

Intellectual Property

Flexible AES Crypto Cores

(FLEX Series)

December 2018 Product Specification V1.0

December 2018 1

Features

❖ Fully compliant with NIST FIPS-197 standard
❖ Flex series IP cores throughput summary

o Over 7 Gbps for combo core (encrypt & decrypt)
o Over 9 Gbps for stand-alone encrypt or decrypt

❖ Flexible architecture supports area/speed tradeoffs
o User selectable number of AES engines allows an

optimal balance of LUTs and throughput to be
achieved

❖ Supports key size of 256 bits with hardware-based key
expansion

❖ Supports stand-alone encryption, decryption or both
using 128-bit data blocks in ECB format

❖ Powerful testbench verifies FIPS compliance through
known answer test (KAT)

❖ Hardware verified using FPGA development kit

IP Core Facts

Provided with Core

Documentation Core datasheet and testbench description

Design File Format VHDL RTL or Verilog netlist

Constraint Files SDC and PDC constraints

Verification Testbench using Modelsim from Mentor

Synthesis Tool Used

Synplify Version L-2016.09M-2

Support

Provided by local sales channel

Table 1 - PolarFire Implementation Statistics

 Core
AES

Engines
 LSRAM/
(uRAM)

 LUT4 FF
 Max Freq.

 (MHz)1
 Cycles/AES
 Operation2

Throughput
 (Gbps)3

AES256_flex_combo
(encrypt and decrypt)

1 16/24 3,533 3,374 141.6 14 1.30

2 24/48 5,367 2,981 126.4 7 2.31

3 32 8,308 6,318 129.7 5 3.32

4 40 10,137 6,613 119.2 4 3.81

5 48 11,580 6,971 118.2 3 5.04

7 64 14,606 7,522 115.7 2 7.40

AES256_flex_enc
(encrypt only)

1 12/12 2,020 1,483 174.0 14 1.59

2 20/24 3,016 1,946 166.5 7 3.05

3 28 3,826 3,695 162.0 5 4.15

4 36 4,756 3,987 157.7 4 5.05

5 44 5,707 4,309 159.0 3 6.79

7 60 7,600 4,892 151.5 2 9.70

AES256_flex_dec
(decrypt only)

1 12/12 1,975 1,491 161.2 14 1.47

2 20/24 3,180 1,954 153.4 7 2.81

3 28 5,586 3,831 153.4 5 3.93

4 36 6,748 4,123 145.3 4 4.65

5 44 7,500 4,445 135.4 3 5.78

7 60 8,875 5,028 141.7 2 9.07

Notes:

1) Performance based on MPF300-1FCG1152 with single pass, STD effort timing-driven place and route

2) This value indicates the number of clock cycles required before the next input block can be processed

3) Throughput is calculated based on a 128-bit AES block processed = (128 x Max Freq.) / cycles per AES operation

AES – AES256_Flex Series V1.0

December 2018 2

Table 2 - Igloo2/SmartFusion2 Implementation Statistics

 Core
AES

Engines
 LSRAM/
(uRAM)

 LUT4 FF
 Max Freq.

 (MHz)1
 Cycles/AES
 Operation2

Throughput
 (Gbps)3

AES256_flex_combo
(encrypt and decrypt)

1 16/24 TBD TBD TBD 14 TBD

2 24/48 TBD TBD TBD 7 TBD

3 32 TBD TBD TBD 5 TBD

4 40 TBD TBD TBD 4 TBD

5 48 TBD TBD TBD 3 TBD

7 64 TBD TBD TBD 2 TBD

AES256_flex_enc
(encrypt only)

1 12/12 TBD TBD TBD 14 TBD

2 20/24 TBD TBD TBD 7 TBD

3 28 TBD TBD TBD 5 TBD

4 36 TBD TBD TBD 4 TBD

5 44 TBD TBD TBD 3 TBD

7 60 TBD TBD TBD 2 TBD

AES256_flex_dec
(decrypt only)

1 12/12 TBD TBD TBD 14 TBD

2 20/24 TBD TBD TBD 7 TBD

3 28 TBD TBD TBD 5 TBD

4 36 TBD TBD TBD 4 TBD

5 44 TBD TBD TBD 3 TBD

7 60 TBD TBD TBD 2 TBD

Notes:

1) Performance based on M2GL150T-1FC1152 with single pass, high effort timing-driven place and route

2) This value indicates the number of clock cycles required before the next input block can be processed

3) Throughput is calculated based on a 128-bit AES block processed = (128 x Max Freq.) / cycles per AES operation

AES Algorithm Overview

The Advanced Encryption Standard (AES) specifies a Federal Information Processing Standards (FIPS-197)
approved cryptographic algorithm that can be used to protect electronic data. The AES algorithm is a symmetric
block cipher that can encrypt and decrypt information. Encryption converts plain-text data to an unintelligible form
called cipher-text. Decrypting the cipher-text converts the data back into its original plain-text form.

The AES algorithm uses cryptographic keys of 128, 192, and 256 bits to encrypt and decrypt data in blocks of 128
bits. For the FLEX series of IP cores however, only the 256-bit key size is supported and will be denoted from
this point forward as “AES256”.

The AES algorithm requires an expansion of the 256-bit key material to then provide a unique 128-bit key for each
of the 14 rounds of cryptography as specified by the FIPS-197 standard. This step to create these additional keys
is called key expansion. For the FLEX series, the key expansion step is required each time a new key is used.
Once a new key has been expanded, the 128-bit plain-text or cipher-text data can be input to the core continually.

Flex Series Combo Core
Figure 1 below illustrates the architecture of the AES256_flex_combo (combination) core which performs both
encryption and decryption in a single block of RTL. As Figure 1 shows, the core has independent key expansion
for both encryption and decryption which allows independent keys to be used for the encryption and decryption
operations. The scalable architecture allows from one to seven AES engines to be allocated to the crypto
process. Also, the dual datapath architecture supports cycle by cycle encryption or decryption operations without
any switching delays. In other words, the core can be used in a time-division-multiplexing (TDM) fashion, where
on successive cycles, the user can perform encrypt -> decypt -> encrypt -> decrypt etc. In this use model, the

AES – AES256_Flex Series V1.0

December 2018 3

throughput for each encrypt and decrypt would be half of the values shown in Table 1 and Table 2, however the
user would need only half the memory compared to using two stand-alone cores. For this reason, the combo
core can also be viewed as a memory optimized core.

.

AES
EngineAES

EngineAES
EngineAES

EngineAES
EngineAES

Engine
AES

Combo
Engine

 7

1

Key Expansion
(Decrypt)

Key Expansion
(Encrypt)

Plain-Text Data

Encrypt Key Data

Cipher-Text Data

Decrypt Key Data

Cipher-Text Data Out

Plain-Text Data Out

Figure 1 – AES256_flex_combo Block Diagram

Figure 2 below shows the architecture of the AES combo engine that is replicated in Figure 1. With independent
128-bit data paths for both plain-text and cipher-text, the core can be used as essentially two mostly independent
encrypt and decrypt functions. The sharing of the SBOX memory allows both encrypt and decrypt to be
performed by a single IP core without doubling the memory usage.

Plain-Text
Data

Cipher-Text
Data

Decrypt Key Data

Sbox

Shift
Rows

Inverse
Shift
Rows

Inverse
Mix

Columns

Mix
Columns

Cipher-Text
Data Out

Plaint-Text
Data Out

Encrypt Key Data

M
u

x

Figure 2 – AES Combo Engine Block Diagram

Flex Series Stand-alone Cores

If a separate encrypt or decrypt function is required or simultaneous (full duplex), full speed streaming is desired,
then the AES256_flex_enc (encrypt) and AES256_flex_dec (decrypt) stand-alone cores are available to meet
these requirements. Figure 3 below shows a block diagram of the encrypt/decrypt core. These stand-alone
crypto cores have also been designed to allow the user to select the number of AES engines to allocate for the
desired crypto function.

AES – AES256_Flex Series V1.0

December 2018 4

AES
EngineAES

EngineAES
EngineAES

EngineAES
EngineAES

Engine

AES
Encypt

Or
Decrypt
Engine

 7

1

Key Expansion

Plain-Text Data (encrypt)

Key Data

Cipher-Text Data (decrypt)

Cipher-Text Data Out

Plain-Text Data Out

Figure 3 – AES256_flex_enc/dec Block Diagram

Figure 4 shows an example of how the stand-alone cores can be used in applications where full-speed
independent encrypt and decrypt are required.

Plain-Text
Data

Cipher-Text
Data AES256_flex_dec

Key Expansion

AES256_flex_enc

Key Expansion

FIF
O

FIF
O

RX
Tranceiver

TX
Tranceiver

Cipher-Text
Data

Plain-Text
Data

Figure 4 – Example of a Full Duplex Crypto Application

AES – AES256_Flex Series V1.0

December 2018 5

Generic Definitions

Table 3 shows the generic settings that need to be configured for the desired user operation of the AES core.
Using generics provides maximum flexibility to the user by allowing a tradeoff of area versus performance to be
made.

Table 3 - Generics for AES256_Flex (enc, dec, or combo)

Generic Type Values Description

NUM_ENGINES Integer 1, 2, 3, 4, 5, 7
Specifies the number of AES engine cores to be applied
to the crypto function

KEY_PIPE_STAGES Integer 1 or 2

Specifies how many pipe stages that will allocated to the
key expansion function
1 = One pipe stage indicates the key expansion will take
14+1 cycles to complete
2 = Two pipe stages indicate the key expansion will take
28+1 cycles to complete

For applications where the critical timing path is in the key expansion engine, the user can select a 2nd pipe stage
option which increases the performance of the expansion while only adding 14 cycles to the processing time.

AES – AES256_Flex Series V1.0

December 2018 6

Signal Description

Figure 5 – AES256_flex Encrypt and Decrypt I/O Diagram

Figure 6 – AES256_flex_combo I/O Diagram

Table 4 - I/O Signal Description

Signal Direction Description

CLK Input Input clock to all registers and RAM

RESET_N Input LO active asynchronous clear of all registers

START_KE Input
HI active signal used to start the key expansion process. Only needs to be asserted for
one clock cycle to start key expansion.

DATA_IN_KE[255:0] Input 256-bit input data for key expansion

START_E Input HI active signal that starts an encryption operation

DATA_IN_E[127:0] Input 128-bit plain-text input for the encrypt function

START_D Input HI active signal that starts a decryption operation

DATA_IN_D[127:0] Input 128-bit cipher-text input for the decrypt function

INIT_DONE Output
HI active level signal indicating that the initialization of the SBOX memories has been
completed. The SBOX initialization is done automatically after the de-assertion of the
RESET_N signal

BUSY_KE Output HI active signal indicating that the key expansion process is being performed

DONE_KE Output HI active pulse signal indicating that the key expansion process has been completed

READY_E Output HI active signal indicating an encryption operation can be started

READY_D Output HI active signal indicating a decryption operation can be started

READY_ED Output HI active signal indicating an encryption or decryption operation can be started

DATA_OUT_E[127:0] Output 128-bit cipher-text output

AES – AES256_Flex Series V1.0

December 2018 7

DATA_VALID_E Output HI active pulse signal indicating that the 128-bit cipher-text data is valid

DATA_OUT_D[127:0] Output 128-bit plain-text output

DATA_VALID_D Output HI active pulse signal indicating that the 128-bit plain-text data is valid

BUSY_ED Output HI active signal indicating that the combo core is busy processing crypto data

AES – AES256_Flex Series V1.0

December 2018 8

Functional Description

Initialization
This IP core requires an initialization of the internal sbox ram tables before cryptographic functions can be started.
This process is started immediately after the de-assertion of the RESET_N signal. For the combo core, after 512
plus one clock cycles, the INIT_DONE signal is asserted HI to indicate completion of the initialization process.
For the stand-alone cores, after 256 plus one clock cycles, the INIT_DONE signal is asserted HI to indicate
completion of the initialization process. The INIT_DONE signal remains HI until the next assertion of RESET_N.
Figure 3 below illustrates the timing for sbox initialization from internal ROM. No other actions are required to
start the init process other than the de-assertion of the RESET_N signal.

Figure 7 – SBOX Initialization Timing

Key Expansion
The key expansion step is required each time a new key is to be used in the cryptographic process. Before a
cryptographic process is performed, the AES algorithm requires the 256-bit key to be expanded. During the key
expansion step, the key data is input to the core where it gets passed through a logic chain 14 times to produce
14 sub-keys. These sub-keys are stored in either ram or registers.

The process of key expansion takes 14 or 28 clock cycles based on the generic setting plus one cycle for the
output register. Key expansion and cryptographic functions can not be overlapped. The timing diagram shown
below in Figure 8 shows that START_KE initiates the key expansion and KE_DONE indicates its completion.

Figure 8 – Key Expansion Timing

256+1/512+1 cycles

14+1/28+1 cycles

AES – AES256_Flex Series V1.0

December 2018 9

AES Engine
This AES engine block is responsible for the actual encrypt and decrypt functions. Based on the number of
engines allocated to the crypto function, the throughput can be increased at the expense of memory and gates.
Table 5 below restates the options that are available with the combo or stand-alone cores. There are two
considerations for assessing performance of these IP cores – latency and throughput. Since the cores are
heavily pipelined, latency is defined as the number of clock cycles that it takes to get the first crypto result out of
the core. It is the same number regardless of how many AES engines are used. The latency for all IP cores is 14
cycles (one for each round of AES256) plus one cycle for a pipeline register. Throughput is based on the number
of cycles that it takes for each AES256 block (128-bits) to be processed. For example, if seven AES engines are
used, the first crypto result would be output after 15 cycles followed by a new crypto result every 2 cycles after
that (assuming the core is given new data to process every 2 cycles).

Table 5 – Performance vs Area Tradeoffs

of AES
Engines

of Cycles per AES
Operation

Latency

1 14 14+1

2 7 14+1

3 5 14+1

4 4 14+1

5 3 14+1

7 2 14+1

Figure 9 shows the timing required to perform an encryption and decryption operation with the combo core. The
START_E signal at CLK5 begins the encrypt function on P1. 15 cycles later the cipher-text of P1 (called E1) is
output synchronous with the DATA_VALID_E signal (the waveform below is compressed in showing the 15 cycles
required for encryption/decryption). Four cycles after the last encrypt operation starts on CLK13, the first decrypt
operation starts on CLK17 with cipher-text C1.

Figure 9 – Combo Core Crypto Timing (num_engines=4)

14+1 cycles

2,3,4,5,7 or 14 cycles

AES – AES256_Flex Series V1.0

December 2018 10

Figure 10 shows the timing required to perform an encryption or decryption operation with one of the stand-alone
cores. The START_x signal at CLK5 begins the encrypt or decrypt function on P1. 15 cycles later the crypto text
of P1 (called E1) is output synchronous with the DATA_VALID_x signal (the waveform below is compressed in
showing the 15 cycles required for encryption/decyption).

Figure 10 – Stand-alone Core Crypto Timing (num_engines=4)

14+1 cycles

AES – AES256_Flex Series V1.0

December 2018 11

Verification

Figures 11 and 12 shows the testbench architectures used to validate the Flex series AES256 cores.

AES256
FLEX

Combo Core

AES
Stimulus

Plain-Text Data (encrypt)

Cipher-Text Data (decrypt)

Cipher-Text Data Out

Plain-Text Data Out

AES
Verification

 Figure 11 – Combo Core Verification

AES256
FLEX ENC

Core
AES

Stimulus

Plain-Text Data (encrypt)

Cipher-Text
Data (decrypt)

Plain-Text Data Out

AES
Verification

AES256
FLEX DEC

Core

 Figure 12 – Stand-alone Core Verification

AES – AES256_Flex Series V1.0

December 2018 12

Deliverables

Table 5 – AES256_flex_enc Source Code Hierarchy

Table 6 – AES256_flex_dec Source Code Hierarchy

AES – AES256_Flex Series V1.0

December 2018 13

Table 7 – AES256_flex_combo Source Code Hierarchy

AES – AES256_Flex Series V1.0

December 2018 14

Table 8 –Simulation Files

Item Description

Run_aes.do Combo core top level do file for running AES simulation

 AES256flex_stim2.vhd Testbench for reading and comparing multiple cipher/decipher functions – Pass/Fail notification

 wave_aes.do Waveform file for examining signals in Modelsim wave window

Run_aes.do Stand-alone core top level do file for running AES simulation

 AESmodem_stim2.vhd Testbench for reading and comparing multiple cipher/decipher functions – Pass/Fail notification

 wave_aes.do Waveform file for examining signals in Modelsim wave window

