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threatening	conditions	often	demand	pharmacological	screening	of	lead	compounds.	A	spectrum	of	pharmacological	activities	has	been	attributed	to	pyrazole	analogs.	The	substitution,	replacement,	or	removal	of	functional	groups	on	a	pyrazole	ring	appears	consistent	with	diverse	molecular	interactions,	efficacy,	and	potency	of	these	analogs.	This
mini-review	explores	cytotoxic,	cytoprotective,	antinociceptive,	anti-inflammatory,	and	antidepressant	activities	of	some	pyrazole	analogs	to	advance	structure-related	pharmacological	profiles	and	rational	design	of	new	analogs.	Numerous	interactions	of	these	derivatives	at	their	targets	could	impact	future	research	considerations	and	prospects
while	offering	opportunities	for	optimizing	therapeutic	activity	with	fewer	adverse	effects.Medicinal	chemistry	is	engaged	in	the	research	area	to	ameliorate	new	derivatives	(Zhao,	2007).	
With	wide	application	in	medicine	and	industry	(Al-Omar,	2010),	the	pyrazole	ring	is	important	in	rational	drug	development.	As	a	privileged	structure	present	in	different	classes	of	drugs,	the	pyrazole	moiety	has	inspired	new	classes	of	drug	development	(Faria	et	al.,	2017;	Patil,	2020;	Yet,	2018).	The	pyrazole	moiety	is	a	nitrogen-containing
heterocyclic	core	with	diverse	targets	and	effects	(Figure	1)	(Faisal	et	al.,	2019;	Ran	et	al.,	2019;	Taher	et	al.,	2019;	Badavath	and	Jayaprakash,	2020).	The	series	of	available	pyrazole	analogs	could	provide	clues	to	structural	activity	relationship	(SAR)	and	predict	potential	therapeutic	or	adverse	effects.FIGURE	1.	Effects	evoked	by	pyrazole	analogs
in	different	cells	target.The	substitutions,	additions,	removal,	or	fusion	of	different	functional	groups	in	the	pyrazole	ring	are	key	to	the	synthesis	of	lead	compounds	that	are	effective	against	emerging	and	complex	diseases	(Faisal	et	al.,	2019;	Aziz	et	al.,	2020;	Ramsay	et	al.,	2018;	Benek	et	al.,	2020;	He	et	al.,	2016).	Pharmacological	characterization
of	these	analogs	will	benefit	from	our	comprehension	of	the	functional	group	modifications	on	the	central	pyrazole	ring	(Figure	2).	The	standard	drugs	containing	the	pyrazole	ring	[pyrazofurin	(anticancer),	crizotinib	(cytoprotective),	celecoxib	and	lonazolac	(anti-inflammatory),	difenamizole	(analgesic),	rimonabant	(anti-obesity),	sildenafil
(vasodilator),	and	fezolamide	(antidepressant)]	(Hill	and	Whelan,	1980;	Kameyama	et	al.,	1981;	Clemett	and	Goa,	2000;	Samat	et	al.,	2008;	Straube,	2012;	Dopp	et	al.,	2013;	Mitou	et	al.,	2015;	Karrouchi	et	al.,	2018)	provide	ample	opportunity	for	continuous	research	and	analysis	of	new	analogs.FIGURE	2.	
Functional	groups	that	confer	some	distinctive	interactions	and	activities	on	pyrazole	analogs.This	mini-review	explores	selected	activities	and	structural	modifications	of	some	pyrazole	analogs.	The	available	data	on	the	concentration	of	analogs	required	for	50%	inhibition	(IC50),	equilibrium	dissociation	constant	for	the	inhibitor	(Ki),	the	dose	that
elicited	50%	of	the	maximum	possible	effect	(ED50),	ulcerogenic	index	(UI),	or	selectivity	index	(SI)	are	provided	to	further	comparative	discussions	on	their	affinity,	efficacy,	and	potency.	As	the	present	review	is	limited	to	selected	biological	activities,	the	author’s	considerations,	and	future	perspectives	on	some	representative	analogs	(see
Supplementary	Table	S1),	additional	references	are	listed	for	the	aspects	that	are	out	of	the	present	scope.	All	the	chemical	structures	and	figures	were	designed	using	either	ChemDraw	JS	program	or	biorender.com.Selected	ActivitiesCytotoxic	and	Cytoprotective	ActivitiesThe	cytotoxic	effects	of	some	pyrazole	analogs	against	specific	cell	lines
including	human	breast	cancer	cells	(MDA-MB-231	and	MCF-7)	appear	promising	to	the	development	of	anticancer	drugs	(Kamel,	2015).	
Compound	1	containing	a	distal	pyrazole	ring	and	sulphonyl	moiety	decreased	the	viability	of	MCF7	(IC50	=	39.70	µM).	Unlike	non-heterocyclic	compound	4,	the	activities	of	caspase-3	and	caspase-7	in	MDA-MB-231	were	gradually	reduced	by	compounds	1–3.	With	the	data	showing	the	cleavage	of	caspase-8	and	caspase-9	through	caspase-3	and
caspase-7	activation	in	the	cascade	of	caspases	(Toton	et	al.,	2013),	compound	4	is	unlikely	to	elicit	a	specific	effect.	Since	caspases	play	different	roles	in	cellular	survival,	differentiation,	and	proliferation	process,	specific	caspase	inhibition	by	compounds	1–3	suggests	a	safety	profile	(Lehmann	et	al.,	2017).	Potent	antiproliferative	activity	(IC50	=
0.26	μM)	and	mitogen-activated	protein	kinase	inhibition	(MEK,	IC50	=	91	nM)	have	been	attributed	to	methyl	and	ortho-fluorine	groups	on	pyrazole	carboxamide	of	compound	5.	This	result	suggests	suppression	of	abnormal	signaling	of	the	MEK-dependent	pathways.	In	the	docking	assay,	the	contribution	of	the	1,3-diphenyl-1H-pyrazole	to
hydrophobic	interactions	(Val	82,	Ala	95,	Val	127,	Met	143,	Met	143,	and	Leu	197	of	the	ATP-binding	pocket)	and	MEK	inhibition	(Lv	et	al.,	2016)	was	considered	significant.	Recently,	a	thiazole	moiety	was	attached	to	the	pyrazole	ring	and	assayed	against	different	cancer	cell	lines	(Masaret,	2021).	Relatively	high	cytotoxic	efficacy	of	compounds	6–8
(IC50	=	14.32,	11.17,	and	10.21,	respectively)	against	MCF-7	supports	the	antitumor	role	of	the	thiazole	moiety	(Masaret,	2021).	However,	the	specificity	of	the	cytotoxic	potential	and	emerging	resistance	still	need	to	be	extensively	evaluated.As	some	analogs	are	considered	potent	IC50	<	100	nM;	mild	IC50	>	10,000	nM	cytotoxic	or	noncytotoxic	on
some	cell	lines,	and	others	elicit	cyto-	or	neuroprotection.	The	restoration	of	redox	homeostasis	or	prevention	of	oxidative	stress,	inflammation,	glycation,	and	vascular	injury	is	key	to	neuroprotection	(Hrelia	et	al.,	2020).	Chemically	diverse	pyrazole	analogs	have	shown	promising	cellular	or	neuronal	protections.	The	bulky	dicyclohexylamide	(9),
smaller	dimethylamide	(10),	and	aminophenyl	(11)	(pyrazole	analogs	with	sterically	hindered	substituents	on	amide)	attenuated	microglia-mediated	neurotoxicity	(IC50	=	10–50	µM)	better	than	compound	12	(IC50	=	100	µM)	with	high	susceptibility	to	electrophilic	displacement	(McKenzie	et	al.,	2019).	This	compound	contains	an	allyl	group	on	an
electron-deficient	amide.	Suppression	of	toxin-induced	microglia	overactivation	offers	a	therapeutic	opportunity	capable	of	halting	the	progression	of	reactive	oxygen	species–induced	neurodegenerative	disease	(Block	et	al.,	2007).	The	electron-withdrawing	substituents	such	as	para-bromo	on	the	aldehyde	aromatic	ring	(13)	elicited	higher
neuroprotective	activity	than	the	electron-donating	substituent	(Gameiro	et	al.,	2017).	This	activity	involves	the	inhibition	of	glycogen	synthase	kinase	3β	(GSK3β;	IC50	=	3.77	µM)	and	induction	of	nuclear	factor	(erythroid-derived	2)–like	2	(Nrf2;	luciferase	activity	=	3–30	µM).	As	regulators	of	cellular	responses,	both	GSK3β	and	Nrf2	are	key
neurodegenerative	targets	(Brandes	and	Gray,	2020;	Toral-Rios	et	al.,	2020).Analogs	with	the	para-bromophenyl	radical	attached	to	the	pyrazole	ring	(14,	15,	and	16)	target	the	metabolic	enzymes	(acetylcholinesterase—AChE,	carbonic	anhydrase—hCA,	and	α-glycosidase—α-GlyIs)	that	are	relevant	to	neurodegenerative	disorders.	However,	the
number	of	phenyl	substituents	on	the	pyrazole	ring	seems	to	create	a	specific	pattern	of	metabolic	enzyme	inhibition.	Turkan	et	al.	(2018)	attributed	potent	AChE	inhibition	to	compound	15	with	triphenyl	substitutions	(IC50	=	66.37	nM),	α-GlyIs	inhibition	to	analogs	with	diphenyl	substitutions	(14	and	16;	IC50	=	43.72	and	36.02	nM,	respectively),
and	hCA	I	and	II	isoform	inhibition	(IC50	=	0.93	and	0.75	nM,	respectively)	to	compound	9	with	two	bromophenyl	substitutions.	
Altogether,	the	inhibitory	effects	of	these	analogs	on	specific	regulators	of	cellular	processes	could	alter	ATP	production,	functions	of	organelles,	redox	reactions,	and	proliferative,	vascular,	and	inflammatory	responses.Antinociceptive	and	Anti-inflammatory	ActivitiesAs	pain	is	a	hallmark	of	tissue	damage	and	inflammatory	processes	(Baral	et	al.,
2019),	pyrazole	analogs	with	antinociceptive	and	anti-inflammatory	activities	are	important	to	analgesic	drug	development.	
The	pyrazole	compounds	with	fluorine	at	para	(17),	meta	(18),	and	ortho	(19)	positions	on	the	phenyl	ring	demonstrated	an	antinociceptive	effect	in	the	previous	studies	(de	Oliveira	et	al.,	2017;	Florentino	et	al.,	2019).	This	effect	was	associated	with	the	activation	of	the	opioid	receptor	and	blockage	of	the	acid-sensing	ion	channel	subtype	1α	(ASIC-
1α).	The	para	substitution	improved	the	interaction	with	peripheral	opioid	receptors,	while	ortho	substitution	reduced	the	ASIC-1α	channel’s	affinity.	The	antagonism	of	transient	receptor	potential	vanilloid	subtype	1	(TRPV-1)	seems	to	be	optimized	by	the	3-chlorophenyl	and	3-chloro-4-fluorophenyl	substitutions	(20	and	21,	respectively)	at	the	N1
position	of	the	pyrazole	C-region.	The	opioid	receptors	ASIC-1α	and	TRPV-1	are	important	targets	of	nociceptive	modulation.	Higher	antinociceptive	efficacy	was	reported	in	compound	21	(ED50	=	57	mg/kg).	Like	indomethacin	(24%	of	pain	inhibition),	compound	22	with	chloro	and	trifluoromethyl	groups	on	phenyl	and	benzofuran	template,
respectively,	elicited	a	similar	24%	of	pain	inhibition	(El	Shehry	et	al.,	2019).	According	to	Kenchappa	and	Bodke	(2020),	compound	23	(benzofuran	pyrazole	substituted	with	nitro	and	bromo	groups)	inhibited	pain	response	(60%)	better	than	compounds	24	and	25	with	benzofuran	carbaldehyde	(35	and	50%,	respectively).	These	results	support	the
elevation	of	antinociceptive	efficacy	through	the	addition	of	electron-withdrawing	groups.	Meanwhile,	different	group	substitutions	on	other	positions	of	pyrazole	rings	could	offer	additional	data	on	potency	and	efficacy.	The	4-(arylchalcogenyl)-1H-pyrazole	analog	containing	the	selanyl	or	sulfenyl	group	(26	and	27)	elicited	a	higher	nociceptive
threshold	in	formalin,	glutamate,	and	acid-induced	abdominal	writhing	than	compound	28	without	the	organochalcogen	group	(Oliveira	et	al.,	2020).	
The	modulation	of	oxidative	and	inflammatory	pathways	has	been	associated	with	pain	inhibition	(23%)	by	analogs	with	2,3-di-tert-butylphenol	(29)	in	Freund’s	complete	adjuvant–induced	mechanical	hyperalgesia	(Galvão	et	al.,	2020).	A	longer	carbon	chain	(30)	and	levulinic	(31)	analogs	with	47	and	50%	pain	inhibition,	respectively	(Taher	et	al.,
2019),	suggests	that	the	length	of	the	aliphatic	chain	could	elicit	a	subtle	change	in	the	antinociceptive	effect.	In	respect	of	first-line	analgesic	drugs,	the	fusion	of	pyrimidine	moiety	to	the	pyrazole	backbone	(32)	similarly	increased	thermal	latency	(160%)	and	reduced	abdominal	writhing	(83%)	as	compared	with	tramadol	(175%)	and	aspirin	(78%),
respectively	(Khalifa	et	al.,	2019).The	addition	of	the	adamantyl	residue	to	1,5-diaryl	pyrazole	(33)	elicited	a	higher	anti-inflammatory	activity	over	the	antinociceptive	effect.	The	anti-inflammatory	effect	of	pyrazole	analogs	could	be	assessed	through	edema	formation	(a	cardinal	sign	of	inflammation).	Compound	33	induced	a	lower	antiedematogenic
effect	than	the	reference	drug	celecoxib	(39	and	82%	of	edema	inhibition,	respectively).	Celecoxib	exhibited	higher	potency	of	cyclooxygenase	(COX)-2	inhibition	than	compound	33	(IC50	=	0.95	and	2.52	µM,	respectively)	(Abdelazeem	et	al.,	2020).	New	azomethine	compounds	with	an	electron-withdrawing	group	like	nitrogen	(34)	or	chlorine	(35)	at
the	ortho	position	of	phenyl	ring	with	a	satisfactory	anti-inflammatory	effect	(ED50	=	0.86	and	0.92	mmol/kg,	respectively)	elicited	weak	COX-2	inhibition	(IC50	=	38.12	and	32.11)	as	compared	with	celecoxib	(ED50	=	8.03	mmol/kg;	IC50	=	0.34)	(Murahari	et	al.,	2019).	These	results	support	the	importance	of	electron-withdrawing	groups	toward	the
development	of	highly	potent	anti-inflammatory	analogs.	The	thiohydantoin	derivatives	with	pyrazole	core	and	methoxy	substituents	(36–39)	induced	promising	antiedematogenic	activity	(ED50	=	55–62	μmol/kg)	as	compared	with	celecoxib	(ED50	=	78	μmol/kg).	The	methoxy	moiety	(the	electron-donating	group)	of	these	analogs	confers	additional
hydrogen	bonding	and	interaction	with	COX-2	active	sites	(Lys68,	Tyr108,	Tyr341,	Arg106,	and	Arg499).	This	attribute	supports	a	higher	range	of	binding	energy	among	compounds	36–39	(16–20	kcal/mol)	as	compared	with	celecoxib	(17	kcal/mol)	with	fewer	hydrogen	bonding	(Ser516	and	Tyr371)	(Abdellatif	et	al.,	2019).	An	additional	evaluation
revealed	a	better	COX-2	inhibition	with	chloroacetamide	(40)	and	acetamide	morpholine	(41)	compounds	(IC50	=	20	and	34	nM,	respectively).	In	comparison	with	compound	40,	the	propionamide	morpholine	(42)	analog	improved	the	selectivity	index	(SI	=	5	and	22,	respectively).	Compounds	40	and	42	significantly	inhibited	cytosolic	(31	and	44%)
and	microsomal	(81	and	74%)	prostaglandin	E2	synthase.	The	antiedematogenic	activity	of	these	analogs	(46	and	44%)	appears	similar	to	the	analog	of	celecoxib	(42%).Molecular	docking	data	portraying	compound	42	as	the	most	active	analog	(Hassan	et	al.,	2019)	provide	clues	to	the	role	of	the	morpholine	(heterocyclic	nucleus)	with	electron-
withdrawing	substituents	on	the	phenyl	ring.	Additional	COX-2	interactions	(Gln192	and	Phe518)	and	improved	anti-inflammatory	effects	seem	to	be	related	to	this	chemical	modification.	Meanwhile,	the	COX-2	selectivity	index	(SI	=	417)	and	the	anti-inflammatory	effect	(%	edema	inhibition	=	87%)	of	compound	43	with	amino	and	methanesulphonyl
groups	are	very	close	to	that	of	celecoxib	(SI	=	327;	%	edema	inhibition	=	83%).	This	finding	suggests	robust	aminosulfonyl	moiety	interaction	with	Gln178,	Arg499,	Phe504,	and	Gln178	amino	acid	residues	of	COX-2	(Abdellatif	et	al.,	2020).	The	growing	interest	in	pyrazole	analogs	with	dual	COX/LOX	(lipoxygenase)	inhibition	has	widened	the	scope
of	developing	potent	anti-inflammatory	drugs.	According	to	Gedawy	et	al.	(2020),	analogs	with	benzotiophenyl	and	carboxylic	acid	(44)	inhibited	COX-2	better	than	celecoxib	(IC50	=	0.01	and	0.70	µM,	respectively)	with	almost	similar	5-LOX	inhibition	as	compared	to	the	reference	drug	licofelone	(IC50	=	1.78	and	0.51	µM,	respectively).	Prodrugs	of
compound	44	(45	and	46	with	%	edema	inhibition	=	57	and	72%,	respectively)	with	dual	COX/LOX	inhibition	elicited	a	better	anti-inflammatory	effect	than	celecoxib	(36%).	Additional	interactions	of	these	analogs	with	COX-2	(Arg106	and	Ser339)	and	5-LOX	(Leu368,	Leu414,	Ile415,	and	Phe421)	could	inspire	additional	modification	in	the	subsequent
series	of	pyrazole	analogs	with	the	anti-inflammatory	potential.Antidepressant	ActivityThe	level	of	monoamine	is	etiologically	relevant	to	several	psychiatric	diseases	such	as	anxiety	and	depression	(Özdemir	et	al.,	2020).	In	principle,	the	inhibition	of	monoamine	oxidase	(MAO)	provides	a	good	assessment	of	the	antidepressant	property	of	new	drug
candidates	(Fajemiroye	et	al.,	2015).	This	flavin	adenine	dinucleotide	(FAD)–dependent	enzyme	exists	in	two	isoforms	(MAO-A	and	MAO-B).	The	monoamines	(serotonin	and	norepinephrine)	often	associated	with	the	etiology	of	depression	are	principal	substrates	of	MAO-A	(Özdemir	et	al.,	2020).	Analogs	with	a	positively	charged	pyrazole	moiety	at	N1
(hydroxy	or	dihydroxy,	phenyl,	chloro,	methoxy,	or	dimethoxy	groups)	showed	higher	selectivity	to	MAO-A	than	MAO-B.	
The	4,5-dihydro-1H-pyrazoles	(47	and	48)	showed	a	considerable	affinity	with	MAO-A	amino	acid	residues	(Ala68,	Tyr69,	Phe208,	Tyr407,	and	Tyr444).	The	N1-benzenesulfonyl	ring	at	the	pyrazoline	nucleus	seems	to	mediate	additional	interactions	with	the	side	chain	and	backbone	residues	of	amino	acids	at	the	binding	pocket	of	MAO-A	(Tripathi	et
al.,	2018).	
The	analogs	with	halogen	groups	in	the	phenyl	ring	could	also	promote	hydrophobic	interactions	with	MAO-A.	The	replacement	of	a	polar	4-hydroxyphenyl	substituent	in	pyrazoline	nucleus	(47)	for	a	bulky	hydrophobic	1-naphthyl	substituent	(48)	significantly	reduced	the	antidepressant	effect.	The	addition	of	the	N1-acetyl	group	at	the	pyrazole
nucleus	in	combination	with	polar	substituents	(49–53)	appears	to	stabilize	FAD	bonding	and	improve	efficacy.	According	to	Chimenti	et	al.	(2006),	the	presence	of	dimethoxyphenyl	on	the	pyrazole	ring	lowered	the	MAO	inhibition	potency	of	compound	51	(IC50	=	1.0	×	10–7	M)	as	compared	with	hydroxyphenyl	radical	in	compound	52	(IC50	=	8.8	×
10–9	M).	The	incorporation	of	functional	groups	capable	of	increasing	strain	energy	and	facilitating	ring-opening	could	increase	the	potency	drastically.	In	this	manner,	the	4,5-dihydro-1H-pyrazole	appears	to	be	a	better	template	for	the	design	of	MAO-A	inhibitor	(Chimenti	et	al.,	2004;	Tripathi	et	al.,	2016;	Upadhyay	et	al.,	2017)	than	MAO-B	inhibitor
(Manna	et	al.,	2002).	The	tautomeric	forms	of	pyrazole	by	the	active	site	of	the	enzyme	play	a	key	role	in	the	development	of	antidepressant	drugs	(Secci	et	al.,	2011).	Altogether,	many	analogs	are	still	without	data	on	potency,	efficacy,	and	MAO-A/MAO-B	selectivity	index	that	allow	for	comparative	analysis	and	determination	of	the	rational	template
for	new	pyrazole	analogs	with	the	antidepressant	property.	Although	MAO	inhibition	offers	a	viable	antidepressant	mechanism,	further	screening	of	these	analogs	in	the	models	of	obsessive-compulsive,	panic,	anxiety	disorder,	and	post-traumatic	stress	disorders	could	expand	their	potential	applications,	contraindications,	and	adverse	events	in	the
psychiatry	setting.Other	ActivitiesThe	modulation	of	central	and	peripheral	targets	by	the	pyrazole	ring	and	aforementioned	moieties	may	induce	diverse	autonomic	manifestations.	Alteration	in	the	activity	of	the	autonomic	nervous	system	could	impact	cardiac,	vascular,	and	respiratory	functions.	The	pyrazole-induced	endothelium-dependent	vascular
relaxation,	sympathoinhibition,	and	suppression	of	bronchial	remodeling	suggest	cardiovascular	or	respiratory	effects	(Girodet	et	al.,	2013;	Fajemiroye	et	al.,	2014;	Basu	et	al.,	2017;	Menegatti	et	al.,	2019).	Compounds	54	and	55	with	antihypertensive	properties	possess	a	piperazine	ring	with	carboxylic	acid	or	phenyl	substituents,	respectively.	The
introduction	of	3,5-bis(trifluoromethyl)	backbone	with	electron-withdrawing	substituents	in	compounds	56	(37-fold	Orai1	pore	inhibition	potency)	and	57	(18-fold	transient	receptor	potential	canonical	type	3	suppression	potency)	reduced	respiratory	impairments	(Schleifer	et	al.,	2012).	Bronchial	remodeling	suppression	with	details	on	the	efficacy,
potency,	selectivity,	or	mechanism	of	action	has	been	reported	for	calcium-activated	potassium	channel	blocker	(58)	and	adenosine	receptor	subtype	2A	inhibitor	(59)	with	chloro	or	a	meta-trifluoromethoxy	substituent	on	the	phenyl	ring,	respectively	(Girodet	et	al.,	2013;	Basu	et	al.,	2017).Some	of	the	analogs	that	share	the	presence	of	electron-
withdrawing	groups	in	common	tend	to	interact	with	inflammatory	mediators	that	are	relevant	to	gastrointestinal	and	metabolic	disorders.	Some	of	these	analogs	inhibit	COX	enzymes	and	suppress	the	synthesis	of	prostaglandin.	Although	both	COX-1	and	COX-2	isoforms	are	involved	in	homeostatic	functions,	the	gastrointestinal	ulceration	of
nonsteroidal	anti-inflammatory	drugs	(NSAIDs)	has	been	attributed	to	COX-1	inhibition	and	subsequent	reduction	in	gastroprotective	prostaglandin	(Kanno	and	Moayyedi,	2020).	Hence,	pyrazole	analogs	with	little	or	no	effect	on	prostaglandin	synthesis	and	release	remain	a	viable	therapeutic	option	in	patients	that	are	highly	susceptible	to	NSAID-
induced	ulceration.	The	anti-inflammatory	and	antiedematogenic	pyrazole	analog	(60;	40%	of	edema	inhibition)	with	a	very	low	ulcerogenic	index	(UI	=	60)	as	compared	with	phenylbutazone	and	indomethacin	(UI	=	275	and	300,	respectively)	appears	promising	(Maggio	et	al.,	2001).	Unlike	compound	60,	both	phenylbutazone	and	indomethacin	are
traditional	NSAIDs	well	known	for	reducing	prostaglandin	levels	through	reversible	and	nonselective	COX	inhibition.	In	the	ethanol-induced	ulcer	model,	the	benzimidazole–pyrazole	hybrids	(61–66)	with	substitutions	on	both	aromatic	rings	of	the	pyrazole	moiety	reduced	the	ulcer	index	(UI	=	72–83).	
The	ortho-hydroxyl	group	on	the	phenyl	ring	seems	to	be	involved	in	hydrogen	bonding	with	the	proton	bomb	(H+/K+	ATPase)	since	the	highest	binding	affinity	(–9.8	kcal/mole)	reported	for	compound	64	was	lost	in	compounds	63	and	66	with	methoxy	group	replacement	(Noor	et	al.,	2017).	The	suppression	of	harmful	gastrointestinal	effects	has	been
partially	attributed	to	the	meta-methyl	substitution	on	the	pyrazole	ring.	The	mepirizole	analog	(67)	with	methoxy	and	methyl	groups	at	meta	and	para-positions	on	a	pyrimidine	ring	exhibited	93%	gastroprotective	activity.	However,	the	replacement	of	the	pyrazole	ring	of	mepirizole	considerably	attenuated	this	effect	(7%	inhibition	of	ulcer	formation)
(Ikeda	et	al.,	1996).	
These	data	indicate	that	appropriate	substitutions	on	the	pyrazole	ring	could	reinforce	gastroprotection.The	analogs	that	suppress	pro-inflammatory	mediators	could	also	modulate	insulin	sensitivity	and	protect	against	metabolic	syndrome.	Insulin	resistance,	oxidative	products,	and	atherogenic	dyslipidemia	are	among	metabolic	abnormalities
underlying	diabetes.	A	molecular	hybrid	of	rimonabant	(68)	with	chloro	and	methoxy	substitutions	on	the	phenyl	ring	elicited	a	significant	antidiabetic	effect	(Hernández-Vázquez	et	al.,	2015;	Hernández-Vázquez	et	al.,	2017).	
In	a	separate	study,	the	water-soluble	pyrazole	curcumin	analog	(69)	inhibited	advanced	glycation	end	products	(AGEs)	and	eliminated	excess	glucose	(Sribalan	et	al.,	2017).	The	AGEs,	oxidative	derivatives	resulting	from	diabetic	hyperglycemia,	are	increasingly	seen	as	a	potential	risk	for	islet	β-cell	injury,	insulin	resistance,	and	diabetes	(Vlassara
and	Uribarri,	2014).	Although,	compound	69	seems	to	inhibit	AGEs	(IC50	=	56.24	μg/ml)	better	than	the	parent	curcumin	(IC50	=	79.34	μg/ml)	and	standard	drug	phloroglucinol	(IC50	=	135.73	μg/ml)	sufficient	data	for	comparative	analysis	of	these	analogs	is	still	lacking.	The	chronic	nature	of	the	metabolic	syndrome	that	warrants	prolonged	and
often	indefinite	medications	(Rochlani	et	al.,	2017)	makes	the	development	of	new	analogs	a	promising	strategy	against	the	burden	of	adverse	effects	and	patient	nonadherence.Final	Considerations	and	Future	PerspectiveThe	hunt	for	new	analogs	with	desirable	pharmacological	profiles	is	a	never-ending	task	in	drug	discovery	programs.	With	the
available	literature	on	pyrazole	analogs	(Fadaly	et	al.,	2020;	Mohamed	et	al.,	2020;	Azimi	et	al.,	2021;	Faudzi	et	al.,	2021;	Verma	et	al.,	2021),	it	is	relatively	easy	for	medicinal	chemists	to	proceed	with	rational	synthesis	or	modification	capable	of	enhancing	biological	activities.	The	substitutions,	additions,	or	removal	of	functional	groups	are	effective
strategies	for	designing	biologically	important	analogs.	The	presence	of	new	chemical	entities	could	lead	to	additional	or	loss	of	molecular	interactions.	Cellular	proliferation	and	metabolic	enzymes	provide	important	cytotoxic,	cytoprotective,	antinociceptive,	anti-inflammatory,	and	antidepressant	targets.	However,	specific	contributions	of	the
pyrazole	ring	and	functional	groups	to	these	biological	activities	remain	largely	unclear.In	light	of	this	review,	promising	cytotoxic	activities	of	some	analogs	against	breast	cancer	cell	lines	(MCF-7	and	MDA-MB-231)	is	expected	to	stimulate	extensive	evaluation	of	their	effects	on	lung	cancer	(A-549),	liver	cancer	(HepG-2),	and	brain	cancer	(HeLa)	cell
lines	(Lv	et	al.,	2016;	Lehmann	et	al.,	2017;	Turkan	et	al.,	2018;	McKenzie	et	al.,	2019;	Bennani	et	al.,	2020;	Masaret,	2021).	As	a	life-threatening	health	issue	and	one	of	the	most	lethal	diseases	known,	cancer	can	be	managed	by	targeting	gene	expression,	certain	protein	synthesis,	functions	of	organelles,	pH,	and	electrolytes	(Johnston	and	Strobel,
2020).	For	instance,	the	cytotoxic	hypothesis	appears	to	favor	exposure	to	halogenated	analogs	capable	of	increasing	halogen	influx.	This	small-sized	functional	group	with	high	electronegativity	could	lower	cytosolic	pH	(cellular	acidification).	According	to	Johnston	and	Strobel	(2020),	increasing	acidification	and	electrolyte	imbalance	by	fluoride
could	disrupt	metabolic	processes	and	induce	stress	signaling,	underpinning	cellular	toxicity.	However,	a	detailed	investigation	of	the	level	of	analog-induced	changes	in	redox	reactions,	oxidative	stress,	inflammation,	glycation,	and	other	metabolic	processes	could	facilitate	the	repositioning	of	cytotoxic	analogs	for	cytoprotection,	and	vice	versa.
Altogether,	these	effects	may	impact	autonomic	and	central	components	vis-à-vis	cardiovascular,	cardiopulmonary,	metabolic,	and	affective	manifestations.Since	antiproliferative	and	anti-inflammatory	properties	could	reduce	cellular	infiltration	and	modulate	gastrointestinal	aggressive	factors	underlying	peptic	ulcer	complications,	in	hypothesis,
some	pyrazole	analogs	could	attenuate	gastric	ulceration,	or	in	association	with	NSAIDs	at	subtherapeutic	doses	without	loss	of	efficacy.	The	growing	number	of	synthesized	analogs	without	data	of	biological	activity,	mechanism	of	action,	and	comparative	study	with	standard	drugs	containing	the	pyrazole	ring	(Hill	and	Whelan,	1980;	Kameyama	et
al.,	1981;	Clemett	and	Goa,	2000;	Samat	et	al.,	2008;	Straube,	2012;	Dopp	et	al.,	2013;	Mitou	et	al.,	2015;	Karrouchi	et	al.,	2018)	may	yield	promising	results,	if	evaluated	in	the	future	research.As	the	pyrazole	moiety	offers	a	central	motif	to	different	functional	groups	(Basu	et	al.,	2017;	Noor	et	al.,	2017;	Tripathi	et	al.,	2018;	Murahari	et	al.,	2019;
Kenchappa	and	Bodke,	2020),	its	simplified	synthetic	routes	and	potential	activities	are	expected	to	continue	to	inspire	additional	chemical	modifications	(Johnston	and	Strobel,	2020)	toward	clinical	applications.	Emerging	analogs	with	unique	physicochemical,	pharmacokinetic,	and	pharmacodynamic	properties	could	be	useful	scaffolds	for	future
studies.	The	aforementioned	target	interactions	revealed	how	structural	modification	could	enrich	mechanistic	studies.	In	the	future,	toxicological	studies,	reversibility,	and	selectivity	of	the	effect	of	these	analogs	as	well	as	the	potential	pharmacokinetic	and	pharmacodynamic	interactions	with	other	drugs	are	expected	to	predict	adverse	and
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