
Algorithms: Notes

In this lesson:
- Abstraction
- Procedural Abstraction
- Algorithms
- Algorithm Vocabulary
- Types of Algorithms
- Efficiency of Algorithms
- Measuring Efficiency
- Solving Problems with Algorithms
- Searches

Abstraction: Represents complex idea with something simple (this is the main idea of
Computer Science Principles)

● Using a variable name to represent a concept
● Using a list to represent a collection of items as one list
● Using a function that someone else wrote but that you can use without understanding the

code

Procedural Abstraction: process/procedure
● Provides a name for a process and allows a procedure (function) to be used only

knowing what it does, not how (e.g. finding the maximum number in a list by coding)
● Allows solution to large problem to be based on solutions of smaller problems

○ Helps improve code readability
● Code can be reused

Algorithms:
● Finite set of instructions to accomplish a specific task
● Can be expressed in natural language, pseudocode, and/or programming language
● Can be written in different ways, still accomplish some tasks
● Algorithms that appear similar yield different side effects/results
● Different algorithms can be developed or used to solve the same problem
● Can be created from…

○ Idea
○ Modifying existing algorithms
○ Combining existing algorithms
○ Constructed using combinations of…

■ Sequencing (step by step reading of code in order)

■ Selection (conditionals)
■ Iteration (loops)

Algorithm Vocabulary:
● To execute (execution) a program = run program
● Documentation - add comments to program
● Procedure (function) interrupts sequential execution of a program

○ Function must be executed before program continues
○ Functions end when last statement/return statement is made

Types of Algorithms:
● Sequential Algorithm: executed from start to finish on one computer
● Parallel Algorithm: Executes instructions at same time of different processing devices

and them combine all the individual outputs to produce a final result
○ Used when there are several lines of code
○ Less time consuming

● Speed Up: ratio that compares run time of sequential algorithm to parallel algorithm
○ Ex. Sequential: 30 mins; Parallel: 10 mins; Speed Up: 3:1 or 3

Efficiency of Algorithms:
● Estimation of amount of computational resources used by the algorithm
● Expressed as a function through size of input
● Determined through formal or mathematical reasoning
● Can be informally measured by determining the number of times a statement(s) execute
● Different correct algorithms for the same problems have different efficiencies

Measuring Efficiency:
● Polynomial/cloer (constant, linear, square, cube) efficiencies run in a reasonable

amount of time
○ Ex. 2n

● Exponential/factorial efficiencies run in an unreasonable amount of time
● Same problems can’t be solved in reasonable amounts of time because there is not

efficient algorithm, so approximate solutions are found

Solving Problems with Algorithms:
● Optimization Problem: finding the “best”/fastest solution among many
● Decidable Problem: an algorithm written to find outputs for all inputs and find a

solution
● Undecidable Problem: no algorithm will always work

● Heuristic: way to solve problem, but not “best” (fastest/cheapest), it is still a way to
work

Searches:
● Linear/Sequential Search: you keep going through the list in order to find the solution

(beginning to end)
● Binary Search: starts in the middle of set of sorted data, eliminate half of data by

dividing it by 2
○ More efficient than linear search

● Libraries: contains procedures that may be used in creating new programs
○ Can come from existing code
○ Need documentation
○ This is easier because you don’t have to rewrite code

