

Intellectual Property

Advanced Encryption Standard (AES)
Tiny Version

November 15th, 2008 Product Specification V1.0

November 2008 1

Features

! Fully compliant with NIST (FIPS-197) standards
! Supports key sizes of 128, 192 or 256 bits with

hardware-based key expansion
! Supports stand-alone encryption, decryption or both

using 128-bit data blocks in ECB format
Optional support for CBC, CFB and OFB formats

! Supports initialization of sbox ram tables by external
source or internal source (ROM)

! 32-bit data interface simplifies loading of keys and data
! Supports burst operations with and without fifo
! Supports background scrubbing of sbox tables for

improved reliability
! Testbench verifies FIPS compliance through known

answer test (KAT)
! Deployed into multiple production designs

IP Core Facts
Provided with Core

Documentation Core datasheet and testbench description

Design File Format VHDL RTL or Verilog netlist

Constraint Files SDC and PDC constraints

Verification Testbench using Modelsim from Mentor

Synthesis Tool Used
Synplify Version 9.4A1

Support

Provided by local sales channel

Table 1 - Implementation Statistics for A3P/Fusion/Igloo1

 Key Size Encryption Decryption Fifo RAM
 Blocks

Tiles
 (EXT init)2

Tiles
 (ROM init)3

 Speed4

 (MHz)
 Throughput

 (Mbps)
Yes Yes No 6 1724 2221 116 201

Yes No No 6 1347 1843 129 223

No Yes No 6 1406 1901 117 202

Yes Yes Yes 8 1728 2224 120 208

Yes No Yes 8 1358 1855 126 218

128

No Yes Yes 8 1415 1908 121 209

Yes Yes No 6 1684 2188 117 170
Yes No No 6 1347 1841 130 189
No Yes No 6 1402 1900 121 176
Yes Yes Yes 8 1689 2189 116 169
Yes No Yes 8 1347 1845 125 182

192

No Yes Yes 8 1402 1898 122 177

Yes Yes No 6 1767 2258 119 149

Yes No No 6 1390 1883 122 153

No Yes No 6 1447 1942 121 152

Yes Yes Yes 8 1769 2264 110 138

Yes No Yes 8 1393 1889 125 157

256

No Yes Yes 8 1449 1947 113 142

Notes:

1) Igloo V5 performance is approximately 67% of the speed shown. Igloo V2 performance is approximately 40% of the speed shown

2) EXT refers to external initialization of the sbox ram tables � see the Generics section for more information

3) ROM refers to internal initialization of the sbox ram tables using ROM within the TinyAES core � see the Generics section

4) All performance numbers are based on A3P250-2PQ208 with single pass TDPR

AES � Tiny Version V1.0

November 2008 2

AES Algorithm Overview

The Advanced Encryption Standard (AES) specifies a Federal Information Processing Standards (FIPS) approved
cryptographic algorithm that can be used to protect electronic data. The AES algorithm is a symmetric block
cipher that can encrypt (encypher) and decrypt (decypher) information. Encryption converts plaintext data to an
unintelligible form called cipher-text. Decrypting the cipher-text converts the data back into its original plaintext
form.

The AES algorithm is capable of using cryptographic keys of 128, 192, and 256 bits to encrypt and decrypt data in
blocks of 128 bits. The algorithm is used with the three different key lengths indicated above, and therefore these
different �flavors� are referred to as �AES-128�, �AES-192�, and �AES-256�. For the AES algorithm, the amount
of processing or number of rounds to be performed during the execution of the algorithm is dependent on the key
size. The number of rounds is represented by Nr, where

Nr =10 when for AES-128, Nr = 12 for AES-192, and Nr = 14 for AES-256.

Table 2 illustrates the breakdown of processing steps based on the different key sizes. The throughput is
therefore decreased as the key size is increased. In other words, the two additional rounds for each increase in
key size decreases the overall throughput of the TinyAES core due to the additional processing required.

Table 2 - AES Algorithm

Version Key Size Block Size Rounds (Nr)

AES-128 128 bits 128 bits 10

AES-192 192 bits 128 bits 12

AES-256 256 bits 128 bits 14

The AES algorithm requires an expansion of the orginal key to then provide a unique key for each round of the
cipher/decipher process. The step to create these additional keys is called key expansion. For the TinyAES core,
the key expansion step is required each time a new key is used. Once a new key has been expanded, then 128-
bit data can be input to the core continually. To simplify the loading of 128-bit block data and to provide a burst
mode capability of up to 64 data blocks, a 256 x 32 bit fifo can be optionally added to the front-end of the core.
Figure 1 below illustrates the architecture of the TinyAES core. Actel�s flash-based FPGAs are a perfect fit for
AES data security applications due to their inherent device security and non-volatile attributes.

Cipher/Decipher
Engine

Key Expansion
Engine

256 x
32 Fifo

Optional

Control
Logic

Input Data

Output Data

 Figure 1 � TinyAES Block Diagram

AES � Tiny Version V1.0

November 2008 3

Generic Definitions

Table 2 shows the generic settings that need to be configured for the desired user operation of the AES core.
Using generics, maximum flexibility is obtained allowing a balance of area versus feature tradeoffs to be made.

Table 3 - Generics for TinyAES

Generic Type Values Description

KEYSIZE Integer 128, 192, 256 Specifies the key size for the AES core

INIT_SBOX Text �EXT�, �ROM�

Specifies the method for initialization of the sbox ram
tables
�EXT� = external source loads the 512 bytes
�ROM� = internal 512x8 ROM block loads the 512 bytes

FIFO Integer 0 or 1

Specifies whether a 256x32bit fifo is used in the core for
data into and out of the AES core
0 = no fifo used
1 = use fifo

ENCRYPTOR Integer 0 or 1
Specifies whether to enable the encryption engine
0 = encryptor disabled
1 = encryptor enabled

DECRYPTOR Integer 0 or 1
Specifies whether to enable the decryption engine
0 = decryptor disabled
1 = decryptor enabled

SCRUBBING Integer 0 or 1

Specifies whether to enable background scrubbing of the
sbox tables
0 = scrubbing disabled
1 = scrubbing enabled

Notes:

KEYSIZE
As the key size increases, there is a reduction in throughput based on the increased number of processing
rounds. The TinyAES core size is mostly independent of the key size.

INIT_SBOX
In a processor-based system, or a device with internal flash memory, the option of EXT may be desirable
because of the tile savings of over 20% versus using the internal ROM block. Since the ROM block consumes
roughly 500 tiles, where possible, the EXT option is preferred since the tile count is reduced.

ENCRYPTOR AND DECRYPTOR
At least one of these generics must have a value of 1. 0 for both generics is an invalid combination. Size and
speed tradeoffs can be made if one of the functions is not needed.

SCRUBBING
SCRUBBING is only available when the INIT_SBOX setting is ROM. This feature is useful when it is desired to
ensure that the sbox tables have not been upset due to a neutron upset. When enabled, and the AES core is not
busy, the sbox tables are automatically re-written from ROM to refresh the contents and ensure the highest
reliability of the subsequent crypto functions. Impact to the AES core size is negligible, however dynamic power
is increased slightly. Therefore, for the lowest power implementation, SCRUBBING should be disabled.

AES � Tiny Version V1.0

November 2008 4

Signal Description

TinyAES Core

Y

CLK

RESET _N

DATA_IN(31:0)

START_KE

START_ED

ED

BLOCK_COUNT(11:0)

INIT_CLK

INIT_WEN

INIT_WDATA(7:0)

INIT_WADDR(8:0)

FIFO_WRB

FIFO_RDB

TinyAES

DATA_OUT(31:0)

DATA_VALID

BLOCK_DONE

KE_DONE

BUSY

INIT_DONE

FIFO_STAT

 Figure 2 � TinyAES I/O Diagram

Table 4 - I/O Signal Description

Signal Direction Description

CLK Input Input clock to all registers and RAM

RESET_N Input LO active asynchronous clear of all registers

DATA_IN Input 32-bit input data for key expansion, plaintext encryption or cipher-text decryption

START_KE Input HI active signal used to start the key expansion process. Only needs to be asserted for
one clock cycle to start key expansion.

START_ED Input HI active signal used to start an encryption or decryption process. Only needs to be
asserted for one clock cycle to start the process.

ED Input Specifies whether an encrypt or decrypt function is performed
0 = encrypt process; 1 = decrypt process

BLOCK_COUNT Input 12-bit input specifies the number of consecutive 128-bit data block cryptographic
operations. For single data block operations, block_count should be x�001�.

DATA_OUT Output 32-bit output data containing plaintext or cipher-text. 4 words are always output
consecutively synchronous with DATA_VALID

DATA_VALID Output HI active signal indicating valid data on the DATA_OUT bus. This signal is always HI for
4 consecutive CLK cycles.

BLOCK_DONE Output HI active signal indicating that a block of crypto functions has been completed

KE_DONE Output HI active signal indicating completion of the key expansion process

BUSY Output HI active signal indicating that the TinyAES core is busy

INIT_CLK Input Input clock to SBOX ram. Must be less than or equal to CLK frequency.

INIT_WEN Input LO active write enable to the SBOX ram

INIT_WDATA Input 8-bit write data to the SBOX ram

INIT_WADDR Input 9-bit write address to the SBOX ram (512 byte addresses)

INIT_DONE Output HI active signal indicating the SBOX tables have been initialized after reset.

FIFO_WRB Input LO active signal that allows the fifo to be written to

FIFO_RDB Input LO active signal that allows the fifo to be read from

FIFO_STAT Output HI active signal indicating that the input fifo is empty

AES � Tiny Version V1.0

November 2008 5

It is important to understand the effect of the generic settings on the user I/O of the TinyAES core. Table 5 below
illustrates when an I/O pin is used based on the generic setting.

Table 5 - Generic Settings and Effect on I/O

Signal SBOX_INIT=EXT SBOX_INIT=ROM FIFO=0 FIFO=1

INIT_CLK YES YES

INIT_WEN YES NO

INIT_WDATA YES NO

INIT_WADDR YES NO

INIT_DONE NO YES

FIFO_WRB NO YES

FIFO_RDB NO YES

FIFO_STAT NO YES

The I/O signals not shown above are always necessary for proper operation of the TinyAES core. The I/Os above
that have a NO entry can be left unconnected on the core given the generic setting shown. Shaded regions
indicate that the generic has no effect on that particular I/O.

AES � Tiny Version V1.0

November 2008 6

Functional Description

Initialization
The TinyAES core requires an initialization of its internal sbox ram tables before cryptographic functions can be
started. There are two ways that these tables can be loaded based on the setting of the generic INIT_SBOX.
If the ROM setting is chosen, then an internal ROM block is instantiated into the TinyAES core which is used to
automatically load the sbox tables. This process is started immediately after the de-assertion of the RESET_N
signal. After 1026 INIT_CLK cycles, the INIT_DONE signal is asserted HI to indicate completion of the
initialization process. The INIT_DONE signal remains HI until the next assertion of RESET_N. Figure 3 below
illustrates the timing for sbox initialization from internal ROM. No other actions are required to start the init
process other than the de-assertion of the RESET_N signal

 1 2 3 4 5 6 7 8 9 10 11 12 13
INIT_CLK

RESET_N

INIT_DONE

Figure 3 � Initialization Timing with INIT_SBOX=ROM

In an effort to offer optimal area efficiency for the TinyAES core, an external memory interface is available to load
the sbox tables from external processor flash or from on-chip non-volatile flash memory (NVM). By setting the
INIT_SBOX generic to EXT, the ROM block is excluded from the core build and a 20% tile count reduction is
obtained. 512 bytes of data need to be loaded using the memory interface. During this setting, the INIT_DONE is
unused since the memory interface control is outside of the core. Appendix A contains the data table that needs
to be loaded via the memory interface. Figure 4 shows the timing required to initialize the sbox ram tables using
the external memory interface.

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23

00 01 02 03 04 05 06 07 08

63 7C 77 7B F2 6B 6F C5 30 55 21 0C 7D

1FC 1FD 1FE 1FF

INIT_CLK

RESET_N

INIT_WEN

INIT_WADDR

INIT_WDATA

Figure 4 � Initialization Timing with INIT_SBOX=EXT

1026 cycles

512 cycles

AES � Tiny Version V1.0

November 2008 7

Key Expansion
The key expansion step is required each time a new key is to be used in the cryptographic process. Before a
cryptographic process is performed, the AES algorithm requires the chosen key (regardless of size) to be
expanded. During the key expansion step, the key is input to the core and stored in ram where it then gets
passed through a logic chain ten times to produce ten sub-keys (in the case of a 128-bit key). These additional
keys are also stored in ram to be later used in the actual cryptographic function (see Figure 5).

SBOX
Table
256 x8

Key Data
Input

Key Ram
64x32

2:1 M
ultiplexer

2:1 M
ultiplexer

XO
R and M

ux Logic

32-bit R
egister

Key Data
Output

Figure 5 Key Expansion Engine Block Diagram

Key expansion only needs to be done once before cipher and decipher functions can be started. The only time it
needs to be run again is when a different key is desired. The process of key expansion takes 68 (128 bit key), 74
(192-bit key), or 89 (256-bit key) clock cycles based on the key size selected. Key expansion and cryptographic
functions can not be overlapped. The timing diagram shown below in Figure 6 shows that START_KE initiates
the key expansion and KE_DONE indicates its completion.

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23

K1 K2 K3 K4 K5 K6 K7 K8

CLK

RESET_N

START_KE

DATA_IN

KE_DONE

BUSY

Figure 6 � Key Expansion Timing

Data Formatting

Given a 128-bit key arranged in four 32-bit long words, the load order would be from left to right starting with K1.
K1(0) would be input on DATA_IN(0) with K1(31) input on DATA_IN(31), and then on the next CLK cycles K2, K3
and K4 in the bit order shown. Additional long words K5 and K6 are only needed for 192-bit key sizes, and
likewise K7 and K8 required only for 256-bit key sizes.

K1 K2 K3 K4
0��������31 32�������..63 64�������..95 96�������127

68/74/89 cycles

AES � Tiny Version V1.0

November 2008 8

Key Security
Since the expanded keys generated are central to the cryptographic integrity, the key ram is not accessible from
outside the TinyAES core. In fact, even during calculation and storage of the sub-keys, no key information is
exposed outside of the core.

128-bit Key Expansion Example

Key: 000102030405060708090a0b0c0d0e0f

Based on this key selection the Table 6 below shows the contents of the key ram after the key expansion.

Table 6 - Key Ram Contents Example

Key Ram
Address Contents Expansion

Round #
0 00010203 K1

1 04050607 K2

2 08090a0b K3

3 0c0d0e0f K4

4 d6aa74fd 1

5 d2af72fa 1

6 daa678f1 1

7 d6ab76fe 1

8 b692cf0b 2

9 643dbdf1 2

0A be9bc500 2

0B 6830b3fe 2

0C b6ff744e 3

0D d2c2c9bf 3

0E 6c590cbf 3

0F 0469bf41 3

10 47f7f7bc 4

11 95353e03 4

12 f96c32bc 4

13 fd058dfd 4

14 3caaa3e8 5

15 a99f9deb 5

Key Ram
Address Contents Expansion

Round #
16 50f3af57 5

17 adf622aa 5

18 5e390f7d 6

19 f7a69296 6

1A a7553dc1 6

1B 0aa31f6b 6

1C 14f9701a 7

1D e35fe28c 7

1E 440adf4d 7

1F 4ea9c026 7

20 47438735 8

21 a41c65b9 8

22 e016baf4 8

23 aebf7ad2 8

24 549932d1 9

25 f0855768 9

26 1093ed9c 9

27 be2c974e 9

28 13111d7f 10

29 e3944a17 10

2A f307a78b 10

2B 4d2b30c5 10

AES � Tiny Version V1.0

November 2008 9

Cipher/Decipher Engine
This block is responsible for the core AES cryptographic algorithm processing. The stage sequencer shown in
Figure 7 controls the AES processing functions. Similar to key expansion, multiple rounds are required for a
complete AES encrypt or decrypt function (10,12 or 14 rounds per Table 2). Since this core contains one cipher
engine, each round must pass through the engine sequentially. The TinyAES core uses a 32-bit data path for
processing the 128-bit AES data block. Figure 7 shows how 4 clock cycles are needed to load the 128-bit state
register plus 3 more clock cycles to complete the sbox translation and mix column or inverse mix column
functions (see yellow shading to indicate register stages). Therefore a total of 7 clock cycles are required for each
round.

128-bit S
tate R

egister

2:1 M
ultiplexer

M
ultiplexer Block

SBOX
Table
256x8

Inverse
SBOX
Table
256x8

XO
R

 and M
ux Logic

Key Data

Data Input Data Output

Mix
Column

Inverse
Mix

Column

AES Stage Sequencer

Figure 7 - Cipher/Decipher Engine Block Diagram

The equation below shows the total number of clock cycles required for processing a 128-bit AES data block
through the TinyAES core.

(1) #cycles = (Nr x Ce) + Ohd
 where Nr = the number of rounds (10 for 128-bit key)
 where Ce = the number of cycles to pass through the cipher engine (7)
 where Ohd = the number of overhead cycles (2 for single, 4 for burst)

Using equation (1), we can compute the number of clock cycles required to encrypt or decrypt a 128-bit block of
data.

Table 7 - TinyAES Cycle Count

Key Size # Cycles
(Single operation)

Cycles
(Burst operation)

128 bits (10 x 7) + 2 = 72 (10 x 7) + 4 = 74

192 bits (12 x 7) + 2 = 86 (10 x 7) + 4 = 88

256 bits (14 x 7) + 2 = 100 (10 x 7) + 4 = 102

The data throughput of TinyAES can be calculated using the results from Table 7 and equation (2) below.
Together with the operating frequency values from Table 1, the data throughput rate for each of the core variants,
can be calculated for a 128-bit block of data. The throughput is measured in bits-per-second (bps).

(2) Throughput(bps) = frequency x (#cycles)-1 x 128

AES � Tiny Version V1.0

November 2008 10

For example with a 128-bit key size, if the speed of the chosen core variant runs at 120.8MHz in the device
selected, then the throughput would be

 208.9 Mbps = 120.8 x 106 x (1/74) x 128

The throughput number indicates the sustained input data rate that can be supported by the TinyAES core. This
is possible running at 120.8MHz because the core operates on 128-bit data blocks and can perform a complete
cryptographic function in as few as 74 cycles.

Figure 8 shows the timing required to perform an encryption or decryption operation. The value of the ED signal
determines which type of operation is performed. The START_ED signal begins the operation on the next rising
edge of the clock. The first of the four 32-bit plaintext words to be processed are input on the same rising edge as
the START_ED with the next 3 plaintext words input on successive clock cycles as shown by P1, P2, P3 and P4.
For a single operation (BLOCK_COUNT=001h), after 72 clock cycles (with 128-bit key size), the DATA_VALID
signal is asserted for four clock cycles to indicate that the DATA_OUT bus contains valid data. For each
DATA_VALID clock cycle, a new 32-bit word is driven out on the DATA_OUT bus as shown by E1, E2, E3, and
E4.

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23

P1 P2 P3 P4

E1 E2 E3 E4

x"001"

CLK

RESET_N

ED

START_ED

DATA_IN

DATA_VALID

DATA_OUT

BUSY

BLOCK_COUNT

Figure 8 � Single Operation Encryption Timing (without fifo)

72/86/100 cycles

AES � Tiny Version V1.0

November 2008 11

Figure 9 below shows the relative timing between DATA_VALID assertions during burst mode. For a 128-bit key
size, from rising edge of DATA_VALID to the next rising edge is 74 cycles.

 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38

P1 P2 P3 P4

E1 E2 E3 E4

x"002"

P5 P6 P7 P8

E5 E6 E7 E8

CLK

RESET_N

ED

START_ED

DATA_IN

DATA_VALID

DATA_OUT

BUSY

BLOCK_COUNT

BLOCK_DONE

Figure 9 � Burst Operation Encryption Timing (without fifo)

As a note, the decryption timing is identical with the only difference being the polarity of the ED signal. Also,
encryption and decryption can mixed in the same block sequence. In other words, in Figure 9, at the falling edge
of clock 18, ED could be driven HI to perform a decryption operation of the next data block. There are no
limitations on mixing these functions because the core handles them the same from a timing standpoint.

AES � Tiny Version V1.0

November 2008 12

Fifo Option Timing
The FIFO option is currently implemented as a single 256x32 block. The user and the AES engine both share the
fifo which minimizes the memory block utilization. If the user wants a larger fifo or full-duplex (unique input and
output fifo blocks), then it is recommended to not use FIFO mode and simply use the DATA_VALID and START
signals to control output and input fifos external to the core.

Figure 10 below shows the required signal timing to interface to the single fifo block. Up to 256 32-bit words (or
64 AES data blocks) can be preloaded into the fifo to be processed in a burst mode. During encryption or
decryption of the fifo data, the BUSY signal is asserted to indicate that the fifo is busy being accessed by the AES
engine. Once the core is not busy, then the FIFO_RDB signal can be asserted thereby allowing the fifo contents
to be read by the user.

 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

P1 P2 P3 P4

E1 E2 E3 E4

CLK

RESET_N

FIFO_WRB

DATA_IN

BUSY

FIFO_RDB

DATA_OUT

FIFO_STAT

Figure 10 � Fifo Control Timing

AES � Tiny Version V1.0

November 2008 13

Verification

Figure 11 shows the architecture of the verification testbench used to validate the TinyAES core variants.

TinyAES Core
Under Test

Verification
TestBench

Input
Vector

Database

Expected
Result

Database

NIST 800-17
Requirements

 Figure 11 � Verification Block Diagram

AES � Tiny Version V1.0

November 2008 14

Deliverables

Table 8 below shows the source code hierarchy of the TinyAES core. The current RTL deliverable is VHDL,
however, verilog RTL can be provided on request.

Table 8 - Source Code Hierarchy

Item Description

TinyAES Top level file

 ROM_sboxr_g3 ROM source code for internal initialization of sbox ram

 sbox_table 256 byte ROM file used to load sbox ram with both normal and inverse sbox tables

 TinyAESF_wrp Fifo based wrapper file for the AES engine

 fifo256x32 256x32 synchronous fifo block (2 ram blocks)

 aes_top Main AES function

 cypher_engine This level allows for the 3 key sizes to be passed to aes_cd_fast

 aes_cd_fast Main encryption/decryption engine

 block_count12 12-bit block counter for burst operations

 iGFmult Inverse galois field multiplier for inverse mix column function

 Gfmult Galois field multiplier for mix column function

 key_engine Main key expansion block that specifies the proper key size expansion engine

 aes_key_fast128 Performs 128-bit key expansion

 aes_key_fast192 Performs 192-bit key expansion

 aes_key_fast256 Performs 256-bit key expansion

 ram64x32_sync Key expansion RAM (used in all 3 key expansion options)

 sbox_ram 512x32 of ram for storage of both sbox tables (total of 4 ram blocks)

 ram512x8 Synchronous access (lower 256 is normal sbox table and upper 256 is inverse table)

 TinyAES_wrp.vhd Wrapper file for the AES engine

 aes_top Main AES function

 cypher_engine This level allows for the 3 key sizes to be passed to aes_cd_fast

 aes_cd_fast Main encryption/decryption engine

 block_count12 12-bit block counter for burst operations

 iGFmult Inverse galois field multiplier for inverse mix column function

 Gfmult Galois field multiplier for mix column function

 key_engine Main key expansion block that specifies the proper key size expansion engine

 aes_key_fast128 Performs 128-bit key expansion

 aes_key_fast192 Performs 192-bit key expansion

 aes_key_fast256 Performs 256-bit key expansion

 ram64x32_sync Key expansion RAM (used in all 3 key expansion options)

 sbox_ram 512x32 of ram for storage of both sbox tables (total of 4 ram blocks)

 ram512x8 Synchronous access (lower 256 is normal sbox table and upper 256 is inverse table)

AES � Tiny Version V1.0

November 2008 15

Table 9 � Constraint Files

Item Description

TinyAESext.sdc SDC file needed when SBOX_INIT=EXT

TinyAESrom.sdc SDC file needed when SBOX_INIT=ROM; multi-cycle constraints for INIT_CLK

TinyAESrom.pdc PDC file needed when SBOX_INIT=ROM; puts INIT_CLK on a global

EXT_load.dat External load file for sbox ram. 512 bytes of sbox data. (See appendix A)

Table 10 � Simulation Files � 128-bit key size

Item Description

All_mc_aes128.do Top level do file for running known answer test

 TinyAES_tbmc128.vhd Testbench for reading and comparing multiple cipher/decipher functions � Pass/Fail notification

 ecb_vt_e.dat Same key for each cipher but with varied plaintext

 ecb_vt_d.dat Same key for each decipher but with varied cipher-text

 ecb_vk_e.dat Same plaintext for each cipher but with varied key

 ecb_vk_d.dat Same cipher-text for each decipher but with varied key

 ecb_tbl_128e.dat Varied key and plaintext for each cipher

 ecb_tbl_128d.dat Varied key and cipher-text for each decipher

 wave_key128.do Waveform file for examining signals in Modelsim wave window

All_chip_aes128.do Basic burst mode test without fifo. Examine Modelsim wave window for correct output

 TinyAES_tb128.vhd Basic burst mode testbench

 wave_key128.do Waveform file for examining signals in Modelsim wave window

All_chip_aes128f.do Basic burst mode test with fifo. Examine Modelsim wave window for correct output

 TinyAESf_tb128.vhd Basic burst mode testbench with fifo

 wave_std.do Waveform file for examining signals in Modelsim wave window showing fifo signals

All_chip_aes128ext.do Basic burst mode test without fifo; Uses external load of sbox tables

 TinyAES_tb128ext.vhd Basic burst mode testbench with external load of sbox tables

 wave_key128.do Waveform file for examining signals in Modelsim wave window

Table 11 � Simulation Files � (ZZZ = 192 or 256)

Item Description

All_mc_aesZZZ.do Top level do file for running known answer test

 TinyAES_tbmcZZZ.vhd Testbench for reading and comparing multiple cipher/decipher functions � Pass/Fail notification

 ecb_tbl_ZZZe.dat Varied key and plaintext for each cipher

 ecb_tbl_ZZZd.dat Varied key and cipher-text for each decipher

 wave_keyZZZ.do Waveform file for examining signals in Modelsim wave window

All_chip_aesZZZ.do Basic burst mode test without fifo. Examine Modelsim wave window for correct output

 TinyAES_tbZZZ.vhd Basic burst mode testbench

 wave_keyZZZ.do Waveform file for examining signals in Modelsim wave window

All_chip_aesZZZf.do Basic burst mode test with fifo. Examine Modelsim wave window for correct output

 TinyAESf_tbZZZ.vhd Basic burst mode testbench with fifo

 wave_std.do Waveform file for examining signals in Modelsim wave window showing fifo signals

AES � Tiny Version V1.0

November 2008 16

Appendix A � External Initialization of Sbox

Sbox RAM Load Pattern (1st 256 bytes) � Sbox Table

ADDR DATA
0 63
1 7C
2 77
3 7B
4 F2
5 6B
6 6F
7 C5
8 30
9 01

0A 67
0B 2B
0C FE
0D D7
0E AB
0F 76
10 CA
11 82
12 C9
13 7D
14 FA
15 59
16 47
17 F0
18 AD
19 D4
1A A2
1B AF
1C 9C
1D A4
1E 72
1F C0
20 B7
21 FD
22 93
23 26
24 36
25 3F
26 F7
27 CC
28 34
29 A5
2A E5
2B F1
2C 71
2D D8
2E 31
2F 15
30 04
31 C7
32 23
33 C3

ADDR DATA
34 18
35 96
36 05
37 9A
38 07
39 12
3A 80
3B E2
3C EB
3D 27
3E B2
3F 75
40 09
41 83
42 2C
43 1A
44 1B
45 6E
46 5A
47 A0
48 52
49 3B
4A D6
4B B3
4C 29
4D E3
4E 2F
4F 84
50 53
51 D1
52 00
53 ED
54 20
55 FC
56 B1
57 5B
58 6A
59 CB
5A BE
5B 39
5C 4A
5D 4C
5E 58
5F CF
60 D0
61 EF
62 AA
63 FB
64 43
65 4D
66 33
67 85

ADDR DATA
68 45
69 F9
6A 02
6B 7F
6C 50
6D 3C
6E 9F
6F A8
70 51
71 A3
72 40
73 8F
74 92
75 9D
76 38
77 F5
78 BC
79 B6
7A DA
7B 21
7C 10
7D FF
7E F3
7F D2
80 CD
81 0C
82 13
83 EC
84 5F
85 97
86 44
87 17
88 C4
89 A7
8A 7E
8B 3D
8C 64
8D 5D
8E 19
8F 73
90 60
91 81
92 4F
93 DC
94 22
95 2A
96 90
97 88
98 46
99 EE
9A B8
9B 14

ADDR DATA
9C DE
9D 5E
9E 0B
9F DB
A0 E0
A1 32
A2 3A
A3 0A
A4 49
A5 06
A6 24
A7 5C
A8 C2
A9 D3
AA AC
AB 62
AC 91
AD 95
AE E4
AF 79
B0 E7
B1 C8
B2 37
B3 6D
B4 8D
B5 D5
B6 4E
B7 A9
B8 6C
B9 56
BA F4
BB EA
BC 65
BD 7A
BE AE
BF 08
C0 BA
C1 78
C2 25
C3 2E
C4 1C
C5 A6
C6 B4
C7 C6
C8 E8
C9 DD
CA 74
CB 1F
CC 4B
CD BD
CE 8B
CF 8A

ADDR DATA
D0 70
D1 3E
D2 B5
D3 66
D4 48
D5 03
D6 F6
D7 0E
D8 61
D9 35
DA 57
DB B9
DC 86
DD C1
DE 1D
DF 9E
E0 E1
E1 F8
E2 98
E3 11
E4 69
E5 D9
E6 8E
E7 94
E8 9B
E9 1E
EA 87
EB E9
EC CE
ED 55
EE 28
EF DF
F0 8C
F1 A1
F2 89
F3 0D
F4 BF
F5 E6
F6 42
F7 68
F8 41
F9 99
FA 2D
FB 0F
FC B0
FD 54
FE BB
FF 16

AES � Tiny Version V1.0

November 2008 17

Sbox RAM Load Pattern (2ND 256 bytes) - Inverse Sbox Table

ADDR DATA
100 52
101 9
102 6A
103 D5
104 30
105 36
106 A5
107 38
108 BF
109 40
10A A3
10B 9E
10C 81
10D F3
10E D7
10F FB
110 7C
111 E3
112 39
113 82
114 9B
115 2F
116 FF
117 87
118 34
119 8E
11A 43
11B 44
11C C4
11D DE
11E E9
11F CB
120 54
121 7B
122 94
123 32
124 A6
125 C2
126 23
127 3D
128 EE
129 4C
12A 95
12B 0B
12C 42
12D FA
12E C3
12F 4E
130 8
131 2E
132 A1
133 66

ADDR DATA
134 28
135 D9
136 24
137 B2
138 76
139 5B
13A A2
13B 49
13C 6D
13D 8B
13E D1
13F 25
140 72
141 F8
142 F6
143 64
144 86
145 68
146 98
147 16
148 D4
149 A4
14A 5C
14B CC
14C 5D
14D 65
14E B6
14F 92
150 6C
151 70
152 48
153 50
154 FD
155 ED
156 B9
157 DA
158 5E
159 15
15A 46
15B 57
15C A7
15D 8D
15E 9D
15F 84
160 90
161 D8
162 AB
163 0
164 8C
165 BC
166 D3
167 0A

ADDR DATA
168 F7
169 E4
16A 58
16B 5
16C B8
16D B3
16E 45
16F 6
170 D0
171 2C
172 1E
173 8F
174 CA
175 3F
176 0F
177 2
178 C1
179 AF
17A BD
17B 3
17C 1
17D 13
17E 8A
17F 6B
180 3A
181 91
182 11
183 41
184 4F
185 67
186 DC
187 EA
188 97
189 F2
18A CF
18B CE
18C F0
18D B4
18E E6
18F 73
190 96
191 AC
192 74
193 22
194 E7
195 AD
196 35
197 85
198 E2
199 F9
19A 37
19B E8

ADDR DATA
19C 1C
19D 75
19E DF
19F 6E
1A0 47
1A1 F1
1A2 1A
1A3 71
1A4 1D
1A5 29
1A6 C5
1A7 89
1A8 6F
1A9 B7
1AA 62
1AB 0E
1AC AA
1AD 18
1AE BE
1AF 1B
1B0 FC
1B1 56
1B2 3E
1B3 4B
1B4 C6
1B5 D2
1B6 79
1B7 20
1B8 9A
1B9 DB
1BA C0
1BB FE
1BC 78
1BD CD
1BE 5A
1BF F4
1C0 1F
1C1 DD
1C2 A8
1C3 33
1C4 88
1C5 7
1C6 C7
1C7 31
1C8 B1
1C9 12
1CA 10
1CB 59
1CC 27
1CD 80
1CE EC
1CF 5F

ADDR DATA
1D0 60
1D1 51
1D2 7F
1D3 A9
1D4 19
1D5 B5
1D6 4A
1D7 0D
1D8 2D
1D9 E5
1DA 7A
1DB 9F
1DC 93
1DD C9
1DE 9C
1DF EF
1E0 A0
1E1 E0
1E2 3B
1E3 4D
1E4 AE
1E5 2A
1E6 F5
1E7 B0
1E8 C8
1E9 EB
1EA BB
1EB 3C
1EC 83
1ED 53
1EE 99
1EF 61
1F0 17
1F1 2B
1F2 4
1F3 7E
1F4 BA
1F5 77
1F6 D6
1F7 26
1F8 E1
1F9 69
1FA 14
1FB 63
1FC 55
1FD 21
1FE 0C
1FF 7D

