

Optical and Chemical Analysis of Driving Factors for DOC Concentration and Composition

Shaleen Bhattacharya^{1,3}, Ryan Jung^{2,3}, Abigail Whittington³, Nilotpal Ghosh³, Cédric Fichot³

Chattahoochee High School, Johns Creek, GA1; Orange County School of the Arts, Santa Ana, CA2; Department of Earth and Environment, Boston University, Boston, MA³

1. Introduction

- Dissolved organic carbon (DOC) refers to carbon stored in organic compounds that are dissolved in freshwater and saltwater bodies
- DOC is insufficiently understood despite making up a significant portion of Earth's carbon pool
- Objective: Analyze the combined effect of solar radiation and microbial activity on DOC concentration and composition using samples taken from a headwater stream in Harvard Forest

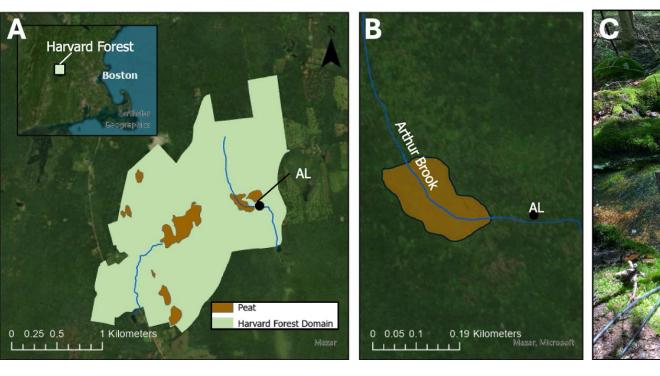


Fig. 1: Map of Harvard Forest showing location of AL and photograph of AL sampling site. Image courtesy of Jiyeong Hong.

Arthur Lower (AL):

- DOC mainly comes from peatland upstream
- DOC variations primarily caused by seasonal changes in swamp vegetation
- Sample collected July 16th, 2025

3. Methods

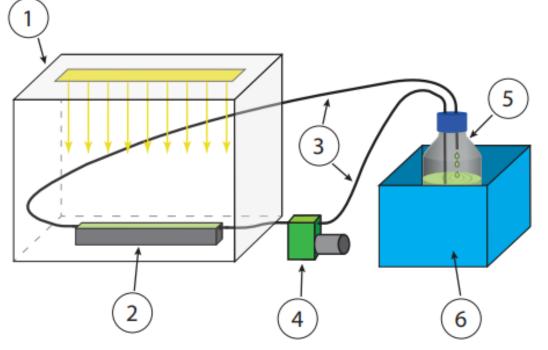
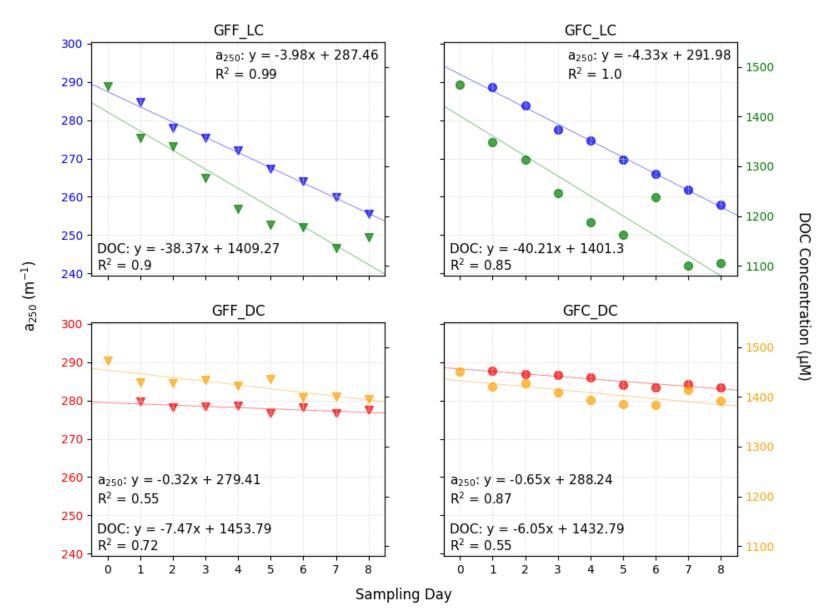


Fig. 2: Schematic of experimental setup; only one sample shown for clarity. (1) Solar simulator (2) Quartz flow cell

- (3) Teflon-coated (PTFE) tubing
- (4) Miniature diaphragm pump
- (5) Sample bottle
- (6) Temperature controlled water bath Reproduced with permission.¹
- Prepared four one-liter treatments of Arthur Lower sample
 - Two treatments filtered through a 1.5-micron glass fiber filter (GFC), while the other two were filtered through a 0.7-micron glass fiber filter (GFF)
 - The GFC treatments had a more complete microbial community
- One GFC and GFF treatment were exposed to light (LC) via the setup above; remaining two treatment used as dark control (DC)
- Solar simulator programmed to emulate typical light exposure during the day
- Subsampled each treatment once daily for eight days to analyze UV-visible absorbance and DOC concentration, using a UVvisible spectrophotometer and a TOC analyzer respectively

References:

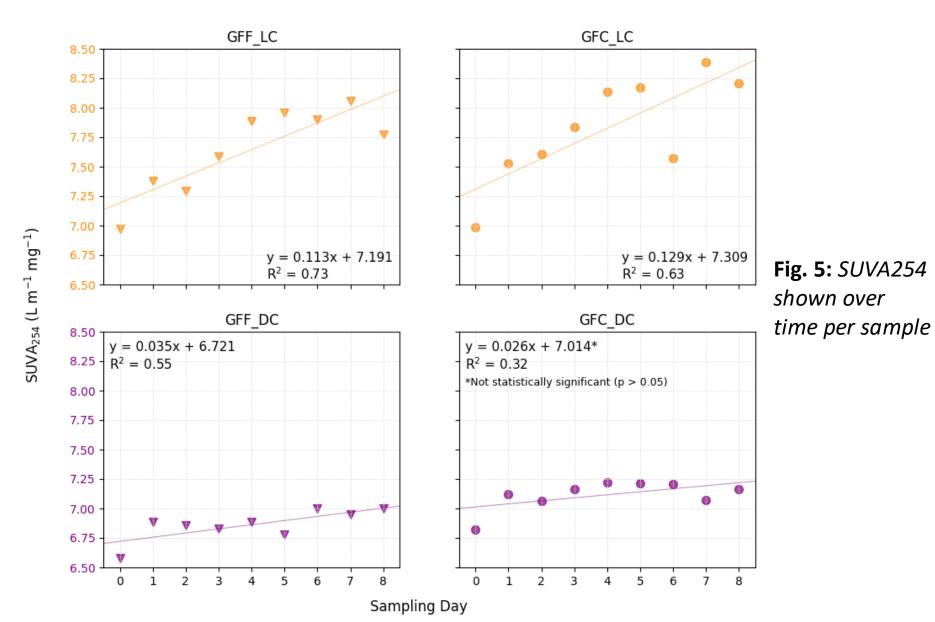

¹Martin, P.; Woo, O. Y.; Chen, Y.; Tan, C. Y.; Yang, C. T.; Zhou, Y.; Mayer, B. Quantifying Interactive Photochemical and Microbial Removal of Terrestrial Dissolved Organic Carbon: From Experiments to Modelling — Running Head: Light-Enhanced Microbial DOM Degradation. ESS Open Archive 2024, preprint.

²Weishaar, J. L.; Aiken, G. R.; Bergamaschi, B. A.; Fram, M. S.; Fujii, R.; Mopper, K. Evaluation of Specific Ultraviolet Absorbance as an Indicator of the Chemical Composition and Reactivity of Dissolved Organic Carbon. Environ. Sci. Technol. 2003, 37(20), 4702–4708. DOI: 10.1021/es030360x

SAM meets STEM

4. Results

a₂₅₀ and DOC Concentration Over Time


Fig. 3: Absorption coefficient at λ =250 nm and DOC concentration shown over time per sample. For LC samples, blue - a250 and green - DOC. For DC, red - a_{250} and yellow - DOC.

- DOC concentration decreased by up to 24%, while a₂₅₀ decreased by up to 11% in LC samples; DC samples show much smaller changes, showing that sunlight increases rate of DOC degradation
- DOC concentration decreases at a faster rate than a₂₅₀, indicating that non-colored DOC is decaying more quickly than colored DOC

$$SUVA_{254} = rac{a_{254} \ (m^{-1})}{\ln 10 imes DOC \ (mg \ L^{-1})}$$

Fig. 4: Equation used for calculation of SUVA254, a strong indicator of DOC aromaticity.²

SUVA₂₅₄ Over Time

- SUVA₂₅₄ increased by up to 17% in LC samples, indicating that non-aromatic DOC is decaying faster
- Decrease in non-aromatic DOC is most likely caused by combined effect of radiation and microbial activity

5. Conclusion

- **Effect of Sunlight:** Accelerate DOC degradation via photochemical reactions
- **Effect of Microbes:** Break down non-colored DOC and nonaromatic compounds at a faster rate than sunlight can break down aromatics, leading to increases in aromaticity

Future Work:

- Run study over a longer time to better observe trends
- Run experiments with a variety of filter sizes to further observe effects of differing microbial communities

