Cells: Notes

In this lesson...

- The Cell
 - The Events that Led up to the Cell Theory
 - Cell Theory
- Bacteria vs. Virus
- Prokaryote vs. Eukaryote
- Animal Cells
- Plant Cells
- Cell Substructures
- Cell Membrane
 - Phospholipid Bilayer
 - Additional Elements/Characteristics
- Mitosis and Meiosis

The Cell:

- Smallest and most basic unit of life
- The Events that Led up to the Cell Theory:
 - 1665: Robert Hooke
 - Observed the remains of dead plant cells
 - Observed and named cells
 - 1675: Anton van Leeuwenhoek
 - First to see cells under a microscope
 - 1838: Matthias Schleiden
 - Concluded that plants were made of cells
 - 1839: Theodor Schwann
 - Concluded that animals were made of cells
 - 1855: Rudolf Virchow
 - Said that cells are made of cells
- Cell Theory (From Schleiden, Schwann, and Virchow)
 - All living things are made of cells.
 - o Smallest living unit structure and function of all organisms is the cell.
 - All cells arise from the preexisting cells.

■ Discards the idea of Spontaneous Generation (some organisms come from thin air)

Bacteria vs. Virus:

	Bacteria	Virus
Living	Yes	No
Number of Cells	1	None
Reproduction	Yes	No
Size	0.5-5.0 micrometers (length)	5-300 nanometers

Prokaryote vs. Eukaryote:

	Prokaryote	Eukaryote
Examples	Bacteria Cell	Plant Cell
Nucleus	No	Yes
Organelles	No	Yes
Cell Wall Material	Peptidoglycan	Cellulose
Ribosomes	Yes	Yes
Cell Organization	Unicellular	Multicellular

Animal Cells:

- Eukaryotic cell
- Parts of this cell:
 - Cell membrane
 - Controls what comes in and out of the cell
 - Outer Layer
 - Nucleus
 - Has a round shape
 - Surrounded by the organelles
 - Controls the cell's activities
 - Cytoplasm
 - Clear, gel-like fluid
 - Surrounds all organelles
 - Mitochondria
 - Bean shaped
 - Has inner membrane
 - Breaks down sugar molecules to create energy
 - Endoplasmic reticulum
 - Network of folded tubes or membranes
 - Carries proteins and other materials from one part of the cell to another
 - There is a smooth and a rough ER
 - Ribosomes
 - Small bodies floating free or attached to the rough ER
 - Produce proteins
 - Golgi bodies
 - Flattened sacs or tubes
 - Receives proteins or other materials from the ER, packages them, and redistributes them
 - Vacuoles
 - Fluid filled sacs
 - Storage area for cells
 - Lysosomes
 - Small, round structures
 - Use chemicals to break down large food molecules into smaller ones
 - breaks down old cells

Cross Section of an Animal Cell

Animal Cell (derived from Free SVG)

Plant Cells:

- Eukaryotic cell
- Parts of this cell:
 - o Cell wall
 - Outer layer
 - Rigid, strong, stiff
 - Non-living
 - Protects and supports the cell
 - Cell membrane
 - Controls what comes in and out of the cell
 - Outer Layer
 - Nucleus
 - Has a round shape
 - Surrounded by the organelles
 - Controls the cell's activities
 - Cytoplasm
 - Clear, gel-like fluid
 - Surrounds all organelles
 - Mitochondria
 - Bean shaped
 - Has inner membrane
 - Breaks down sugar molecules to create energy
 - o Endoplasmic reticulum
 - Network of folded tubes or membranes
 - Carries proteins and other materials from one part of the cell to another
 - There is a smooth and a rough ER
 - o Ribosomes
 - Small bodies floating free or attached to the rough ER
 - Produce proteins
 - Golgi bodies
 - Flattened sacs or tubes
 - Receives proteins or other materials from the ER, packages them, and redistributes them
 - Vacuoles
 - Fluid filled sacs
 - Storage area for cells
 - Chloroplasts

- Green oval structures
- Usually containing chlorophyll
- Allow photosynthesis to occur

Plant cell (derived from wikipedia)

Cell Substructures:

• Three substructures:

- o <u>Hypertonic</u>
 - More solute in solution than cell
 - Water moves out of cell
 - Cell shrinks (crenation)
 - Examples:
 - Saltwater
 - Soda
- o <u>Isotonic</u>
 - Same amount of solute in the solution as there is in the cell
 - Water is in an equilibrium
 - No net change
- o <u>Hypotonic</u>
 - More solute in the cell than in the solution
 - Water goes into the cell and the cell swells up and bursts

Cell Membrane:

Made up of a phospholipid bilayer

- Several names for it:
 - Semi-permeable membrane
 - Fluid mosaic model
 - Plasma membrane

• Phospholipid Bilayer

- Semi-permeable: some things can move in and out of the cell membrane freely (oxygen or carbon dioxide), while others cannot (polar and large molecules)
- o Maintains homeostasis
- Made up of two parts: Phospholipids and proteins

Phospholipid Bilayer from Wikimedia Commons (with edits)

Phospholipid

• Has a phosphate head and two tails (fatty acid chains).

Additional Elements/Characteristics:

• Passive Transport:

- Movement of molecules from a high concentration to a low concentration
- Requires no energy (ATP)
- o Examples:
 - Diffusion
 - Osmosis
 - Facilitated transport

• Active Transport:

- Moving low to high concentration
- Requires energy (ATP)
- Against concentration gradient

• Simple Diffusion

- Going with concentration gradient
- No energy (ATP) needed
- No protein channel required
- o Example:
 - $O_2 + CO_2$

Osmosis

- Movement of water from a high concentration to a low concentration
- Energy (ATP) not required
- Passive transport

• Facilitated Transport

- Passive from high to low concentration
- No energy (ATP) needed
- Needs protein channel

Endocytosis

- o Movement of large molecules into a cell
- Requires energy (ATP)
- Moves from low to high

Exocytosis

- Active transport
- Requires energy (ATP)
- Movement of large molecules out of the cell
- Against the concentration gradient (low to high)

Mitosis and Meiosis:

Mitosis

<u>Prophase:</u> Chromatin begins condensing into chromosomes. The chromatids are joined together by a centromere.

Metaphase: the chromosomes line up in the middle of the cell.

<u>Anaphase:</u> chromosomes break at the centromere and sister chromatids move to opposite ends of the cell.

<u>Telophase:</u> A nuclear membrane forms and chromosomes begin to unwind and separate.

Cytokinesis: The cytoplasm divides and forms two new cells.

Meiosis is the same thing, but it just **happens one more time**, resulting in **four daughter cells** instead of two.

Mitosis (derived from wikimedia commons)