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Features 
 

 Fully compliant with NIST (FIPS-197) standards 
 Supports a key size of 128 or 256 bits with hardware-

based key expansion 
 Supports AES encryption, using 128-bit data blocks in 

ECB or CBC format 
 Optional support for CFB and OFB formats 

 Supports RAM or ROM-based sbox tables 
 Supports RAM initialization by either ROM or 

external resource 
 8-bit data interface simplifies loading of keys and data 
 Supports burst operations with optional full duplex fifo 
 Optimized for smallest possible area  
 Testbench verifies FIPS compliance through known 

answer test (KAT) 
 

 

IP Core Facts 

Provided with Core 

Documentation Core datasheet and testbench description 

Design File Format VHDL RTL or Verilog netlist 

Constraint Files SDC and PDC constraints 

Verification Testbench using Modelsim from Mentor 

Synthesis Tool Used 

Synplify Version D2009.12A 

Support 

Provided by local sales channel 

 
Table 1 – VTinyAESe_8 Implementation Statistics for SmartFusion 2/Igloo 2 
 

  MODE 
 Key Size 

(bits) 

SBOX
1
 

FIFO 
uRAM 
Blocks 

Logic Cells   Speed
2 

(MHz)
 

  Throughput 
(Mbps) Implemented As Initialized by   Lut4   Seq 

ECB 

128 

ROM n/a No 3 525 210 145 20 

RAM 
ROM No 5 509 268 213 29 

External No 5 254 200 214 29 

ROM n/a Yes 5 620 275 150 20 

RAM 
ROM Yes 7 611 332 202 27 

External Yes 7 334 259 207 28 

256 

ROM n/a No 3 525 210 145 14 

RAM 
ROM No 5 515 272 226 22 

External No 5 254 200 214 21 

ROM n/a Yes 5 620 275 150 15 

RAM 
ROM Yes 7 611 332 202 20 

External Yes 7 334 259 207 20 

CBC 

128 

ROM n/a No 3 525 353 142 19 

RAM 
ROM No 5 562 398 194 26 

External No 5 266 345 236 32 

ROM n/a Yes 5 600 419 153 21 

RAM 
ROM Yes 7 615 480 183 25 

External Yes 7 348 402 191 26 

256 

ROM n/a No 3 538 355 150 15 

RAM 
ROM No 5 562 401 217 21 

External No 5 289 341 218 21 

ROM n/a Yes 5 600 419 154 15 

RAM 
ROM Yes 7 615 480 193 19 

External Yes 7 348 402 195 19 
 

1) This column refers to the how the internal SBOX tables are implemented and whether an initialization process applies or not 

2) All performance numbers are based on M2S050T-1FG896 with single pass TDPR 
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AES Algorithm Overview 
 

The Advanced Encryption Standard (AES) specifies a Federal Information Processing Standards (FIPS) approved 
cryptographic algorithm that can be used to protect electronic data.  The AES algorithm is a symmetric block 
cipher that can encrypt (encypher) and decrypt (decypher) information.  Encryption converts plaintext data to an 
unintelligible form called cipher-text.  Decrypting the cipher-text converts the data back into its original plaintext 
form. 
 
The AES algorithm is capable of using cryptographic keys of 128, 192, and 256 bits to encrypt and decrypt data in 
blocks of 128 bits.  The algorithm is used with the three different key lengths indicated above, and therefore these 
different “flavors” are  referred to as “AES-128”, “AES-192”, and “AES-256”.  For the AES algorithm, the amount 
of processing or number of rounds to be performed during the execution of the algorithm is dependent on the key 
size. The number of rounds is represented by Nr, where  
 
Nr =10 when for AES-128, Nr = 12 for AES-192, and Nr = 14 for AES-256. 
 
Table 2 illustrates the breakdown of processing steps based on the different key sizes.  The overall throughput is 
therefore decreased as the key size is increased.  In other words, there are four additional rounds of processing 
to handle a 256-bit key.  Table 1 shows how the key size affects the core throughput. 
 
Table 2 - AES Algorithm 
 

Version Key Size Block Size Rounds (Nr) 

AES-128 128 bits 128 bits 10 

AES-256 256 bits 128 bits 14 

 
This IP core implementation of the AES algorithm (VTinyAESe_8) supports a 128-bit or 256-bit key size and 
encryption operations only. 
 
The AES algorithm requires an expansion of the input key to provide a unique key for each round of the 
encryption process.  The step to create these additional keys is called key expansion.  For the VTinyAESe_8 
core, the key expansion step is required each time a new key is used.  Once a new key has been expanded, then 
128-bit data blocks (16 bytes) can be input to the core for encryption.  To allow up 32 continous blocks to be 
encrypted, an optional full duplex fifo can be used on the front end of the VTinyAESe_8 core.  Figure 1 below 
illustrates the architecture of the VTinyAESe_8 core.  Microsemi’s flash-based FPGAs are a perfect fit for AES 
data security applications due to their inherent device security and non-volatile attributes. 
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     Figure 1 – VTinyAESe_8 Block Diagram 
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Generic Definitions 
 

Table 2 shows the generic settings that need to be configured for the desired user operation of the AES core.  
Using generics, maximum flexibility is obtained allowing a balance of area versus feature tradeoffs to be made. 
 
Table 2 - Generics for VTinyAESe_8 
 

Generic Type Values Description 

MODE Integer 0 or 1 
Specifies Algorithm type 
0 = Electronic Code Book (ECB) mode 
1= Cypher Block Chaining (CBC) mode 

KEYSIZE Integer 128 or 256 
Specifies the size of the key to be used in the encryption process 
128 = use 128-bit key for encryption 
256 = use 256-bit key for encryption 

USE_ROM_SBOX Integer 0 or 1 

Specifies whether a 256 byte ROM will be used in the core for the SBOX table or whether the 
ROM will initialize RAM used for the SBOX table (if USE_RAM_SBOX is 1) 
0 = no ROM used 
1 = no ROM used 

USE_RAM_SBOX Integer 0 or 1 
Specifies whether RAM will be used in the core for the SBOX table 
0 = no RAM used  
1 = RAM used 

USE_FRONTEND_FIFO Integer 0 or 1 

Specifies whether two 512x8 bit fifos are used in the core for data into and out of the AES 
core 
0 = no fifo used 
1 = use fifo 

 

Notes: 

 
Sbox Generics 
Using these two generic settings, three different configurations of the sbox table implementation are supported.  
These configurations are shown below in Table 3. 
 
Table 3 – SBOX Generic Description 
 

SBOX
2
 

Use_rom_sbox Use_ram_sbox
 

Implemented As Initialized by 

ROM n/a 1 0 

RAM 
ROM 1 1 

External 0 1 
 

 
It should be noted that it is an illegal combination to have 0 for the two generics above.  The sbox must be based 
on rom, ram or both.  If ROM only is selected, then RAM blocks can be saved at the expense of performance 
since the ROM block is slower that using dedicated RAM.  If external RAM initialization is selected, then this will 
yield the smallest possible core, since it is left to the user to load the 256 byte sbox table into the RAM. 
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Signal Description 

              

VTinyAESe_8 Core

Y

CLK

RESET_N

KE_START

KE_DATA_IN(7:0)

LD_IV

IV_DATA_IN(7:0)

ENC_START

ENC_DATA_IN(7:0)

INIT_SBOX_CLK

INIT_SBOX_WEN_N

INIT_SBOX_WDATA(7:0)

INIT_SBOX_WADDR(8:0)

FIFO_WEN_N

FIFO_REN_N

FIFO_DATA_IN(7:0)

VTinyAESe_8

BUSY

KE_DONE

ENC_DATA_OUT(7:0)

ENC_DATA_VALID

INIT_SBOX_DONE

FIFO_IN_EMPTY

FIFO_OUT_EMPTY

FIFO_DATA_OUT(7:0)

FIFO_ENC_DONE

 
 

              Figure 2 – VTinyAESe_8 I/O Diagram 
 
Table 4 - I/O Signal Description 
 

Signal Direction Description 

CLK Input Input clock to all registers and RAM 

RESET_N Input LO active asynchronous clear of all registers 

BUSY Output HI active signal indicating the core is busy doing key expansion or an encryption operation 

KE_START Input HI active signal used to start key expansion.  Only needs to be asserted for one clock cycle. 

KE_DATA_IN(7:0) Input 8-bit input for the key to be loaded (16 or 32 bytes in sequence) 

KE_DONE Output HI active signal indicating the completion of key expansion 

LD_IV Input 
HI active signal used to load the initialization vector used for CBC encryption mode.  This signal 
needs to be asserted for 16 clock cycles. 

IV_DATA_IN(7:0) Input 8-bit initialization vector input 

ENC_START Input HI active signal used to start an encryption operation.  Only needs to be asserted for one clock cycle. 

ENC_DATA_IN(7:0) Input 8-bit plaintext input (16 bytes in sequence) 

ENC_DATA_OUT(7:0) Output 8-bit encrypted data output (16 bytes in sequence) 

ENC_DATA_VALID Output HI active signal indicating when the data output bus has valid encrypted data on it 

INIT_SBOX_CLK Input Input clock to SBOX ram.  Must be less than or equal to CLK frequency. 

INIT_SBOX_WEN_N Input LO active write enable to the SBOX ram 

INIT_SBOX_WDATA(7:0) Input 8-bit write data to the SBOX ram 

INIT_SBOX_WADDR(7:0) Input 8-bit write address to the SBOX ram (256 byte addresses) 

INIT_SBOX_DONE Output HI active signal indicating the SBOX ram table has been initialized after reset. 

FIFO_WEN_N Input LO active signal that allows the fifo to be written to 

FIFO_REN_N Input LO active signal that allows the fifo to be read from 

FIFO_DATA_IN(7:0) Output 8-bit input data for inbound Fifo (key and plaintext data share this input) 

FIFO_DATA_OUT(7:0) Output 8-bit encrypted data output from outbound Fifo 
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FIFO_IN_EMPTY Output HI active signal indicating that the input fifo is empty 

FIFO_OUT_EMPTY Output HI active signal indicating that the output fifo is empty 

FIFO_ENC_DONE Output HI active signal indicating that the core has completed processing the data blocks in the input Fifo 

 

 
It is important to understand the effect of the generic settings on the user I/O of the VTinyAESe_8 core.  Table 5 
below illustrates when an I/O pin is used based on the generic setting. 
 
Table 5 - Generic Settings and Effect on I/O 
 

Signal Mode Use_rom_sbox Use_ram_sbox Use_frontend_fifo 

INIT_SBOX_CLK Has No Effect 0 1 Has No Effect 

INIT_SBOX_WEN_N Has No Effect 0 1 Has No Effect 

INIT_SBOX_WDATA(7:0) Has No Effect 0 1 Has No Effect 

INIT_SBOX_WADDR(7:0) Has No Effect 0 1 Has No Effect 

INIT_SBOX_DONE Has No Effect 0 1 Has No Effect 

FIFO_WEN_N Has No Effect Has No Effect Has No Effect 1 

FIFO_REN_N Has No Effect Has No Effect Has No Effect 1 

FIFO_DATA_IN(7:0) Has No Effect Has No Effect Has No Effect 1 

FIFO_DATA_OUT(7:0) Has No Effect Has No Effect Has No Effect 1 

FIFO_IN_EMPTY Has No Effect Has No Effect Has No Effect 1 

FIFO_OUT_EMPTY Has No Effect Has No Effect Has No Effect 1 

FIFO_ENC_DONE Has No Effect Has No Effect Has No Effect 1 

KE_DATA_IN(7:0) Has No Effect Has No Effect Has No Effect 0 

LD_IV 1 Has No Effect Has No Effect Has No Effect 

IV_DATA_IN(7:0) 1 Has No Effect Has No Effect Has No Effect 

ENC_DATA_IN(7:0) Has No Effect   0 

ENC_DATA_OUT(7:0) Has No Effect   0 

ENC_DATA_VALID Has No Effect   0 

 
The I/O signals not shown above are always necessary for proper operation of the VTinyAESe_8 core.  The I/Os 
above that have a NO effect or 0 can be left unconnected on the core given the generic setting shown.  For 
example, the INIT signals are only used when the ROM_sbox and RAM_sbox generics have the setting shown. 
Also, the direct KE data and ENC data signals are not used when the FIFO is selected.  Of note here in the FIFO 
mode is the IV data does not go through the FIFO where the Key and crypto data in and out does (see Figure 1).  
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Functional Description 
 

RAM-based Sbox Initialization (USE_RAM_SBOX=1) 
The VTinyAESe_8 core requires an initialization of the internal sbox ram table before cryptographic functions can 
be started.  There are two ways that this can be done.  If USE_SBOX_ROM=1, then the ram table will be 
automatically loaded from an internal 256 byte rom. 
 
As shown below in Figure 3, this process is started immediately after the de-assertion of the RESET_N signal.  
After 256 clock cycles, the INIT_SBOX_DONE signal is asserted HI to indicate completion of the initialization 
process.  The INIT_SBOX_DONE signal remains HI until the next assertion of RESET_N.  No other actions are 
required to start the initialization process other than the de-assertion of the RESET_N signal 
 

 1  2  3  4  5  6  7  8  9  10  11  12  13 

CLK

RESET_N

INIT_SBOX_DONE

 
 

Figure 3 – ROM-based Initialization Timing (USE_ROM_SBOX=1) 
 
In an effort to offer further area efficiency for the VTinyAESe_8 core, an external memory interface is available to 
load the sbox table from a processor flash or from on-chip non-volatile flash memory (NVM).  By setting the 
INIT_SBOX_ROM=0, the ROM block is excluded from the core build and a 50% logic cell reduction is obtained.  
However, in this case the user is now responsible for loading 256 bytes of data through the memory interface 
before any encryption operations are performed.  During this setting, the INIT_SBOX_DONE signal is unused.  
Figure 4 shows the timing required to initialize the sbox ram table using the external memory interface and 
Appendix A contains the data that needs to be loaded via the memory interface.  A separate clock has been 
provided to be used to load the ram table (INIT_SBOX_CLK) and it does not need to be synchronous to the CLK 
input signal.  However, it can be connected to the main CLK signal but that is the user’s choice. 
 

 1  2  3  4  5  6  7  8  9  10  11  12  13  14  15  16  17  18  19  20  21  22  23 

00         01        02        03        04        05        06        07        08

63         7C        77        7B        F2        6B        6F        C5        30 B0         54        BB        16

 FC         FD        FE        FF

INIT_SBOX_CLK

RESET_N

INIT_SBOX_WEN_N

INIT_SBOX_WADDR

INIT_SBOX_WDATA

 
 

Figure 4 – External Ram Initialization Timing 
 
If the user chooses too, this process of loading the sbox ram table can be repeated at any time during or after an 
encryption operation.  The advantage being that the sbox ram table can be refreshed in case any bit errors 
occurred in the ram block due to neutron effects. 
 

256 cycles 

256 cycles 
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Key Expansion 
The key expansion step is required each time a new key is to be used in the cryptographic process.  Before a 
cryptographic process is performed, the AES algorithm requires the chosen key (regardless of size) to be 
expanded.  During the key expansion step, the key is input to the core and stored in ram where it then gets 
passed through a logic chain ten times to produce ten sub-keys (in the case of a 128-bit key).  These additional 
keys are also stored in ram to be later used in the actual encryption function (see Figure 5).  The yellow shading 
indicates register stages that are present. 
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Figure 5 - Key Expansion Engine Block Diagram 
 
Key expansion only needs to be done once before an encryption function is started.  The only time it needs to be 
run again is when a different key is desired.  The process of key expansion takes 198 (128 bit key), or 279 (256-
bit key) clock cycles.  Key expansion and encryption functions cannot be overlapped for this IP core.  The timing 
diagram shown below in Figure 6 shows that KE_START initiates the key expansion and KE_DONE indicates its 
completion. 
 

 1  2  3  4  5  6  7  8  9  10  11  12  13  14  15  16  17  18  19  20  21  22  23 

K1        K2        K3        K4        K5                  K15      K16

CLK

RESET_N

KE_START

KE_DATA_IN

KE_DONE

BUSY

 
 

Figure 6 – Key Expansion Timing 

198 or 279 cycles 
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Encryption Engine 
This block is responsible for the AES algorithm encryption function.  The stage sequencer shown in Figure 7 
controls the AES processing steps.  Similar to key expansion, multiple rounds are required for a complete AES 
encrypt function (10 or 14 rounds per Table 2).  Since this core contains one encryption engine, each round must 
pass through the engine sequentially.  The VTinyAESe_8 core uses an 8-bit data path for processing the 128-bit 
AES data block.  Figure 7 below shows a block diagram of the encryption engine.  To save resources, a ram 
block has been used to store the results from each round rather than registers.  The sbox table shown below is 
shared with the key expansion sbox table from Figure 5. 
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 Figure 7 - Encryption Engine Block Diagram 
 
The equation below shows the total number of clock cycles required for processing a 128-bit AES data block 
through the VTinyAESe_8 core. 
 

(1) #cycles = (Nr x Ce) + Ohd 
    where Nr = the number of rounds (10 for 128-bit key, 14 for 256-key) 
    where Ce = the number of cycles to pass through the encryption engine (93) 
    where Ohd = the number of overhead cycles (17) 
 
Using equation (1), we can compute the number of clock cycles required to encrypt a 128-bit block of data. 
 
Table 6 - VTinyAESe_8 Cycle Count 
 

Key Size # Cycles 

128 bits (10 x 93) + 18 = 949 

256 bits (14 x 93) + 18 = 1321 
 

 
The data throughput of VTinyAESe_8 can be calculated using the results from Table 7 and equation (2) below.  
Together with the operating frequency values from Table 1, the data throughput rate for each of the core variants, 
can be calculated for a 128-bit block of data.  The throughput is measured in bits-per-second (bps). 
 

(2) Throughput(bps) = frequency x (#cycles)
-1

 x 128 
 
For example with a 128-bit key size, if the speed of the chosen core variant runs at 183 MHz, then the throughput 
would be: 
 
  25 Mbps = 183 x 10

6
 x (1/949) x 128 

 
25 Mega-bits-per-second indicates the sustained input data rate that can be supported by the VTinyAESe_8 while 
running at 183 MHz using a 128-bit input key. 
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Figure 8 shows the timing required to perform an encryption operation.  The ENC_START signal begins the 
operation on the next rising edge of the clock.  The first of the 16 bytes of plaintext words to be processed are 
input on the same rising edge as the ENC_START with the next 15 bytes input on successive clock cycles as 
shown by P2 through P16.  After 947 clock cycles (with 128-bit key size), the ENC_DATA_VALID signal is 
asserted for 16 clock cycles to indicate that the ENC_DATA_OUT bus contains valid data.  For each 
ENC_DATA_VALID clock cycle, a new byte is driven out on the ENC_DATA_OUT bus as shown by E1 through 
E16. 
 

 1  2  3  4  5  6  7  8  9  10  11  12  13  14  15  16  17  18  19  20  21  22  23  24  25  26  27 

P1        P2        P3        P4        P5                  P15      P16

E1        E2        E3        E4        E5                  E15      E16

CLK

RESET_N

ENC_START

ENC_DATA_IN

ENC_DATA_VALID

ENC_DATA_OUT

BUSY

 
 

Figure 8 – Encryption Timing Without Fifo 
 
The FIFO option is implemented as a full duplex 128x8 Fifo (which means a 128x8 input fifo and a 128x8 output 
fifo).  The user can read results from the output fifo while the core is still busy.  In the same way, plaintext data 
can be loaded into the input fifo while the core is busy.  The user is responsible for monitoring the fifo flags 
because if data is not read from the output fifo then overflow can occur if the input fifo is continually loaded with 
data.  The core will continue to run automatically, as long as the input fifo is not empty.  Whenever the user is 
accessing the fifos, care must be taken to always read or write 16 bytes at a time to ensure that the flags are 
accurate and that the fifos are synchronized properly with the encryption engine and the key expansion engine. 
 
Figure 9 below shows the required signal timing to interface to the input and output fifo blocks.  Up to 8 128-bit 
plaintext data blocks can be preloaded into the input fifo before the ENC_START is asserted.  The output fifo can 
begin to be read for encrypted data as soon as the FIFO_OUT_EMPTY goes LO to indicate the fifo is not empty. 
 

 1  2  3  4  5  6  7  8  9  10  11  12  13  14  15  16  17  18  19  20  21  22  23  24  25  26  27  28  29  30 

P1        P2                   P16

E1         E2                  E16

CLK

RESET_N

FIFO_WEN_N

FIFO_DATA_IN

FIFO_IN_EMPTY

ENC_START

BUSY

FIFO_OUT_EMPTY

FIFO_ENC_DONE

FIFO_REN_N

FIFO_DATA_OUT

 
 

Figure 9 – Encryption Timing with Fifo 

949/1321 cycles 
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Data Formatting 
 

The format and ordering of input data for key expansion and encryption is very important because a mismatch of 
expected data could occur if the user does not follow the convention described here.  First, we will look at an 
example of key expansion and then an example of encryption. 
 
128-bit Key Expansion Example 
Per the FIPS-197 specification, an example of a sample 128-bit key is given by: 
 

Key = 000102030405060708090a0b0c0d0e0f 
 
Let us consider the key as 16 bytes of data organized from least significant byte on the left to most significant byte 
on the right as shown below: 
 
LS Byte                      MS Byte 

Byte 
0 

Byte 
1 

Byte 
2 

Byte 
3 

Byte 
4 

Byte 
5 

Byte 
6 

Byte 
7 

Byte 
8 

Byte 
9 

Byte 
10 

Byte 
11 

Byte 
12 

Byte 
13 

Byte 
14 

Byte 
15 

00 01 02 03 04 05 06 07 08 09 0a 0b 0c 0d 0e 0f 

 
We will consider each byte as an independent entity with the LSB (bit) of the byte to be the rightmost bit position 
and MSB (bit) to be the leftmost bit position as illustrated below.  The entire key must be input sequentially 
starting with byte 0, byte 1 and so on until byte 15 has been input. 
 

Clock 

KE_DATA_IN(7:0) 

7………………...0 
(hex) 

7………………...0 
(binary) 

1 00 0000 0000 

2 01 0000 0001 

3 02 0000 0010 

4 03 0000 0011 

5 04 0000 0100 

6 05 0000 0101 

7 06 0000 0110 

8 07 0000 0111 

9 08 0000 1000 

10 09 0000 1001 

11 0a 0000 1010 

12 0b 0000 1011 

13 0c 0000 1100 

14 0d 0000 1101 

15 0e 0000 1110 

16 0f 0000 1111 

 
Following this sequence will generate a key expansion schedule of: 
 

Key Round Key Value 

0 000102030405060708090a0b0c0d0e0f 

1 d6aa74fdd2af72fadaa678f1d6ab76fe 

2 b692cf0b643dbdf1be9bc5006830b3fe 

3 b6ff744ed2c2c9bf6c590cbf0469bf41 



AES – 8-bit Datapath        V1.1 
 

 
December 2012           11 

4 47f7f7bc95353e03f96c32bcfd058dfd 

5 3caaa3e8a99f9deb50f3af57adf622aa 

6 5e390f7df7a69296a7553dc10aa31f6b 

7 14f9701ae35fe28c440adf4d4ea9c026 

8 47438735a41c65b9e016baf4aebf7ad2 

9 549932d1f08557681093ed9cbe2c974e 

10 13111d7fe3944a17f307a78b4d2b30c5 

 
Since the expanded keys generated are central to the integrity of the AES algorithm, the ram used for key storage 
is not accessible from outside the VTinyAESe_8 core.  In fact, even during calculation and storage of the sub-
keys, no key information is exposed outside of the core. 
 
128-bit Encryption with ECB Example 
Per the FIPS-197 specification, an example of a sample 128-bit plaintext input block with an expected AES 
encrypted output block (using the same key as above) is given by: 
 

Key  = 000102030405060708090a0b0c0d0e0f 
Plaintext  = 00112233445566778899aabbccddeeff 
Encrypted = 69c4e0d86a7b0430d8cdb78070b4c55a 

 
Let us consider the input block as 16 bytes of plaintext data organized from least significant byte on the left to 
most significant byte on the right as shown below (same for encrypted output): 
 
LS Byte                      MS Byte 

Byte 
0 

Byte 
1 

Byte 
2 

Byte 
3 

Byte 
4 

Byte 
5 

Byte 
6 

Byte 
7 

Byte 
8 

Byte 
9 

Byte 
10 

Byte 
11 

Byte 
12 

Byte 
13 

Byte 
14 

Byte 
15 

00 11 22 33 44 55 66 77 88 99 aa bb cc dd ee ff 

 
We will consider each byte as an independent entity with the LSB (bit) of the byte to be the rightmost bit position 
and MSB (bit) to be the leftmost bit position as illustrated below.  The entire 16 byte block must be input via 
ENC_DATA_IN(7:0) sequentially starting with byte 0, byte 1 and so on until byte 15 has been input.  Encrypted 
data is output on ENC_DATA_OUT(7:0) with byte 0, followed by byte 1, and so on until byte 15 has been output. 
 

Clock 

ENC_DATA_IN(7:0) ENC_DATA_OUT(7:0) 

7………………...0 
(hex) 

7………………...0 
(binary) 

7………………...0 
(hex) 

7………………...0 
(binary) 

1 00 0000 0000 69 0110 1001 

2 11 0001 0001 c4 1100 0100 

3 22 0010 0010 e0 1110 0000 

4 33 0011 0011 d8 1101 1000 

5 44 0100 0100 6a 0110 1010 

6 55 0101 0101 7b 0111 1011 

7 66 0110 0110 04 0000 0100 

8 77 0111 0111 30 0011 0000 

9 88 1000 1000 d8 1101 1000 

10 99 1001 1001 cd 1100 1101 

11 aa 1010 1010 b7 1011 0111 

12 bb 1011 1011 80 1000 0000 

13 cc 1100 1100 70 0111 0000 

14 dd 1101 1101 b4 1011 0100 

15 ee 1110 1110 c5 1100 0101 
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16 ff 1111 1111 5a 0101 1010 

 
128-bit Encryption with CBC Example 
Per the FIPS-197 specification, an example of a sample 128-bit plaintext input block with an expected AES 
encrypted output block (using the same key as above) is given by: 
 

Key  = 2b7e151628aed2a6abf7158809cf4f3c 
IV  = 000102030405060708090a0b0c0d0e0f 
Plaintext  = 6bc1bee22e409f96e93d7e117393172a 
Encrypted = 7649abac8119b246cee98e9b12e9197d 

 
First, expand the key by loading it and expanding it.  Next, by asserting LD_IV and  
Let us consider the input block as 16 bytes of plaintext data organized from least significant byte on the left to 
most significant byte on the right as shown below (same for encrypted output): 
 
We will consider each byte as an independent entity with the LSB (bit) of the byte to be the rightmost bit position 
and MSB (bit) to be the leftmost bit position as illustrated below.  The entire 16 byte block must be input via 
ENC_DATA_IN(7:0) sequentially starting with byte 0, byte 1 and so on until byte 15 has been input.  Encrypted 
data is output on ENC_DATA_OUT(7:0) with byte 0, followed by byte 1, and so on until byte 15 has been output. 
 
    1

st
 Step       2

nd
 Step             3

rd
 Step 

LD_IV 
IV_DATA 

 
ENC 

START 

DATA_IN 
 

ENC 
DATA_VALID 

DATA_OUT 

7…..…..……..0 7……………..0 7………..……..0 

1 00  1 6B  1 76 

1 01  0 C1  1 49 

1 02  0 BE  1 AB 

1 03  0 E2  1 AC 

1 04  0 2E  1 81 

1 05  0 40  1 19 

1 06  0 9F  1 B2 

1 07  0 96  1 46 

1 08  0 E9  1 CE 

1 09  0 3D  1 E9 

1 0a  0 7E  1 8E 

1 0b  0 11  1 9B 

1 0c  0 73  1 12 

1 0d  0 93  1 E9 

1 0e  0 17  1 19 

1 0f  0 2A  1 7D 

 



AES – 8-bit Datapath        V1.1 
 

 
December 2012           13 

 

Verification 
 

Figure 11 shows the architecture of the verification testbench used to validate the VTinyAESe_8 core variants.   
 

           

VTinyAESe_8 

Core

Under Test

Verification 

TestBench

Input

Vector

Database

Expected

Result

Database

NIST 800-17

Requirements

 
 

                 Figure 10 – Verification Block Diagram 
 
 
 
 
 



AES – 8-bit Datapath        V1.1 
 

 
December 2012           14 

 

Deliverables 
 

Table 8 below shows the source code hierarchy of the VTinyAESe_8 core.  The current RTL deliverable is VHDL, 
however, verilog RTL can be provided on request. 
 

 
 

     Figure 11 - Source Code Hierarchy 
 
 

 
 

           Figure 12 - Testbench Files 
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      Figure 13 - Simulation Files 
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Appendix A – External Initialization of SBOX Ram 
 

Sbox RAM Load Pattern (256 bytes) 
 

ADDR DATA 

0 63 

1 7C 

2 77 

3 7B 

4 F2 

5 6B 

6 6F 

7 C5 

8 30 

9 01 

0A 67 

0B 2B 

0C FE 

0D D7 

0E AB 

0F 76 

10 CA 

11 82 

12 C9 

13 7D 

14 FA 

15 59 

16 47 

17 F0 

18 AD 

19 D4 

1A A2 

1B AF 

1C 9C 

1D A4 

1E 72 

1F C0 

20 B7 

21 FD 

22 93 

23 26 

24 36 

25 3F 

26 F7 

27 CC 

28 34 

29 A5 

2A E5 

2B F1 

2C 71 

2D D8 

2E 31 

2F 15 

30 04 

31 C7 

32 23 

33 C3 

ADDR DATA 

34 18 

35 96 

36 05 

37 9A 

38 07 

39 12 

3A 80 

3B E2 

3C EB 

3D 27 

3E B2 

3F 75 

40 09 

41 83 

42 2C 

43 1A 

44 1B 

45 6E 

46 5A 

47 A0 

48 52 

49 3B 

4A D6 

4B B3 

4C 29 

4D E3 

4E 2F 

4F 84 

50 53 

51 D1 

52 00 

53 ED 

54 20 

55 FC 

56 B1 

57 5B 

58 6A 

59 CB 

5A BE 

5B 39 

5C 4A 

5D 4C 

5E 58 

5F CF 

60 D0 

61 EF 

62 AA 

63 FB 

64 43 

65 4D 

66 33 

67 85 

ADDR DATA 

68 45 

69 F9 

6A 02 

6B 7F 

6C 50 

6D 3C 

6E 9F 

6F A8 

70 51 

71 A3 

72 40 

73 8F 

74 92 

75 9D 

76 38 

77 F5 

78 BC 

79 B6 

7A DA 

7B 21 

7C 10 

7D FF 

7E F3 

7F D2 

80 CD 

81 0C 

82 13 

83 EC 

84 5F 

85 97 

86 44 

87 17 

88 C4 

89 A7 

8A 7E 

8B 3D 

8C 64 

8D 5D 

8E 19 

8F 73 

90 60 

91 81 

92 4F 

93 DC 

94 22 

95 2A 

96 90 

97 88 

98 46 

99 EE 

9A B8 

9B 14 

ADDR DATA 

9C DE 

9D 5E 

9E 0B 

9F DB 

A0 E0 

A1 32 

A2 3A 

A3 0A 

A4 49 

A5 06 

A6 24 

A7 5C 

A8 C2 

A9 D3 

AA AC 

AB 62 

AC 91 

AD 95 

AE E4 

AF 79 

B0 E7 

B1 C8 

B2 37 

B3 6D 

B4 8D 

B5 D5 

B6 4E 

B7 A9 

B8 6C 

B9 56 

BA F4 

BB EA 

BC 65 

BD 7A 

BE AE 

BF 08 

C0 BA 

C1 78 

C2 25 

C3 2E 

C4 1C 

C5 A6 

C6 B4 

C7 C6 

C8 E8 

C9 DD 

CA 74 

CB 1F 

CC 4B 

CD BD 

CE 8B 

CF 8A 

ADDR DATA 

D0 70 

D1 3E 

D2 B5 

D3 66 

D4 48 

D5 03 

D6 F6 

D7 0E 

D8 61 

D9 35 

DA 57 

DB B9 

DC 86 

DD C1 

DE 1D 

DF 9E 

E0 E1 

E1 F8 

E2 98 

E3 11 

E4 69 

E5 D9 

E6 8E 

E7 94 

E8 9B 

E9 1E 

EA 87 

EB E9 

EC CE 

ED 55 

EE 28 

EF DF 

F0 8C 

F1 A1 

F2 89 

F3 0D 

F4 BF 

F5 E6 

F6 42 

F7 68 

F8 41 

F9 99 

FA 2D 

FB 0F 

FC B0 

FD 54 

FE BB 

FF 16 
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