

Arithmetic Properties: Notes

Place Value:

_		2477.0	PA - 400	Plo	ce	value Chart								
Hillors	Hundred Thousands	TEN thousands	Thousands	Hundreds	Tens	SMO	• • pecimal Point	renths	Hundredths	Thousandths	ten-thousandths	Hundred-thousandths	Millionths	

* standard form: the # that you write regularly

* expanded form: the expanded | stretched out version

to 1,329 = 1000+ 300 + 20 + 9

take each place value and use only
1 # and o's to make it the correct
value, then add together

Order of Operations!

PEMDAS -> Please Excuse My Dear Aunt Sally

P: () -> Parentheses

E: x0-) Exponents

M: X -> Multiplication

D: -> Division

A: + > Addition

5: -- subtraction

* solve Left to Right

Liferst solve in Parentheses

17 then exponents

17 Multiplication / Division (Left to Right)

17 Addition | Subtraction (Left to Right)

Ex: 22+ (2+3) x 2 ÷ 2 Parentheses

2° + 5x 2 ÷ 2 Exponents

4+ 5x2+ 2 Muniplication (BIC it is left -)

4 + 10 + 2 Division

4 + 5 Addition

9 Final Answer

Rational vs. Irrational Numbers!

```
Rational Number: off that can be written as a fraction of traction of traction of traction of the cannot be of the can be I, making a a whole number number of the conding of the cimal: of the cimal of the cimal: of the cim
```

3 = 12 = rational: can be written as a fraction

0.21698 ... = irrational: never ends

5 Properties of Pre-algebra!

commutative Property...
of Addition: a+b = b+a [4+5:5+4]

of Multiplication: axb = bxa [4x5 = 5x4]

associative Property... of Addition: a+(b+c)=(a+b)+c [4+(5+6) =(4+5)+6]

of Multiplication: ax (bxc)=(axb)xc [4x(5x6)=(4x5)x6]

Identity Property... of Addition: a+0=9 [4+0=4]

of Mutiplication: ax1=q [4x1=4]

Inverse Property... of Addition: a + (-a) =0 [4+(-4)=0]

of Mutiplication: axt=1 [4xt=1]

distributive Property...

Over Addition: acotc)

over subtraction: a(b-c) [uxe)-(uxe)-(uxe)]

* can be used with Multiplication and low Division