

Quadratic Equations and Functions: Notes

h draw the parabola

Solving Quadratic Guadratic Equation: ax^2+bx+c Equations: Root of an equation: solution to a quadratic equation Zero of a function: x-intercept of a graph of a function Solving by graphing: b) accurately graph the quadratic then find where the graph crosses the x-axis introse are the values that make y equal zero and since the quadratic equation must equal equation $\chi^2 - 1 = 0$ Zeros are 1 and -1 so these are the 2 solutions

Solving by using Square roots: Is for a quadratic that has x² but no b terms you can isolate the x² then take the square rost of both sides to find the value(s) of x

(the state of the

x ² =16 Vx ² =V16 x=±4	$x^2 = -4$ $\sqrt{x^2} = \sqrt{44}$ No solution	$4x^{2}-25=0$ $4x^{2}=25$ $x^{2}=25$ $\sqrt{x^{2}}=\sqrt{35}$ $\sqrt{x^{2}}=\sqrt{35}$ $x=\pm\frac{5}{2}$	$36x^{2} = 1$ $x^{2} = \frac{1}{36}$ $\sqrt{x^{2}} = \sqrt{\frac{1}{36}}$ $x = \pm \frac{1}{6}$

Factoring to solve Quadratic

Using the zero product Functions: Property: Differ all real numbers a and b, if ab=0 then a=0 or b=0 *To use this property to solve a factored quadratic find what could make each factor equal o

(x-3)(x+7)=0if x-3=0 then x=3 if x+7=0 then x=-7 solutions! 3 and -7 (x)(x-5)=0 (x)(x-5)=0if x=0 if x=0 if x=5 solutions! 0 and 5

Factoring: Divite the equations in y=ax²+bx+c form is factor the quadratic to form 2 items that multiply to get zero isthen follow using the zero product property

x2+7x+10=0 (x+5)(x+2)=0	-2x ² =18-12× 0=2x ² -12x+18	x ² -25=0 (x+5)(x-5)=0
x= -5	0=2(x2-6x+9)	x=5 x=-5
x = -2	0 = 2(x-3)(x-3) x = 3	

1) b ² - Hac in the quadratic formula that tells the number of solutions						
if b ² -4ac 70 then	there are 2 solutions					
	there are is 1 solution					
if b ² -yac 20 then	there are no solutions					
$3x^2 + 10x + 2 = 0$ $x^2 - x + 1 = 0$						
102 - 4(3)(2)	$(-1)^2 - 4(1)(1)$					
100 - 24	1-4					
76	•					
2 solutions	no solutions					

$X = \frac{-3 \pm \sqrt{49}}{4}$:= ¥ ¥=1	x= -10 x=-5 x=-5
using the discriminant:		

2x2+3x-5=0		
a=2 b=3 c=-5		7
X = -3 + 132-4(2)(-5)	х- <u>-</u> ч	-
2(2)	X= -3+7	x= -3-7
X=-3± 19+40	4	x= -19
Y = -3 ± 149	X = Y	Y
	- N	×=-2

The Quadratic Formula: - another way to solve for x $\chi = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$ a, b, and c come from the quadratic