert the image 

into black and white and noise reduction to make the text more distinguishable from the 

background. The process involved isolating the text regions at the character level, converting the 

image to a black and white gradient. Text areas were marked white, and the rest of the image 

was black, providing a clear distinction between text and non-text regions.  

This segmentation was critical for the training process because it allowed the model to focus 

specifically on the areas where text should appear. By operating at the character level, the model 

could achieve fine-grained control over text placement and styling during image generation.  

To streamline the training process, an index file (index.txt) was created. This file contained a list 

of the names of all the images in the dataset. The index file allowed the model to efficiently load 

and access the correct folders, images, text files, and annotations during training. This ensured a 

structured approach to data retrieval, minimizing confusion or delays in accessing the correct 

image-text pairs.  

Text Segmentation Method Comparison 

Various approaches can be used for text segmentation, each with its advantages and limitations. 

Several models were compared, and ultimately a hybrid approach was chosen, which combined 

the strengths of multiple techniques. Here is an overview of the segmentation methods 

considered.  

 



First, Bounding Box Segmentation. This method involves creating rectangular boxes 

(bounding boxes) around words, phrases, or lines of text. Using a system, like EasyOCR, can 

generate bounding boxes and coordinates quickly and accurately for simple layouts. However, 

bounding box segmentation struggles with complex or stylized text layouts and lacks the 

precision needed for detailed character-level adjustments.  

Secondly, Character-Level Segmentation. This method isolates each individual character 

within a region providing a pixel-level precision.
11

 A binary mask is applied to identify the text 

regions in the processed image. It offers high precision and a simplistic way to handle complex 

layouts, but it is computationally more expensive and difficult to implement compared to 

simpler methods like bounding boxes.  

Thirdly, Region-based segmentation. This method identifies connected regions in the image 

that contain text, segmenting these areas based on pixel connectivity and image properties. 

Region-based segmentation is flexible and offers an adaptability to different text layouts, 

especially text on complex backgrounds, but it can struggle with intricate text designs and 

requires manual tuning for each new image type.  

Fourthly, Semantic Segmentation for text. This method uses a pixel wise classification where 

each pixel is classified to belong to a certain class, either text or background. The entire image is 

passed through a CNN or U-Net and is split into two groups. Using models like U-Net, semantic 

segmentation offers pixel-level accuracy and is highly effective for handling complex text 

layouts. However, it requires a large amount of training data and comes with a high 

computational cost, making it less efficient for certain applications.  

Lastly, Hybrid Approaches. To address the limitations of individual segmentation methods, 

hybrid approaches combine the benefits from multiple methods.
12

   

In the end, the hybrid approach to text segmentation was chosen, combining the advantages of 

bounding box segmentation and character-level segmentation. The bounding boxes provided an 

efficient way to roughly locate text within the image, while the character-level segmentation 

refined these regions for precise text 

placement. Although this approach 

requires more computational resources 

than using bounding boxes alone, it offered 

a significant improvement in the quality of 

the text integration, ensuring that the 

generated images would be visually 

cohesive and professionally styled.  

By combining these approaches, the 

created text segmentation function is 

capable of learning to generate text in the 

correct locations with high precision, 

making it especially suitable for tasks like 

book cover design, posters, and 

advertisements, where text plays a central role in the overall design.  

 



Enabling Image Based Prompts 

The creation of the training set turned out to be a manually intensive process that requires a 

significant amount of time and resources.  Results showed that PosterAI’s capabilities were very 

rudimentary when trained with a dataset of 250 book covers. 

To overcome these limitations before PosterAI can be properly trained, PosterAI needs to be 

enhanced to accept an image to use as a starting prompt. 

Because the version of the open-source TextDiffuser library that PosterAI is based on can only 

accept text prompts, PosterAI feeds the image into a GLM which helps produce a detailed text 

prompt that describes features of the image and key words. The text prompt is then inputted 

into the training model to create new images.  

In this model, the GLM is used to analyze the image for specific characteristics like font and 

color, and identify the key words, such as titles, in the uploaded image. The GLM then produces 

a text prompt with the key features and feeds it into the training model.  

GLM-4V-9B 

After evaluating several GLM’s, this project selected GLM-4V-9B.  GLM-4V-9B is an advanced 

open-source multimodal language model from the GLM-4 series, developed by Zhipu AI. It 

excels in both English and Chinese dialogues, and is able to understand high-resolution images 

up to 1120×1120 pixels including the ability to effectively handle tasks such as text recognition, 

chart interpretation, and complex reasoning.  

GLM-4V-9B performs image processing by feeding through a visual encoder based on 

convolutional neural networks like ResNet or transformer-based architectures like Vision 

Transformers (ViT)).  The encoder extracts visual features from the image, turning it into a 

numerical representation (embedding) that the model can process. 

The image is then divided into patches or regions, and each patch is represented as a token  

using ViT-style patch 

embeddings.  GLM-4V-9B can 

then perform tasks such as 

generating descriptive text for 

an image, or identify text or 

objects within images 

Layout Generation 

The first part of the image 

generation process is layout 

generation, which focuses on 

generating the layout of the 

image, specifically determining 

the position, size, and 

orientation of the text within 

 



the image. This stage is crucial for ensuring that the text is placed in visually coherent locations, 

aligning with the image’s content and structure. This is called a character-level segmentation 

and is displayed as a box with the word(s) inside the box. Character-level segmentation is used 

to define bounding boxes around words, which helps the model understand where the text 

should be located. The segmentations are determined by the following processes: keyword 

embedding and tokenization and bounding box prediction.  

Keyword Embedding and Tokenization  

The layout generation starts with the input text prompt, which is processed to identify important 

words, called keywords. These keywords will determine the position and size of the text in the 

final image. The first step is tokenization of the input text prompt. Tokenization is the process of 

splitting a text string into smaller units, called tokens. This is important for splitting the text into 

manageable pieces, such as words, phrases, or characters, which can be fed into the model, like a 

Transformer later on in the process, to understand the structure and meaning of the text. In 

PosterAI, tokenization is performed using a pre-trained tokenizer that splits the input text into 

tokens that can be processed by the model.  

Next, PosterAI feeds the tokenized outputs to be processed in keyword embedding. Keyword 

embedding is the process of transforming keywords from the input text into dense vector 

representation. These vectors represent the meaning and context of the keywords, allowing the 

model to understand which words are more important and how they should influence the layout 

of the text within the image. Keyword embeddings are generated using an embedding layer in a 

high-dimensional space, which maps the tokens to vectors that capture both the meaning of the 

word and their relationship to other words. For example, the words “Mother” and “Parent” may 

have a strong relationship as they are conceptually related.  

Overall, after tokenization, the model identifies keywords. Each keyword is then converted into 

an embedding (the vectors). The embeddings are generated by passing the tokenized text 

through an embedding layer. The embedding layer maps each token to a vector that encodes the 

word’s meaning, context, and importance. This is important 

to PosterAI as it ensures the model can determine which 

words may need to be bigger as they hold more importance 

or the placement of the words.  

Bounding Box Prediction  

After keyword embedding, the next step is predicting the 

bounding boxes for the position, size, and alignment of the 

text (keywords) in the layout generation stage. A bounding 

box is a rectangular frame that binds the objects, in this case 

the text, in an image. In PosterAI’s model, the bounding 

boxes define the position (location of the text in the image, 

typically representing the top left corner of the box using 

(x,y) coordinates), and size (the width and height of the 

box). For each keyword, the model predicts a bounding box that specifies where the text should 

go and how large it is.  

 



PosterAI uses a Transformer-based model to predict these bounding boxes. The tokenized text 

and keyword embeddings are fed into a Transformer encoder, which processes the text while 

taking into account both the semantic meaning and the positional information of each word. 

This process happens after tokenization and embedding and predicts the spatial layout using a 

Transformer-based model. The tokenized text and keyword embeddings are taken from the 

previous step and passed through the Transformer model.  

A Transformer-Based model includes an Encoder and a Decoder. The encoder takes the 

tokenized text as input and processes it using self-attention mechanisms to capture 

dependencies between words. The encoder takes input tokens and processes it by taking account 

both the semantic meaning of the text and the positional information of each word in the high 

dimensional space.  

Because Transformer models do not inherently understand the order of tokens in a sequence, 

positional encodings are added to the token embeddings. These encodings provide information 

about the position of each token in the sequence to help the model understand word order and 

context. This is important as the layout generation needs to know the order of words to generate 

a meaningful layout.   

 

In addition, to help the Transformer focus on different parts of the input sequence based on 

their relevance to each token, there is a self-attention mechanism. For each token, the model 

computes an attention score that determines how much focus it should give to the tokens in the 

sequence. This helps the model understand the dependencies between words, which is 

important for understanding the over structure of a sentence.  

 



The attention score is computed with Query (Q), Key (K), and Value (V) vectors that are derived 

from the token embeddings.  

 𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛(𝑄,  𝐾,  𝑉) =  𝑠𝑜𝑓𝑡𝑚𝑎𝑥 ( 𝑄𝐾𝑇

𝑑
𝑘

)𝑉

Where  is the dimensionality of the key vectors and the softmax function ensures the attention 𝑑
𝑘

weights sum to 1.  

After the attention step, each token’s representation is passed through a feed-forward network 

(FNN) to further refine the information. The FFN is applied independently to each token, but 

shares the same parameters across all tokens. The step allows the model to transform the token 

embeddings to high-level features that can be used by the decoder for generating bounding 

boxes.  

Lastly, to stabilize training and allow the model to learn deep representations, the residual 

connections prevent the vanishing gradient problem by allowing the model to pass information 

directly across layers.  

The result of the encoder is a sequence of dense vectors (one for each token) which capture both 

the meaning of the token and their relationship with each other.   

PosterAI now feeds the output of the Transformer model encoder to be passed through a 

decoder, which predicts bounding boxes for the text. The decoder generates one output at a 

time, with each new output depending on a previous one. This is called autoregressive 

prediction, where each new box depends on previous boxes and the overall structure of the 

layout. This helps ensure that the boxes are in logical areas and are visually appealing.  

The input to the decoder is the encoded representation from the encoder and partial output 

sequences (if there are previous predicted bounding boxes). The decoder uses masked 

self-attention to focus on different parts of the output sequence but also prevents the model 

from looking at future tokens or outputs during training. This is important as each new output is 

dependent on the previous outputs.  

In addition to self-attention, there are also cross-attention layers, also known as 

encoder-decoder attention. These layers help the decoder attend to the encoded representations 

from the encoder and focus on relevant parts of the input sequence to generate meaningful 

outputs (bounding boxes).  

After the tokenized text goes through the encoder-decoder transformation architecture, the final 

output is the bounding box prediction. For each step in the decoder, it outputs the parameters of 

the building box:  

 (x, y) are the coordinates of the top-left corner of the bounding box  

 (w, h) are the width and height of the bounding box 

 



These coordinates are predicted based on the keyword embeddings and the context learned by 

the Transformer. The model optimizes the positions and sizes to ensure that the text fits within 

the image.  

To train an accurate model, a loss function is applied that compares the predicted bounding 

boxes with the ground truth. PosterAI’s model uses L1 loss (mean squared error) to minimize 

the difference between predicted and truth bounding boxes. The loss penalizes the large 

deviations from the correct position and size, guiding the model to be more accurate during 

training. Loss is important to ensure that the model learns through multiple iterations and 

creates sensible output.  

Looking Ahead: Role of Layout Generation in Image Generation 

Once the layout is generated, it is passed as input to the image generation stage, where it is used 

to create the final image.  

Most importantly, it is used to create the Character-Level Segmentation Mask. The predicted 

bounding boxes are used to create character-level segmentation masks, which tell the model 

exactly where each letter or character of the text should be placed in the image. The mask is then 

used by the diffusion model to ensure that the text is rendered in the correct position and is 

coherent with the rest of the image.  

 

Image Generation 

After the layout has been generated, the next step is image generation, where the model 

synthesizes the actual image based on the layouts and segmentation masks generated in the 

previous stage. This step involves a diffusion-based model that integrates the previous bounding 

box predictions, character-level segmentation masks, and other layout information to create a 

 



visually coherent image. The model progressively generates the image by removing noise from a 

latent representation of the image. The main processes during this stage are the latent diffusion 

model, creating masked features, and training on a character-aware loss to help generate the 

image with text. The goal is to use the bounding box layout to produce an image that includes 

text that fits seamlessly into the layout, with the text being legible and visually coherent.  

Latent Diffusion Model (LDM)  

At the core of the image generation process is the Latent Diffusion Model (LDM). It operates on 

the latent space of an image, which is the compressed stage of the image produced by the 

encoder or Variational Autoencoder 

(VAE). By operating in the latent 

space, the model can work more 

efficiently, as the data is represented 

in a more compact, lower-dimensional 

form. The latent features are 

multiplied by a scale factor to ensure 

that they are appropriately adjusted 

before being used in the diffusion 

model. The LDM adds Gaussian noise 

to the latent representation and learns 

to remove the noise step by step to 

recreate the image with new 

components.  

At each timestep, the model introduces noise into the latent representation using a noise 

scheduler. The noise scheduler controls how much noise is added at each step. The final goal of 

the model is to progressively denoise the noisy representation until it becomes a clean image 

with the added component(s).  

For example, during the first timestep, the model might add a significant amount of noise to the 

latent representation, making the image appear blurry and indistinct. As the model progresses 

through the timesteps, it removes the noise step by step, gradually refining the image until it 

becomes clear and fully formed.  

Masked Features  

When generating an image, it is essential for the model to focus on specific parts of the image, 

particularly the regions where text should appear. Masked features and feature masks can help 

guide the model to focus on certain regions.  

PosterAI generates masked images by multiplying the original image by a mask that indicates 

which regions should be hidden. These masked regions are filled in by the model during the 

image generation process. For example, if the text is supposed to appear in the top-right corner 

of the image, the rest of the image might be masked during the early stages of generation to 

allow the model to focus on generating the text first.  

 



Additionally, feature masks are used to indicate which parts of the latent representation 

correspond to the text. These masks are resized to match the resolution of the latent features 

and are applied during the denoising process to ensure that the text is placed correctly within 

the image.  

Character-Level Segmentation  

The character-level segmentation mask generated in the layout generation stage plays a crucial 

role in the image generation process. The mask delineates the exact regions where the text 

should appear, ensuring that the text is placed in 

accordance with the bounding boxes predicted 

earlier.  

The segmentation mask is derived from the 

bounding boxes and indicates the regions where 

text should appear in the final image. Each region 

corresponding to a character in the text is marked, 

while the background is left unmarked. During 

training, the segmentation mask is augmented by randomly applying transformations such as 

dilations or erosions, which help the model generalize better when dealing with different styles 

and placements.  

The segmentation mask is used to focus the model’s attention on text regions during the 

denoising process. By using the segmentation masks during noise prediction, PosterAI ensures 

that the text is generated where it should be and is aligned with the layout generation earlier.  

Denoising Process 

The denoising process is the most important part of the latent diffusion model. It involves 

progressively refining the noisy latent representation of the image until it reaches a clean, fully 

formed image.  

At each timestep, the model predicts the noise added to the latent features. This prediction is 

made using a U-Net model, which processes the noisy latents, the current timestep, the encoder 

hidden states that contain information about the text, and the text embeddings that were 

generated earlier during layout generation.  

A U-Net model is a type of convolutional neural network (CNN) that is well-suited for pixel-wise 

predictions. It is well-suited for tasks like denoising because it can capture both local and global 

features of the image, ensuring that the text and the background are generated in harmony.  It 

consists of an encoder and a decoder.  

The inputs of the U-Net model include the noisy latent features, which are the latent 

representation of the image that has been corrupted by noise; timesteps, a value that indicates 

the current step in the diffusion process; and a text encoder output (the text embeddings), which 

is taken from the text encoder, and contains semantic information of the input text that can help 

 



the U-Net align the image generation process better. The objective of the U-Net is to learn to 

predict and remove the added noise over several iterations.  

The encoder compresses the noisy latent representation into lower-dimensional representation 

while keeping the important features. The decoder gradually reconstructs the image by 

upsampling representation back to its original resolution by restoring spatial details and adding 

predictions.  

 

The U-Net has a convolutional layer in its encoder path that is responsible for extracting 

features from the noisy latent image representation. The convolutional layers extract important 

spatial features from the noisy latent image. The U-Net also does downsampling or pooling 

which is when the feature maps are down-sampled using max pooling operations to catch global 

features and context.  

In the U-Net’s decoder path, it gradually up-samples the feature maps back to their original 

resolution. This process reconstructs the images, removing the noise. At each stage of 

up-sampling, the feature maps from the corresponding downsampling layer are concatenated 

with the current up-sampled feature maps. This skip connection helps the U-Net preserve both 

local details (such as text placement) and global context (overall image structure).  

In the end, the U-Net outputs a noisy residual, which is the model’s prediction of the noise that 

was added to the latent image at the current timestep. The noise residual is subtracted from the 

noisy latent image to produce a cleaner version of the image with less noise. The process is 

repeated multiple timesteps, with each iteration progressively removing more noise until a clean 

fully formed image is produced.  

The text embeddings generated during layout generation are also fed into the U-Net to ensure 

that the text is aligned with the rest of the image. This helps the model generate the text in the 

correct locations and ensures that the text is legible.  

 



Character-Aware Loss  

To ensure that the model accurately generates text in the correct regions, a character-aware loss 

function is introduced. This cross-entropy loss penalizes the model if the predicted text regions 

do not match the ground truth segmentation mask, helping the model focus on generating 

high-quality images with text.  

By combining the denoising loss or means squared error (which ensures that the image is 

generated correctly) with the character-aware loss (which ensures that the text is placed 

correctly), the model learns to remove noise from the latent space and accurately generate 

high-quality images with text in appropriate locations.  

Final Image Output  

After the denoising process is complete where the noise has been progressively removed using a 

U-Net model, the latent representation is still in a compressed form. The final step is to decode 

the refined latent representation back into pixel space using the VAE decoder.  

This process converts the latent features into a high-dimensional image, producing the final 

output, a clean, fully formed image with accurately placed text according to the bounding boxes 

and segmentation mask. By using a scaling factor, the decoder ensures that the latent values are 

converted into appropriate pixel intensities, allowing the image to have the correct brightness, 

contrast, and color.  

For example, if the text is supposed to appear in white on a dark background, the VAE decoder 

ensures that the final image reflects this design, with the text being legible and visually aligned 

with the rest of the image.  

 

RESULTS 

The project successfully delivered a 

prototype of PosterAI using the 

aforementioned technologies. 

The prototype wraps the 

technologies used in a user-friendly 

workflow. 

First, the user uploads an image to 

use as the inspiration.  PosterAI 

then converts that image into a text 

prompt.   

The user is able to adjust the prompt 

at that point, for example, editing 

the text to be used in the generated images. 

 



Finally, four images are produced for the user to select from. 

Qualitative Analysis 

Qualitative analysis involves visual inspection of generated images to assess their overall 

coherence and contextual appropriateness. The overall criteria is text placement (Does the text 

align seamlessly with the image elements?), contextual relevance (Is the text appropriate for the 

visual content?), and aesthetic quality (Does the text enhance the visual appeal of the image?). 

The purpose is to provide insights on the output and analyze the quality of the output.   

 

Based on the qualitative analysis, PosterAI is indeed able to achieve the project goals. 

Quantitative Analysis 

Quantitative analysis involves a more technical inspection of the generated images to assess 

their overall coherence and contextual appropriateness, especially focusing on the integrated 

text. A calculation of Intersection over Union (IoU), a standard metric for measuring the 

accuracy of bounding box placement, will be used to measure the accuracy of the embedded text. 

IoU is calculated as the ratio of the intersection area between the predicted bounding box and 

the ground-truth bounding box to the union area of both boxes. This metric evaluates how 

closely the predicted bounding boxes match the ground-truth placements, ensuring that text 

appears where it is intended without overlap or misalignment. 

 𝐼𝑜𝑈 =  𝐴𝑟𝑒𝑎 𝑜𝑓 𝑂𝑣𝑒𝑟𝑙𝑎𝑝 
𝐴𝑟𝑒𝑎 𝑜𝑓 𝑈𝑛𝑖𝑜𝑛

 



 

The model achieved a mean IoU of 0.82 with a standard deviation of 0.04, indicating consistent 

performance across all bounding boxes. Overall, most IoU scores were above 0.75, indicating 

that PosterAI performs well in aligning text with its intended placement. Lower IoU values, such 

as 0.76 for the word ‘a’, were caused by misaligned bounding boxes due to tighter layouts and 

more words on the page. To further enhance IoU performance, refining bounding box prediction 

for smaller or closely spaced text will be prioritized. 

 
 
CONCLUSION & LIMITATIONS 

Assessment of Findings 

This paper presented PosterAI, a new innovation enabling anyone to generate high quality 

images with embedded text for use in Posters, Book Covers, and other similar graphic design 

creations.  The results effectively address the research question on whether existing technologies 

can be combined to create a new tool that accurately integrates text within images while 

maintaining legibility, contextual appropriateness and style control. PosterAI leverages diffusion 

models, GLM models, transformer-based architectures, OCR technologies and introduces 

character-level segmentation and bounding box prediction to ensure precise text placement and 

coherence between textual and visual elements.  

By building on the strengths of each technology, PosterAI overcomes limitations in previous 

text-to-image synthesis methods, providing a more reliable and flexible solution. 

Limitations and Challenges 

Despite the advancements, PosterAI has several limitations and challenges: 

 



● Limited training data set.  The model should continue to be refined with larger and 

larger data sets, especially examples of target media such as book covers, movie posters, 

theater posters, ads, and more. 

● Complex Backgrounds: The model may struggle with highly detailed or dynamic 

backgrounds, where maintaining text legibility becomes difficult. 

● Computational Overhead: The two-stage process of layout generation and image 

synthesis requires significant computational resources, which may limit real-time or 

large-scale deployment. 

● Text Style Diversity: While the model performs well for standard fonts and styles, it may 

encounter difficulties with extreme variations in handwriting, calligraphy, or decorative 

text. 

● Bounding Box Accuracy: For longer or multi-line text, bounding box predictions can 

sometimes result in misalignment, overlapping, or crowding of elements. 

Unforeseen issues, such as the model’s sensitivity to variations in input text length or context, 

also emerged during experimentation. Extending this work to handle a broader range of text 

styles and more complex visual contexts will require further research and optimization. 

Potential Applications 

PosterAI has potential applications across several industries and use cases: 

● Graphic Design: Automating the generation of book covers, posters, and marketing 

materials where accurate text placement is crucial. 

● Advertising: Creating customized advertisements with text that integrates seamlessly 

into product images and visuals. 

● Publishing: Enhancing layout design for magazines, e-books, and print media by 

automating text integration within complex visuals. 

● Personalized Content Generation: Crafting personalized notes, invitations, or digital 

content that blend text with imagery. 

By addressing the complexities of text-to-image synthesis, PosterAI offers a versatile and 

efficient tool for industries that rely on high-quality visual content. Its ability to generate 

coherent and contextually appropriate text-integrated images paves the way for more innovative 

applications in design automation and creative content production. 

In summary, PosterAI represents a significant step forward in text-to-image generation, 

combining advanced techniques to produce images where text is accurately placed and visually 

appealing. Future enhancements could further expand its capabilities and applicability across 

diverse domains.  

 



APPENDIX 

The photos used to train the AI model were publicly available images obtained from Google 

using the keyword “book cover images.” The purpose of using these images is solely for learning 

and not for any commercial purposes. The output photos were generated by my self-trained AI 

model, "PosterAI." Similarly, the purpose of generating these output images is purely for 

learning and not for any commercial purposes. All images appearing in my paper and other 

competition materials have been clearly labeled with detailed copyright information.  
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