

Ecology: Notes

In this lesson...

- Habitat & Levels of Organization
- Symbiosis
- Ecological Pyramid
- Ecological Succession
- Biochemical Cycle
- Population
- Keystone Species
- Eutrophication
- Biomagnification
- Global warming

Habitat & Levels of Organization:

• Ecology:

 The study of interactions that take place between organisms and their environment

• Habitat:

• Place a plant or animal lives

• Niche:

• An organism's total way of life

• Abiotic factors:

- The nonliving parts of an organism's environment
- Include air currents, temperature, moisture, light, and soil
- o Affect on an organism's life

• Biotic factors:

- All the living organisms that inhabit an environment
- Organisms depend on others directly or indirectly for food, shelter, reproduction, or protection

• Simple levels:

- o Atom
- Molecule
- o Organelle
- o Cell
- o Tissue
- o Organ
- o System

• Levels of organization:

- Organism/Species
 - An individual living thing that is made of cells, uses energy, reproduces, responds, grows, and develops
- o Population
 - A group of organisms, all of the same species, which interbreed and live in the same place at the same time
- Community
 - All the populations of different species that live in the same place at the same time
- o Ecosystem
 - Populations of plants and animals that interact with each other in a given area with the abiotic components of that area (terrestrial or aquatic)

- Biosphere
 - The portion of the Earth that supports life
- Organism groups:
 - Autotrophs
 - A group of organisms that use the sun's energy to convert water and carbon dioxide into glucose (food)
 - Also called producers
 - Examples:
 - Plants
 - Algae
 - Chemotrophs
 - Another form of autotrophs
 - Lack the chloroplast organelle that contains the pigment chlorophyll found in all organisms and some autotrophs which is used for photosynthesis
 - Get energy from inorganic substances
 - Live in places with no sunlight
 - Examples:
 - Bacteria
 - Deep sea worms
 - Heterotrophs
 - Organisms that do not make their own food
 - Also called consumers
 - Scavengers, herbivores, carnivores, omnivores, and decomposers are all heterotrophs
 - Examples:
 - o Rabbits
 - Deer
 - Mushrooms

Symbiosis:

- The **relationship between 2 organisms of different species** that benefit one or both organisms
- Mutualism
 - o A symbiotic relationship that benefits both organisms involved
- Commensalism
 - A symbiotic relationship that benefits one organism and the other is not helped or harmed
- Parasitism
 - o A symbiotic relationship that benefits one organism and the other is harmed

Ecological Pyramids:

- Models that show how energy flows through ecosystems
 - Represent trophic levels

Pyramid of Energy:

- 10% of energy is passed from one trophic level to the next
- Most of the energy is lost as heat
- Each level represents the amount of energy that is available to that trophic level
- As you move up the pyramid, the **energy decreases**

Pyramid of Biomass:

- Biomass
 - The total mass of living matter at each trophic level
- As you move up the pyramid, the biomass decreases
- Biomass is measured in kilograms

Pyramid of Numbers:

- Represents the number of organisms present at each trophic level
- As you move up the pyramid, the **number of organisms decreases**

Ecological Succession:

- Natural or gradual changes in the types of species that live in an area
- Primary succession (volcanoes or glaciers):
 - Lichens that do not need soil to survive grow on rocks
 - Mosses grow to hold newly made soil
 - Mosses and lichens are known as pioneer species
- Secondary succession:
 - Begins in a place that already has soil and was the home of living organisms
 - Occurs faster and has different pioneer species than primary succession
 - o Example:
 - After forest fires
 - Manmade
- Climax community
 - Stable group of plants and animals that is the end result of the succession process

Biochemical Cycle:

- Natural cycles by which a nutrient moves through the environment
- Water cycle (hydrological cycle)
 - Water is needed for all biochemical reactions in the body
 - Brain consists of 90% water
 - Regulates body temperature
 - Blood consists of 83% water
 - Detoxifies
 - Bone consists of 22% water
 - Transpiration
 - The process by which water is carried through tubes (xylem) in the plants from the roots to small pores (stoma) on the underside of leaves, where it evaporates

• Carbon cycle

- Organic molecules contain carbon
- There are four organic molecules (macromolecules):
 - Proteins
 - Lipids (fats)
 - Carbs
 - DNA
- Two processes that cycle carbon:
 - Photosynthesis by plants, algae, and cyanobacteria
 - Removes carbon dioxide from air and water and produces oxygen and carbohydrates
 - Cellular respiration
 - Returns carbon to the air and oceans as carbon dioxide
 - The process of making energy from glucose (sugar)

• Nitrogen cycle

- Nitrogen is found in proteins, DNA, and RNA in the human body
- The Earth's atmosphere contains 78% nitrogen
- Nitrogen fixation:
 - Lightning or nitrogen fixing bacteria combine and fix nitrogen with hydrogen to form ammonium which can be used by plants

Population:

- A group of organisms of the same species living in a given area
- Exponential growth (makes a J shaped curve)
- Logistic growth (makes an S shaped curve)
- Carrying capacity:
 - The maximum population size that can be supported by available resources
- Density dependent factors:
 - Biotic factors in the environment that have an increasing effect as population size increases
 - o Examples:
 - Disease
 - Competition
 - Parasites
- Density independent factors:
 - Abiotic factors in the environment that affect populations regardless of density
 - Examples:
 - Temperature
 - Drought
 - Storms

Keystone Species:

- A plant or animal that plays a unique and crucial role in the way an ecosystem functions
- Without keystone species, the ecosystem would be dramatically different, or cease to exist all together
- Examples:
 - African elephants: help maintain the savannah ecosystem as a grassland instead of a woodland or forest
 - Hummingbirds: Engage in beneficial interactions and pollinate

Eutrophication:

- When lakes, streams, and estuaries are overfertilized causing plants and algae to bloom and eventually die, causing the ecosystem to crash due to lack of oxygen
- Six stages of the eutrophication process:
 - Addition of nitrates
 - Growth of plants (algae)
 - Death of plants
 - o Growth of bacteria
 - Lack of oxygen
 - Suffocation
- Biochemical oxygen demand (BOD)
 - The rate of oxygen used by the organism in the ecosystem
 - Used as an indicator for eutrophication

Biomagnification:

- Also known as "bioamplification," the process by which substances become more concentrated in the bodies of consumers as one moves up the food chain (trophic levels)
- Bioaccumulation
 - The process by which substances not readily broken down or excreted can build up and be stored in living tissue, usually fatty tissue.
- DDT
 - A pesticide that was widely used until being banned in the U.S. in 1972
 - Accumulated in living tissue (fatty tissue)
 - The high concentration of DDT caused failure of eggs and thinning of shells in birds
- Other biomagnification/bioaccumulation chemicals:
 - Mercury
 - o PCBs

Global warming:

• Greenhouse gases

- Gas that is relatively transparent to solar radiation but absorbs and emits in the infrared which is a type of radiation the earth emits
- o Examples:
 - Water vapor
 - Carbon dioxide
 - Nitrous oxide
 - Methane
- o Greenhouse gases make the earth warmer by slowing the loss of infrared radiation
- Global warming molecules are:
 - Carbon dioxide
 - Nitrous oxide
 - Methane
 - PHS