

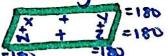
Quadrilaterals & Circles: Notes

Angles of Polygons:

- In a polygon, a diagonal is a segment that joins 2 nonconsecutive verticies

# of sides	3	4	5	6	17	8	19	10	112	n
# of mangles	١	2	3	4	5	6	7	8	10	n-2
sum of interior angles	180°	360°	540°	3 80°	900	1080°	1260	เมนด์	1800,	જ્-ટો(ક ાં
sum of exterior angles	360°	360 °	340°	3 6 0°	360	360	360	3 ₽0°	360°	360'
measure angle interior	60°	qo°	8°3	150,	128.6	135°	140°	1र्गत,	150°	(031 (180)
edevior angle measure	120°	90°	72°	ତେ°	52.4°	45°	40.	3L°	30°	360 n

Parallelogram: auadrilateral with 2 pairs of parallel sides

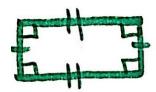

- opposite sides are conquent

-opposite angles are congruent

-consecutive angles are supplementary

bisect each other -diagonals

Example:


Square, Rectangle, Rhombus:

Rhombus: parallelogram with 4 congruent sides

L'opposite sides are congruent L'opposite angles are congruent L'onsecutive angles equal 180° L'onsecutive angles equal 180° L'onsecutive angles equal 180° L'onsecutive angles engles L'onsect opposite angles

Rectangle: parallelogram with 4 right angles

17 opposite sides are congruent
17 opposite angles are congruent
17 consecutive angles equal 180°
17 diagonals are congruent

Square: parallelogram with 4 congruent sides and 4 right angles

17 Both a rectangle and a

*You can use these properties to solve geometric problems (unknown angles Isides)

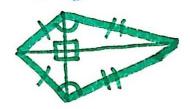
Trapezoids & Kites:

Trapezoid: quadrilateral with EXACTLY one pair of parallel sides

**NOT A PARALLELOGRAM

Tynon parallel sides are legs

in 2 pairs of base angles


do not bisect each other

Trapezoid: a trapezoid with congruent legs
trapezoid: Lines, base angles, and diagonals
are congruent

Midsegment of a verage of 2 bases of trapezoid

base + base

Kites: a quadrilateral with 2 pairs of consecutive congruent sides in 1 pair of opposite angles are congruent sides are perpendicular

Angles in circles:

Central Angle: an angle whose vertex lies at the center of the circle

-central angle oreates a major arc

Angle: an angle whose vertex 11es on the circle

Arc: an arc on the circle where angles go through

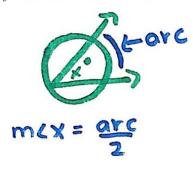
measure of the inscribed Angle: the arc degrees

with this kind of are

Inscribed Angles Theorem:

If 2 inscribed angles of a circle inscribed angles are, then the inscribed angles are congivent

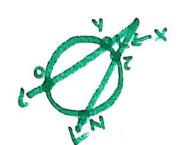
inscribed Pulygon: A polygon whose vertices touch the circle


- inscribed quadrilateral # opposite angles = 160°

Finding the measure of Angles on

on the circle:

the circle:



inside the circle:

$$m(2 = AC + DB)$$

outside the circle:

* this is a kind of formula sheet to help you solve problems

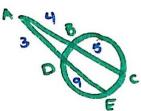
* in actual prolations the ones mentioned

Tangent

Theorem: a line outside the circle forms a right angle with the radius at the point of tangency

Example: Ec is tangent to circle D at point E. Find the radius.

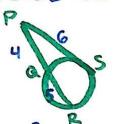
xuse the tangent theorem to use the pytagovean theorem for this problem


2 chords intersect

INISIDE the circle: the product of the lengths of the segments of one chord equals the product of the lengths of the segments of the other chord

AEXEB = CEXED

2 secants intersect


ACXAB = AEXAD 9x4=(9+3)x3 36 = 36

OUTSIDE the circle: the product of the lengths of one secont and its external segment equals the product of the lengths of the other secant and its external segment

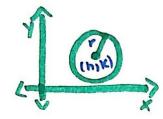
whole segment x outside

whole x outside

A secant and a tangent intersect

PS2 = PRX PG 62 = (5+41) XU 36= 36

OUTSIDE the circle: the product of the secont and external segment equals the square of the tangent segment


tangent = whole x outside

Equations for circles:

 $(x-h)^2 + (y-K)^2 = V^2$

center: (n,k)
Radius: 752=7

Examples: $(x-1)^2 + (y+2)^2 = 9$

Center: (1,-2) (-1,+2-71,-2)

Radius: 3 (79)

Write the equation of a circle with center (0,-3) and a radius of 5.

(X-N)2+ (A-K)2= NS