

Intellectual Property

Advanced Encryption Standard (AES)

Tiny Encryptor (8-bit Datapath)

December 23rd, 2012 Product Specification V1.1 for G4

December 2012 1

Features

 Fully compliant with NIST (FIPS-197) standards
 Supports a key size of 128 or 256 bits with hardware-

based key expansion
 Supports AES encryption, using 128-bit data blocks in

ECB or CBC format
 Optional support for CFB and OFB formats

 Supports RAM or ROM-based sbox tables
 Supports RAM initialization by either ROM or

external resource
 8-bit data interface simplifies loading of keys and data
 Supports burst operations with optional full duplex fifo
 Optimized for smallest possible area
 Testbench verifies FIPS compliance through known

answer test (KAT)

IP Core Facts

Provided with Core

Documentation Core datasheet and testbench description

Design File Format VHDL RTL or Verilog netlist

Constraint Files SDC and PDC constraints

Verification Testbench using Modelsim from Mentor

Synthesis Tool Used

Synplify Version D2009.12A

Support

Provided by local sales channel

Table 1 – VTinyAESe_8 Implementation Statistics for SmartFusion 2/Igloo 2

 MODE
 Key Size

(bits)

SBOX
1

FIFO
uRAM
Blocks

Logic Cells Speed
2

(MHz)

 Throughput
(Mbps) Implemented As Initialized by Lut4 Seq

ECB

128

ROM n/a No 3 525 210 145 20

RAM
ROM No 5 509 268 213 29

External No 5 254 200 214 29

ROM n/a Yes 5 620 275 150 20

RAM
ROM Yes 7 611 332 202 27

External Yes 7 334 259 207 28

256

ROM n/a No 3 525 210 145 14

RAM
ROM No 5 515 272 226 22

External No 5 254 200 214 21

ROM n/a Yes 5 620 275 150 15

RAM
ROM Yes 7 611 332 202 20

External Yes 7 334 259 207 20

CBC

128

ROM n/a No 3 525 353 142 19

RAM
ROM No 5 562 398 194 26

External No 5 266 345 236 32

ROM n/a Yes 5 600 419 153 21

RAM
ROM Yes 7 615 480 183 25

External Yes 7 348 402 191 26

256

ROM n/a No 3 538 355 150 15

RAM
ROM No 5 562 401 217 21

External No 5 289 341 218 21

ROM n/a Yes 5 600 419 154 15

RAM
ROM Yes 7 615 480 193 19

External Yes 7 348 402 195 19

1) This column refers to the how the internal SBOX tables are implemented and whether an initialization process applies or not

2) All performance numbers are based on M2S050T-1FG896 with single pass TDPR

AES – 8-bit Datapath V1.1

December 2012 2

AES Algorithm Overview

The Advanced Encryption Standard (AES) specifies a Federal Information Processing Standards (FIPS) approved
cryptographic algorithm that can be used to protect electronic data. The AES algorithm is a symmetric block
cipher that can encrypt (encypher) and decrypt (decypher) information. Encryption converts plaintext data to an
unintelligible form called cipher-text. Decrypting the cipher-text converts the data back into its original plaintext
form.

The AES algorithm is capable of using cryptographic keys of 128, 192, and 256 bits to encrypt and decrypt data in
blocks of 128 bits. The algorithm is used with the three different key lengths indicated above, and therefore these
different “flavors” are referred to as “AES-128”, “AES-192”, and “AES-256”. For the AES algorithm, the amount
of processing or number of rounds to be performed during the execution of the algorithm is dependent on the key
size. The number of rounds is represented by Nr, where

Nr =10 when for AES-128, Nr = 12 for AES-192, and Nr = 14 for AES-256.

Table 2 illustrates the breakdown of processing steps based on the different key sizes. The overall throughput is
therefore decreased as the key size is increased. In other words, there are four additional rounds of processing
to handle a 256-bit key. Table 1 shows how the key size affects the core throughput.

Table 2 - AES Algorithm

Version Key Size Block Size Rounds (Nr)

AES-128 128 bits 128 bits 10

AES-256 256 bits 128 bits 14

This IP core implementation of the AES algorithm (VTinyAESe_8) supports a 128-bit or 256-bit key size and
encryption operations only.

The AES algorithm requires an expansion of the input key to provide a unique key for each round of the
encryption process. The step to create these additional keys is called key expansion. For the VTinyAESe_8
core, the key expansion step is required each time a new key is used. Once a new key has been expanded, then
128-bit data blocks (16 bytes) can be input to the core for encryption. To allow up 32 continous blocks to be
encrypted, an optional full duplex fifo can be used on the front end of the VTinyAESe_8 core. Figure 1 below
illustrates the architecture of the VTinyAESe_8 core. Microsemi’s flash-based FPGAs are a perfect fit for AES
data security applications due to their inherent device security and non-volatile attributes.

Encryption Engine

Key Expansion

Engine

Input

Fifo

System

Control

Input Data

Output Data
Output

Fifo

IV Data

Key Data

Optional

Optional

 Figure 1 – VTinyAESe_8 Block Diagram

AES – 8-bit Datapath V1.1

December 2012 3

Generic Definitions

Table 2 shows the generic settings that need to be configured for the desired user operation of the AES core.
Using generics, maximum flexibility is obtained allowing a balance of area versus feature tradeoffs to be made.

Table 2 - Generics for VTinyAESe_8

Generic Type Values Description

MODE Integer 0 or 1
Specifies Algorithm type
0 = Electronic Code Book (ECB) mode
1= Cypher Block Chaining (CBC) mode

KEYSIZE Integer 128 or 256
Specifies the size of the key to be used in the encryption process
128 = use 128-bit key for encryption
256 = use 256-bit key for encryption

USE_ROM_SBOX Integer 0 or 1

Specifies whether a 256 byte ROM will be used in the core for the SBOX table or whether the
ROM will initialize RAM used for the SBOX table (if USE_RAM_SBOX is 1)
0 = no ROM used
1 = no ROM used

USE_RAM_SBOX Integer 0 or 1
Specifies whether RAM will be used in the core for the SBOX table
0 = no RAM used
1 = RAM used

USE_FRONTEND_FIFO Integer 0 or 1

Specifies whether two 512x8 bit fifos are used in the core for data into and out of the AES
core
0 = no fifo used
1 = use fifo

Notes:

Sbox Generics
Using these two generic settings, three different configurations of the sbox table implementation are supported.
These configurations are shown below in Table 3.

Table 3 – SBOX Generic Description

SBOX
2

Use_rom_sbox Use_ram_sbox

Implemented As Initialized by

ROM n/a 1 0

RAM
ROM 1 1

External 0 1

It should be noted that it is an illegal combination to have 0 for the two generics above. The sbox must be based
on rom, ram or both. If ROM only is selected, then RAM blocks can be saved at the expense of performance
since the ROM block is slower that using dedicated RAM. If external RAM initialization is selected, then this will
yield the smallest possible core, since it is left to the user to load the 256 byte sbox table into the RAM.

AES – 8-bit Datapath V1.1

December 2012 4

Signal Description

VTinyAESe_8 Core

Y

CLK

RESET_N

KE_START

KE_DATA_IN(7:0)

LD_IV

IV_DATA_IN(7:0)

ENC_START

ENC_DATA_IN(7:0)

INIT_SBOX_CLK

INIT_SBOX_WEN_N

INIT_SBOX_WDATA(7:0)

INIT_SBOX_WADDR(8:0)

FIFO_WEN_N

FIFO_REN_N

FIFO_DATA_IN(7:0)

VTinyAESe_8

BUSY

KE_DONE

ENC_DATA_OUT(7:0)

ENC_DATA_VALID

INIT_SBOX_DONE

FIFO_IN_EMPTY

FIFO_OUT_EMPTY

FIFO_DATA_OUT(7:0)

FIFO_ENC_DONE

 Figure 2 – VTinyAESe_8 I/O Diagram

Table 4 - I/O Signal Description

Signal Direction Description

CLK Input Input clock to all registers and RAM

RESET_N Input LO active asynchronous clear of all registers

BUSY Output HI active signal indicating the core is busy doing key expansion or an encryption operation

KE_START Input HI active signal used to start key expansion. Only needs to be asserted for one clock cycle.

KE_DATA_IN(7:0) Input 8-bit input for the key to be loaded (16 or 32 bytes in sequence)

KE_DONE Output HI active signal indicating the completion of key expansion

LD_IV Input
HI active signal used to load the initialization vector used for CBC encryption mode. This signal
needs to be asserted for 16 clock cycles.

IV_DATA_IN(7:0) Input 8-bit initialization vector input

ENC_START Input HI active signal used to start an encryption operation. Only needs to be asserted for one clock cycle.

ENC_DATA_IN(7:0) Input 8-bit plaintext input (16 bytes in sequence)

ENC_DATA_OUT(7:0) Output 8-bit encrypted data output (16 bytes in sequence)

ENC_DATA_VALID Output HI active signal indicating when the data output bus has valid encrypted data on it

INIT_SBOX_CLK Input Input clock to SBOX ram. Must be less than or equal to CLK frequency.

INIT_SBOX_WEN_N Input LO active write enable to the SBOX ram

INIT_SBOX_WDATA(7:0) Input 8-bit write data to the SBOX ram

INIT_SBOX_WADDR(7:0) Input 8-bit write address to the SBOX ram (256 byte addresses)

INIT_SBOX_DONE Output HI active signal indicating the SBOX ram table has been initialized after reset.

FIFO_WEN_N Input LO active signal that allows the fifo to be written to

FIFO_REN_N Input LO active signal that allows the fifo to be read from

FIFO_DATA_IN(7:0) Output 8-bit input data for inbound Fifo (key and plaintext data share this input)

FIFO_DATA_OUT(7:0) Output 8-bit encrypted data output from outbound Fifo

AES – 8-bit Datapath V1.1

December 2012 5

FIFO_IN_EMPTY Output HI active signal indicating that the input fifo is empty

FIFO_OUT_EMPTY Output HI active signal indicating that the output fifo is empty

FIFO_ENC_DONE Output HI active signal indicating that the core has completed processing the data blocks in the input Fifo

It is important to understand the effect of the generic settings on the user I/O of the VTinyAESe_8 core. Table 5
below illustrates when an I/O pin is used based on the generic setting.

Table 5 - Generic Settings and Effect on I/O

Signal Mode Use_rom_sbox Use_ram_sbox Use_frontend_fifo

INIT_SBOX_CLK Has No Effect 0 1 Has No Effect

INIT_SBOX_WEN_N Has No Effect 0 1 Has No Effect

INIT_SBOX_WDATA(7:0) Has No Effect 0 1 Has No Effect

INIT_SBOX_WADDR(7:0) Has No Effect 0 1 Has No Effect

INIT_SBOX_DONE Has No Effect 0 1 Has No Effect

FIFO_WEN_N Has No Effect Has No Effect Has No Effect 1

FIFO_REN_N Has No Effect Has No Effect Has No Effect 1

FIFO_DATA_IN(7:0) Has No Effect Has No Effect Has No Effect 1

FIFO_DATA_OUT(7:0) Has No Effect Has No Effect Has No Effect 1

FIFO_IN_EMPTY Has No Effect Has No Effect Has No Effect 1

FIFO_OUT_EMPTY Has No Effect Has No Effect Has No Effect 1

FIFO_ENC_DONE Has No Effect Has No Effect Has No Effect 1

KE_DATA_IN(7:0) Has No Effect Has No Effect Has No Effect 0

LD_IV 1 Has No Effect Has No Effect Has No Effect

IV_DATA_IN(7:0) 1 Has No Effect Has No Effect Has No Effect

ENC_DATA_IN(7:0) Has No Effect 0

ENC_DATA_OUT(7:0) Has No Effect 0

ENC_DATA_VALID Has No Effect 0

The I/O signals not shown above are always necessary for proper operation of the VTinyAESe_8 core. The I/Os
above that have a NO effect or 0 can be left unconnected on the core given the generic setting shown. For
example, the INIT signals are only used when the ROM_sbox and RAM_sbox generics have the setting shown.
Also, the direct KE data and ENC data signals are not used when the FIFO is selected. Of note here in the FIFO
mode is the IV data does not go through the FIFO where the Key and crypto data in and out does (see Figure 1).

AES – 8-bit Datapath V1.1

December 2012 6

Functional Description

RAM-based Sbox Initialization (USE_RAM_SBOX=1)
The VTinyAESe_8 core requires an initialization of the internal sbox ram table before cryptographic functions can
be started. There are two ways that this can be done. If USE_SBOX_ROM=1, then the ram table will be
automatically loaded from an internal 256 byte rom.

As shown below in Figure 3, this process is started immediately after the de-assertion of the RESET_N signal.
After 256 clock cycles, the INIT_SBOX_DONE signal is asserted HI to indicate completion of the initialization
process. The INIT_SBOX_DONE signal remains HI until the next assertion of RESET_N. No other actions are
required to start the initialization process other than the de-assertion of the RESET_N signal

 1 2 3 4 5 6 7 8 9 10 11 12 13

CLK

RESET_N

INIT_SBOX_DONE

Figure 3 – ROM-based Initialization Timing (USE_ROM_SBOX=1)

In an effort to offer further area efficiency for the VTinyAESe_8 core, an external memory interface is available to
load the sbox table from a processor flash or from on-chip non-volatile flash memory (NVM). By setting the
INIT_SBOX_ROM=0, the ROM block is excluded from the core build and a 50% logic cell reduction is obtained.
However, in this case the user is now responsible for loading 256 bytes of data through the memory interface
before any encryption operations are performed. During this setting, the INIT_SBOX_DONE signal is unused.
Figure 4 shows the timing required to initialize the sbox ram table using the external memory interface and
Appendix A contains the data that needs to be loaded via the memory interface. A separate clock has been
provided to be used to load the ram table (INIT_SBOX_CLK) and it does not need to be synchronous to the CLK
input signal. However, it can be connected to the main CLK signal but that is the user’s choice.

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23

00 01 02 03 04 05 06 07 08

63 7C 77 7B F2 6B 6F C5 30 B0 54 BB 16

 FC FD FE FF

INIT_SBOX_CLK

RESET_N

INIT_SBOX_WEN_N

INIT_SBOX_WADDR

INIT_SBOX_WDATA

Figure 4 – External Ram Initialization Timing

If the user chooses too, this process of loading the sbox ram table can be repeated at any time during or after an
encryption operation. The advantage being that the sbox ram table can be refreshed in case any bit errors
occurred in the ram block due to neutron effects.

256 cycles

256 cycles

AES – 8-bit Datapath V1.1

December 2012 7

Key Expansion
The key expansion step is required each time a new key is to be used in the cryptographic process. Before a
cryptographic process is performed, the AES algorithm requires the chosen key (regardless of size) to be
expanded. During the key expansion step, the key is input to the core and stored in ram where it then gets
passed through a logic chain ten times to produce ten sub-keys (in the case of a 128-bit key). These additional
keys are also stored in ram to be later used in the actual encryption function (see Figure 5). The yellow shading
indicates register stages that are present.

Key Data

Input

Register

File

4x8

2
:1

 M
u

ltip
le

x
e

r

X
O

R
 a

n
d

 M
u

x
 L

o
g

ic

Key Data

Output

Key Ram

256x8

256x8

Sbox

Table

State Machine Control

Figure 5 - Key Expansion Engine Block Diagram

Key expansion only needs to be done once before an encryption function is started. The only time it needs to be
run again is when a different key is desired. The process of key expansion takes 198 (128 bit key), or 279 (256-
bit key) clock cycles. Key expansion and encryption functions cannot be overlapped for this IP core. The timing
diagram shown below in Figure 6 shows that KE_START initiates the key expansion and KE_DONE indicates its
completion.

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23

K1 K2 K3 K4 K5 K15 K16

CLK

RESET_N

KE_START

KE_DATA_IN

KE_DONE

BUSY

Figure 6 – Key Expansion Timing

198 or 279 cycles

AES – 8-bit Datapath V1.1

December 2012 8

Encryption Engine
This block is responsible for the AES algorithm encryption function. The stage sequencer shown in Figure 7
controls the AES processing steps. Similar to key expansion, multiple rounds are required for a complete AES
encrypt function (10 or 14 rounds per Table 2). Since this core contains one encryption engine, each round must
pass through the engine sequentially. The VTinyAESe_8 core uses an 8-bit data path for processing the 128-bit
AES data block. Figure 7 below shows a block diagram of the encryption engine. To save resources, a ram
block has been used to store the results from each round rather than registers. The sbox table shown below is
shared with the key expansion sbox table from Figure 5.

SBOX

Table

256x8

Mix

Column

X
O

R
 a

n
d

M
u

x
 L

o
g

ic

Key Data

Plaintext

Data

Input

Encrypted

Data

Output

AES Stage Sequencer

State

RAM

C
B

C

L
o

g
ic

Optional

 Figure 7 - Encryption Engine Block Diagram

The equation below shows the total number of clock cycles required for processing a 128-bit AES data block
through the VTinyAESe_8 core.

(1) #cycles = (Nr x Ce) + Ohd
 where Nr = the number of rounds (10 for 128-bit key, 14 for 256-key)
 where Ce = the number of cycles to pass through the encryption engine (93)
 where Ohd = the number of overhead cycles (17)

Using equation (1), we can compute the number of clock cycles required to encrypt a 128-bit block of data.

Table 6 - VTinyAESe_8 Cycle Count

Key Size # Cycles

128 bits (10 x 93) + 18 = 949

256 bits (14 x 93) + 18 = 1321

The data throughput of VTinyAESe_8 can be calculated using the results from Table 7 and equation (2) below.
Together with the operating frequency values from Table 1, the data throughput rate for each of the core variants,
can be calculated for a 128-bit block of data. The throughput is measured in bits-per-second (bps).

(2) Throughput(bps) = frequency x (#cycles)
-1

 x 128

For example with a 128-bit key size, if the speed of the chosen core variant runs at 183 MHz, then the throughput
would be:

 25 Mbps = 183 x 10

6
 x (1/949) x 128

25 Mega-bits-per-second indicates the sustained input data rate that can be supported by the VTinyAESe_8 while
running at 183 MHz using a 128-bit input key.

AES – 8-bit Datapath V1.1

December 2012 9

Figure 8 shows the timing required to perform an encryption operation. The ENC_START signal begins the
operation on the next rising edge of the clock. The first of the 16 bytes of plaintext words to be processed are
input on the same rising edge as the ENC_START with the next 15 bytes input on successive clock cycles as
shown by P2 through P16. After 947 clock cycles (with 128-bit key size), the ENC_DATA_VALID signal is
asserted for 16 clock cycles to indicate that the ENC_DATA_OUT bus contains valid data. For each
ENC_DATA_VALID clock cycle, a new byte is driven out on the ENC_DATA_OUT bus as shown by E1 through
E16.

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27

P1 P2 P3 P4 P5 P15 P16

E1 E2 E3 E4 E5 E15 E16

CLK

RESET_N

ENC_START

ENC_DATA_IN

ENC_DATA_VALID

ENC_DATA_OUT

BUSY

Figure 8 – Encryption Timing Without Fifo

The FIFO option is implemented as a full duplex 128x8 Fifo (which means a 128x8 input fifo and a 128x8 output
fifo). The user can read results from the output fifo while the core is still busy. In the same way, plaintext data
can be loaded into the input fifo while the core is busy. The user is responsible for monitoring the fifo flags
because if data is not read from the output fifo then overflow can occur if the input fifo is continually loaded with
data. The core will continue to run automatically, as long as the input fifo is not empty. Whenever the user is
accessing the fifos, care must be taken to always read or write 16 bytes at a time to ensure that the flags are
accurate and that the fifos are synchronized properly with the encryption engine and the key expansion engine.

Figure 9 below shows the required signal timing to interface to the input and output fifo blocks. Up to 8 128-bit
plaintext data blocks can be preloaded into the input fifo before the ENC_START is asserted. The output fifo can
begin to be read for encrypted data as soon as the FIFO_OUT_EMPTY goes LO to indicate the fifo is not empty.

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

P1 P2 P16

E1 E2 E16

CLK

RESET_N

FIFO_WEN_N

FIFO_DATA_IN

FIFO_IN_EMPTY

ENC_START

BUSY

FIFO_OUT_EMPTY

FIFO_ENC_DONE

FIFO_REN_N

FIFO_DATA_OUT

Figure 9 – Encryption Timing with Fifo

949/1321 cycles

AES – 8-bit Datapath V1.1

December 2012 10

Data Formatting

The format and ordering of input data for key expansion and encryption is very important because a mismatch of
expected data could occur if the user does not follow the convention described here. First, we will look at an
example of key expansion and then an example of encryption.

128-bit Key Expansion Example
Per the FIPS-197 specification, an example of a sample 128-bit key is given by:

Key = 000102030405060708090a0b0c0d0e0f

Let us consider the key as 16 bytes of data organized from least significant byte on the left to most significant byte
on the right as shown below:

LS Byte MS Byte

Byte
0

Byte
1

Byte
2

Byte
3

Byte
4

Byte
5

Byte
6

Byte
7

Byte
8

Byte
9

Byte
10

Byte
11

Byte
12

Byte
13

Byte
14

Byte
15

00 01 02 03 04 05 06 07 08 09 0a 0b 0c 0d 0e 0f

We will consider each byte as an independent entity with the LSB (bit) of the byte to be the rightmost bit position
and MSB (bit) to be the leftmost bit position as illustrated below. The entire key must be input sequentially
starting with byte 0, byte 1 and so on until byte 15 has been input.

Clock

KE_DATA_IN(7:0)

7………………...0
(hex)

7………………...0
(binary)

1 00 0000 0000

2 01 0000 0001

3 02 0000 0010

4 03 0000 0011

5 04 0000 0100

6 05 0000 0101

7 06 0000 0110

8 07 0000 0111

9 08 0000 1000

10 09 0000 1001

11 0a 0000 1010

12 0b 0000 1011

13 0c 0000 1100

14 0d 0000 1101

15 0e 0000 1110

16 0f 0000 1111

Following this sequence will generate a key expansion schedule of:

Key Round Key Value

0 000102030405060708090a0b0c0d0e0f

1 d6aa74fdd2af72fadaa678f1d6ab76fe

2 b692cf0b643dbdf1be9bc5006830b3fe

3 b6ff744ed2c2c9bf6c590cbf0469bf41

AES – 8-bit Datapath V1.1

December 2012 11

4 47f7f7bc95353e03f96c32bcfd058dfd

5 3caaa3e8a99f9deb50f3af57adf622aa

6 5e390f7df7a69296a7553dc10aa31f6b

7 14f9701ae35fe28c440adf4d4ea9c026

8 47438735a41c65b9e016baf4aebf7ad2

9 549932d1f08557681093ed9cbe2c974e

10 13111d7fe3944a17f307a78b4d2b30c5

Since the expanded keys generated are central to the integrity of the AES algorithm, the ram used for key storage
is not accessible from outside the VTinyAESe_8 core. In fact, even during calculation and storage of the sub-
keys, no key information is exposed outside of the core.

128-bit Encryption with ECB Example
Per the FIPS-197 specification, an example of a sample 128-bit plaintext input block with an expected AES
encrypted output block (using the same key as above) is given by:

Key = 000102030405060708090a0b0c0d0e0f
Plaintext = 00112233445566778899aabbccddeeff
Encrypted = 69c4e0d86a7b0430d8cdb78070b4c55a

Let us consider the input block as 16 bytes of plaintext data organized from least significant byte on the left to
most significant byte on the right as shown below (same for encrypted output):

LS Byte MS Byte

Byte
0

Byte
1

Byte
2

Byte
3

Byte
4

Byte
5

Byte
6

Byte
7

Byte
8

Byte
9

Byte
10

Byte
11

Byte
12

Byte
13

Byte
14

Byte
15

00 11 22 33 44 55 66 77 88 99 aa bb cc dd ee ff

We will consider each byte as an independent entity with the LSB (bit) of the byte to be the rightmost bit position
and MSB (bit) to be the leftmost bit position as illustrated below. The entire 16 byte block must be input via
ENC_DATA_IN(7:0) sequentially starting with byte 0, byte 1 and so on until byte 15 has been input. Encrypted
data is output on ENC_DATA_OUT(7:0) with byte 0, followed by byte 1, and so on until byte 15 has been output.

Clock

ENC_DATA_IN(7:0) ENC_DATA_OUT(7:0)

7………………...0
(hex)

7………………...0
(binary)

7………………...0
(hex)

7………………...0
(binary)

1 00 0000 0000 69 0110 1001

2 11 0001 0001 c4 1100 0100

3 22 0010 0010 e0 1110 0000

4 33 0011 0011 d8 1101 1000

5 44 0100 0100 6a 0110 1010

6 55 0101 0101 7b 0111 1011

7 66 0110 0110 04 0000 0100

8 77 0111 0111 30 0011 0000

9 88 1000 1000 d8 1101 1000

10 99 1001 1001 cd 1100 1101

11 aa 1010 1010 b7 1011 0111

12 bb 1011 1011 80 1000 0000

13 cc 1100 1100 70 0111 0000

14 dd 1101 1101 b4 1011 0100

15 ee 1110 1110 c5 1100 0101

AES – 8-bit Datapath V1.1

December 2012 12

16 ff 1111 1111 5a 0101 1010

128-bit Encryption with CBC Example
Per the FIPS-197 specification, an example of a sample 128-bit plaintext input block with an expected AES
encrypted output block (using the same key as above) is given by:

Key = 2b7e151628aed2a6abf7158809cf4f3c
IV = 000102030405060708090a0b0c0d0e0f
Plaintext = 6bc1bee22e409f96e93d7e117393172a
Encrypted = 7649abac8119b246cee98e9b12e9197d

First, expand the key by loading it and expanding it. Next, by asserting LD_IV and
Let us consider the input block as 16 bytes of plaintext data organized from least significant byte on the left to
most significant byte on the right as shown below (same for encrypted output):

We will consider each byte as an independent entity with the LSB (bit) of the byte to be the rightmost bit position
and MSB (bit) to be the leftmost bit position as illustrated below. The entire 16 byte block must be input via
ENC_DATA_IN(7:0) sequentially starting with byte 0, byte 1 and so on until byte 15 has been input. Encrypted
data is output on ENC_DATA_OUT(7:0) with byte 0, followed by byte 1, and so on until byte 15 has been output.

 1

st
 Step 2

nd
 Step 3

rd
 Step

LD_IV
IV_DATA

ENC

START

DATA_IN

ENC
DATA_VALID

DATA_OUT

7…..…..……..0 7……………..0 7………..……..0

1 00 1 6B 1 76

1 01 0 C1 1 49

1 02 0 BE 1 AB

1 03 0 E2 1 AC

1 04 0 2E 1 81

1 05 0 40 1 19

1 06 0 9F 1 B2

1 07 0 96 1 46

1 08 0 E9 1 CE

1 09 0 3D 1 E9

1 0a 0 7E 1 8E

1 0b 0 11 1 9B

1 0c 0 73 1 12

1 0d 0 93 1 E9

1 0e 0 17 1 19

1 0f 0 2A 1 7D

AES – 8-bit Datapath V1.1

December 2012 13

Verification

Figure 11 shows the architecture of the verification testbench used to validate the VTinyAESe_8 core variants.

VTinyAESe_8

Core

Under Test

Verification

TestBench

Input

Vector

Database

Expected

Result

Database

NIST 800-17

Requirements

 Figure 10 – Verification Block Diagram

AES – 8-bit Datapath V1.1

December 2012 14

Deliverables

Table 8 below shows the source code hierarchy of the VTinyAESe_8 core. The current RTL deliverable is VHDL,
however, verilog RTL can be provided on request.

 Figure 11 - Source Code Hierarchy

 Figure 12 - Testbench Files

AES – 8-bit Datapath V1.1

December 2012 15

 Figure 13 - Simulation Files

AES – 8-bit Datapath V1.1

December 2012 16

Appendix A – External Initialization of SBOX Ram

Sbox RAM Load Pattern (256 bytes)

ADDR DATA

0 63

1 7C

2 77

3 7B

4 F2

5 6B

6 6F

7 C5

8 30

9 01

0A 67

0B 2B

0C FE

0D D7

0E AB

0F 76

10 CA

11 82

12 C9

13 7D

14 FA

15 59

16 47

17 F0

18 AD

19 D4

1A A2

1B AF

1C 9C

1D A4

1E 72

1F C0

20 B7

21 FD

22 93

23 26

24 36

25 3F

26 F7

27 CC

28 34

29 A5

2A E5

2B F1

2C 71

2D D8

2E 31

2F 15

30 04

31 C7

32 23

33 C3

ADDR DATA

34 18

35 96

36 05

37 9A

38 07

39 12

3A 80

3B E2

3C EB

3D 27

3E B2

3F 75

40 09

41 83

42 2C

43 1A

44 1B

45 6E

46 5A

47 A0

48 52

49 3B

4A D6

4B B3

4C 29

4D E3

4E 2F

4F 84

50 53

51 D1

52 00

53 ED

54 20

55 FC

56 B1

57 5B

58 6A

59 CB

5A BE

5B 39

5C 4A

5D 4C

5E 58

5F CF

60 D0

61 EF

62 AA

63 FB

64 43

65 4D

66 33

67 85

ADDR DATA

68 45

69 F9

6A 02

6B 7F

6C 50

6D 3C

6E 9F

6F A8

70 51

71 A3

72 40

73 8F

74 92

75 9D

76 38

77 F5

78 BC

79 B6

7A DA

7B 21

7C 10

7D FF

7E F3

7F D2

80 CD

81 0C

82 13

83 EC

84 5F

85 97

86 44

87 17

88 C4

89 A7

8A 7E

8B 3D

8C 64

8D 5D

8E 19

8F 73

90 60

91 81

92 4F

93 DC

94 22

95 2A

96 90

97 88

98 46

99 EE

9A B8

9B 14

ADDR DATA

9C DE

9D 5E

9E 0B

9F DB

A0 E0

A1 32

A2 3A

A3 0A

A4 49

A5 06

A6 24

A7 5C

A8 C2

A9 D3

AA AC

AB 62

AC 91

AD 95

AE E4

AF 79

B0 E7

B1 C8

B2 37

B3 6D

B4 8D

B5 D5

B6 4E

B7 A9

B8 6C

B9 56

BA F4

BB EA

BC 65

BD 7A

BE AE

BF 08

C0 BA

C1 78

C2 25

C3 2E

C4 1C

C5 A6

C6 B4

C7 C6

C8 E8

C9 DD

CA 74

CB 1F

CC 4B

CD BD

CE 8B

CF 8A

ADDR DATA

D0 70

D1 3E

D2 B5

D3 66

D4 48

D5 03

D6 F6

D7 0E

D8 61

D9 35

DA 57

DB B9

DC 86

DD C1

DE 1D

DF 9E

E0 E1

E1 F8

E2 98

E3 11

E4 69

E5 D9

E6 8E

E7 94

E8 9B

E9 1E

EA 87

EB E9

EC CE

ED 55

EE 28

EF DF

F0 8C

F1 A1

F2 89

F3 0D

F4 BF

F5 E6

F6 42

F7 68

F8 41

F9 99

FA 2D

FB 0F

FC B0

FD 54

FE BB

FF 16

AES – 8-bit Datapath V1.1

December 2012 17

