The On-Demand Era of Human Tissue Research: Bioprinted Skin Equivalents

The webinar discusses the promise of bioprinted skin equivalents in improving the accuracy of skin research with applications in toxicology, basic physiology and disease modeling. With the promise of customized selections of cells and on-demand printing of tissues, bioprinted skin equivalents offer values of reducing time and boosting the quality of research.

ABOUT PRESENTER

Ms. Da-Yae Lee Senior Bio-Consultant Project Leader, Global Business Development ROKIT Healthcare

Lee is a part of the "Bioprinting Applications" team commercializing three-dimensional human skin equivalent models, aimed at supporting the animal 3Rs (Reduction, Replacement, Refinement) and improving the accuracy of human skin research.

Before joining ROKIT Healthcare, Da-Yae was a research assistant at the MIT Koch Institute for Integrative Cancer Research and Brigham and Women's Hospital Crohn's and Colitis Center in Boston, USA, with experiences both at the bench and in clinical trial coordination. She has a B.A. in Biochemistry from Smith College in Massachusetts, USA.

ON-DEMAND HUMAN TISSUE RESEARCH: APPLICATIONS OF BIOPRINTING IN SKIN

2020. 06. 11 Da-Yae Lee Senior Bio-Consultant

Control of the Time

Desired Design

High Quality

PROBLEM

END OF DEPENDENCE OF ANIMAL TESTINGS

NEWS

Cosmetic animal testing bill tabled in House of Commons

By Holly Lake. Published on Apr 12, 2019 9:59am

US states join global push to ban animal-tested cosmetics

By Associated Press

February 3, 2020 | 11:32am

LIMITATIONS OF ANIMAL & 2D MODELS

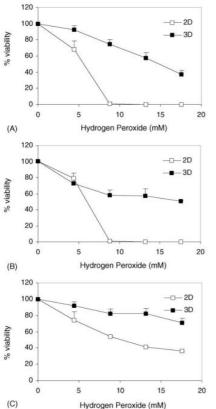
Vs. RABBIT TEST

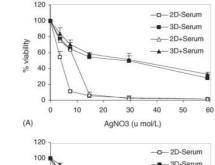
Comparison of human skin irritation patch test data with *in vitro* skin irritation assays and animal data

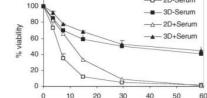
¹ National Institute of Public Health, I Federal Institute for Risk Assessment, Laboratory, <i>Table 4.</i> Concordance of Classification methods Rabbit test ► 4-hr HPT 4-hr HPT PT ► Rabbit 1 15 min/42 hr EPISKIN 3 15 min/42 hr EPISKIN 3 15 min/42 hr EPISKIN 3 15 min/42 hr EPISKIN 3	test assay ► Rabbit test assay ► Rabbit test assay ► A-hr HPT	y Ltd., Sharnbrook, UK, ³ ZEBET, ssurance Center, Unilever Colworth nd, USA
Sensitivity	Specificity	Accuracy (%)
100.0% (5/5)	45.0% (9/20)	56.0

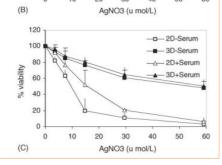
31.3% (5/16)	100% (9/9)	56.0
50.0% (7/14)	66.7% (6/9)	56.5
43.8% (7/16)	77.8% (7/9)	56.0
100.0% (3/3)	65.0% (13/20)	69.6
80.0% (4/5)	75.0% (15/20)	76.0

f results from ECVAM SIVS study (16).

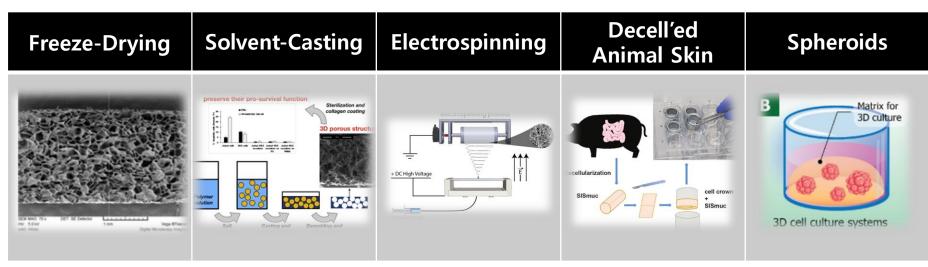

Vs. 2D HUMAN MODEL

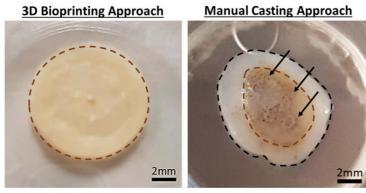

Culture of skin cells in 3D rather than 2D improves their ability to survive exposure to cytotoxic agents


Tao Sun^a, Simon Jackson^a, John W. Haycock^a, Sheila MacNeil^{a,b,*}

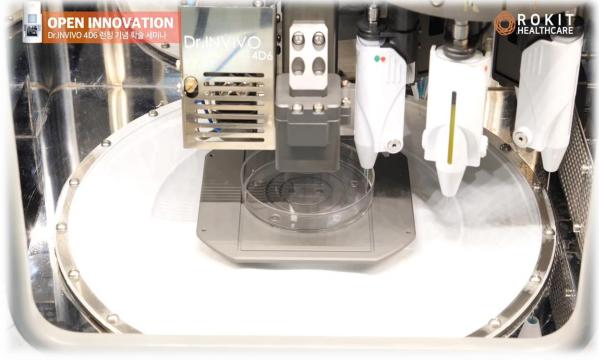

^a Department of Engineering Materials, Sheffield University, Kroto Research Institute, Broad Lane, Sheffield S3 7HQ, UK ^b Division of Clinical Sciences, Sheffield University, Northern General Hospital, Sheffield S5 7AU, UK

Received 6 October 2005; received in revised form 6 December 2005; accepted 12 December 2005

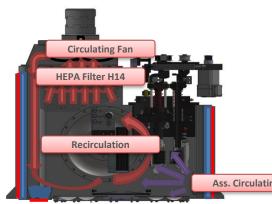



LIMITATIONS OF EXISTING **3D** MODELS

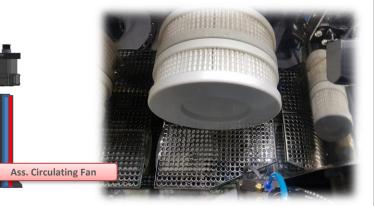
Traditional 3D fabrication methods for human tissue include:

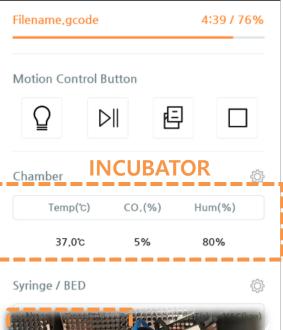

LIMITATIONS

- Difficult control over cell, material composition and pore sizes
- Adverse effects of long pre-processing
- Data inconsistency due to human error
- Reliance on animal-derived components
- Necrotic cores



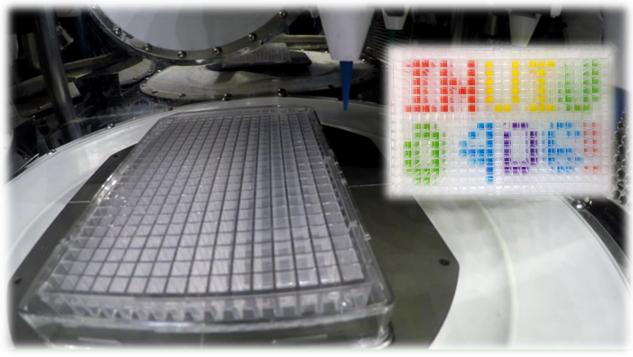
ROKIT HEALTHCARE

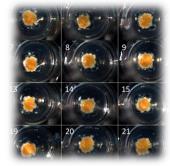


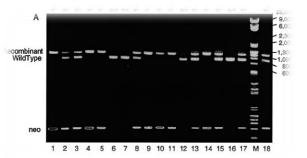

PLASMA STERILIZER

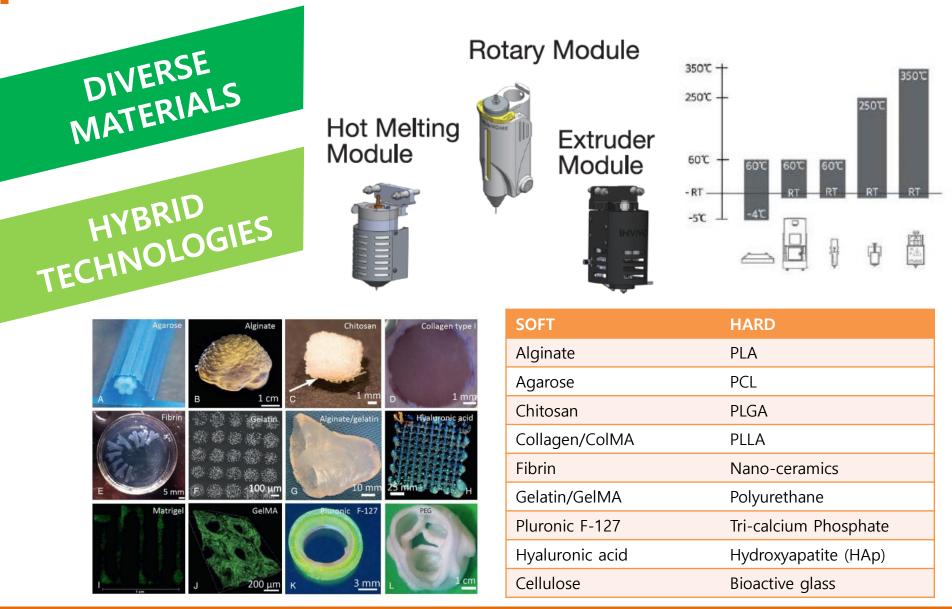
▼⊿ ∎ 12:30 Dr. INVIVO 405					
Ð	File	>			
	Status	>			
Ð	Microscope	>			
	Control	>			
¢	Setting	>			
		-			

HEPA H14 FILTER




ROKIT HEALTHCARE


Mini-Liver Drug Development



Safer, Contained Vaccine Research

PCR Genotyping

ROK HEALTHC

FAST TRACK TO MEDICAL COMMERCIALIZATION

Dr. INVIVO has already been used to treat patients in the operating room!

Ropean medicines agency MEDICINES HEALTH

MFDS

KORFA

ENCE

(2019) SOFT TISSUE: DIABETIC FOOT ULCER SKIN

(2020) HARD TISSUE: CUSTOMIZED BONE IMPLANTS

TODAY'S FOCUS: BIOPRINTING HUMAN SKIN

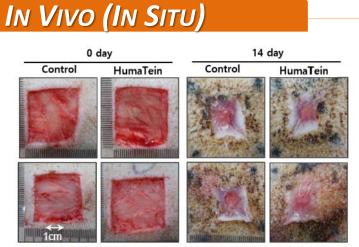


Figure 8. Wound Closure (Healing Rate) Evaluation: compared to control (showing more depth due to slow regeneration, HumaTein treated wound filled with neo-tissue and the tissue contraction is less noticeable

Wound Healing In-Hospital Solution

IN VITRO

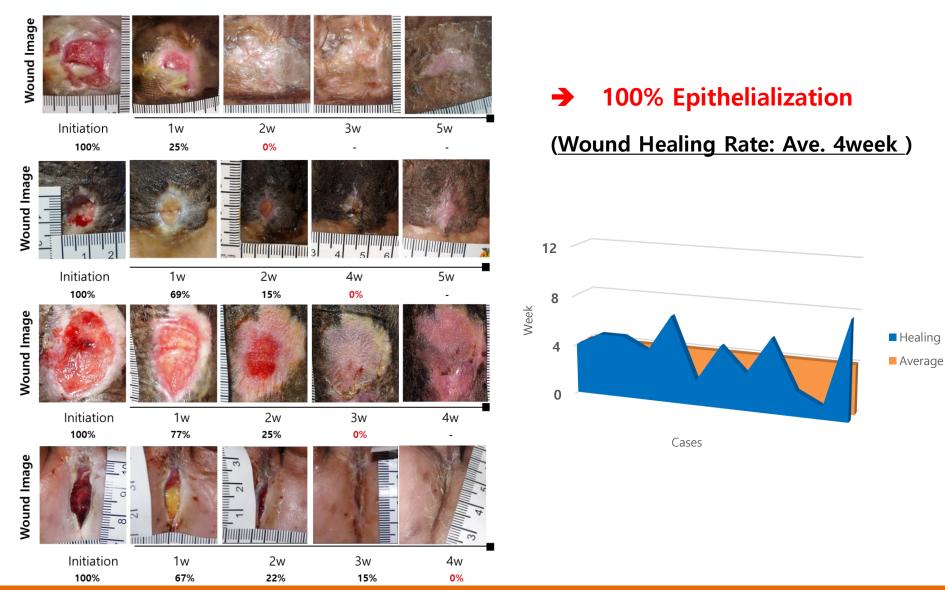
Toxicology Basic Skin Research (Physiology) Disease Modeling

WORLD'S FIRST DFU SKIN REGENERATION WITH INVIVO®

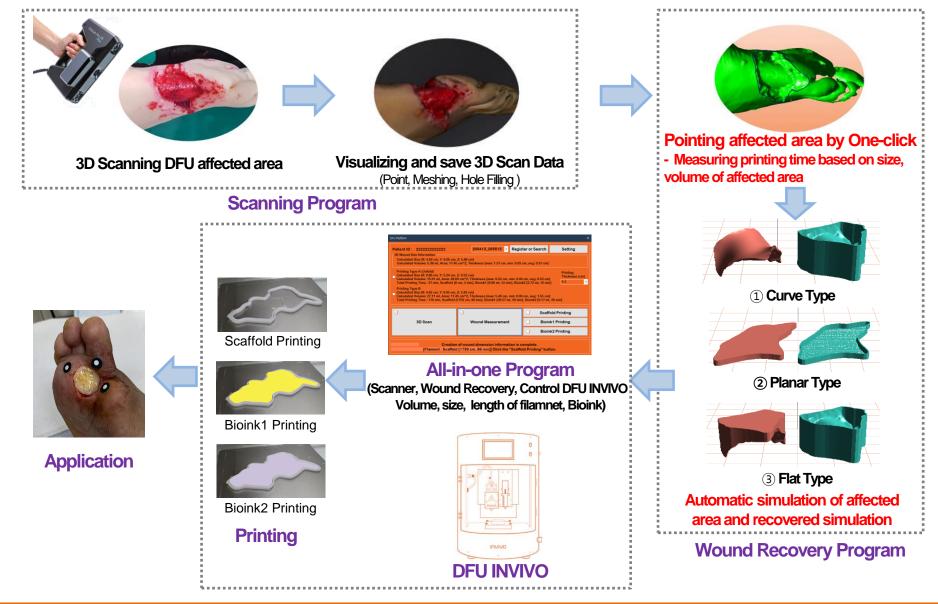
⑤ Remove the scaffold & apply only MA-ECM, a shape of dermal patch to the patient's wound

(6) Follow up the wound size and skin regeneration

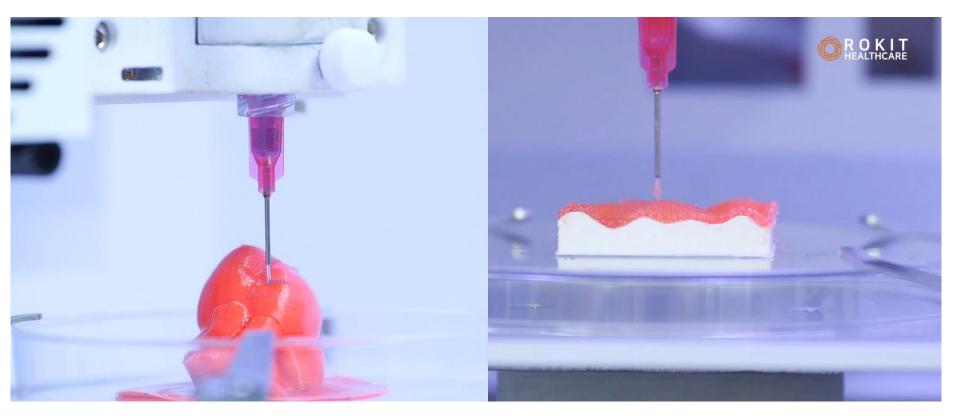
4weeks

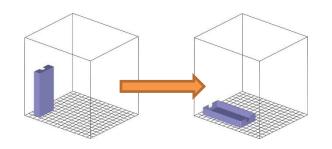


10weeks

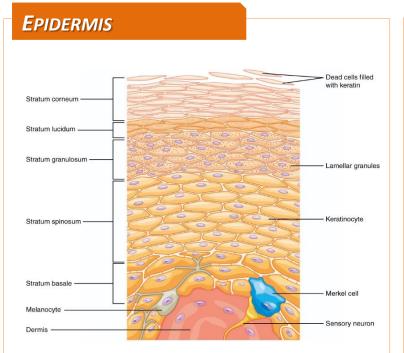

20 PATIENTS: 100% EPITHELIALIZATION

Confidential & Proprietary | © ROKIT Healthcare Inc. 2020. All Rights Reserved

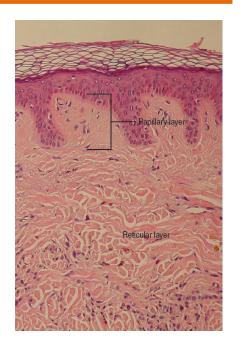



INTEGRATED 3D SCAN-PRINT SYSTEM

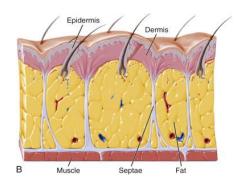
IN SITU – CURVE PRINT SYSTEM



Dr. INVIVO 4D6 One-Touch Horizontal -> Vertical Slicing



HUMAN SKIN EQUIVALENT (HSE): COMPOSITION


- Keratinocytes (90-95% of the components)
 Corneocytes (terminally differentiated)
- Langerhans cells (immunological response)
- Merkel-Ranvier cells (sensory reception)
- Melanocytes (skin pigmentation, UV protection)

DERMIS

- Fibroblasts: majority, with dense fibers
- Collagen and elastin fibers: structure, tensile strength, and elasticity

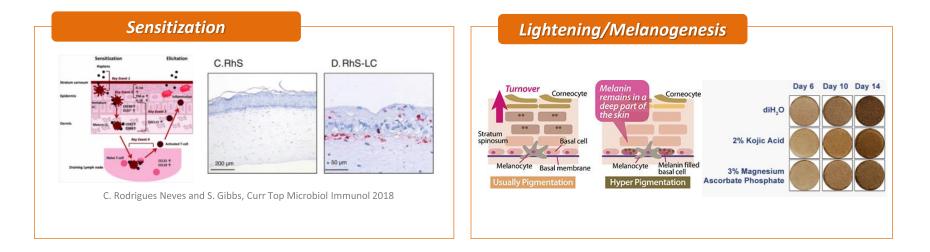
HYPODERMIS

 Adipose cells: fat storage and provides insulation and cushioning

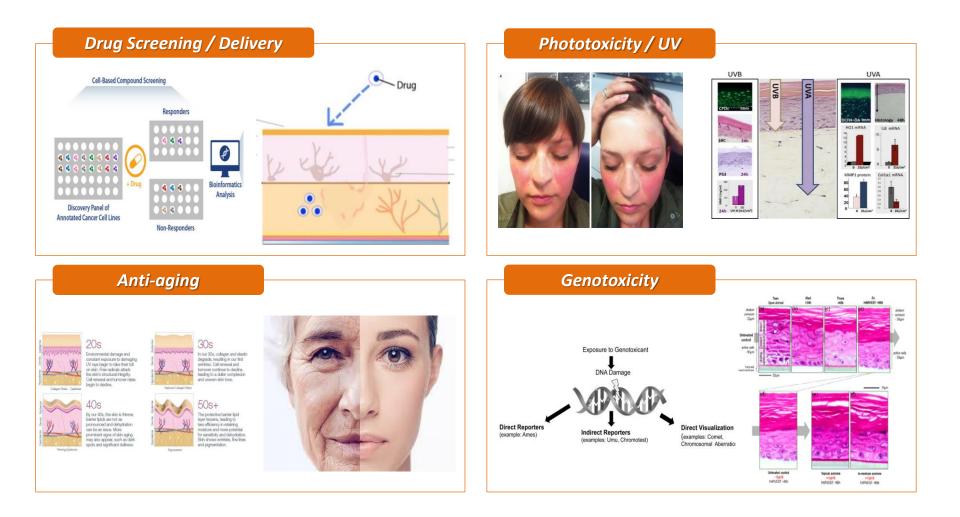
CRITERIA FOR SUCCESSFUL HSE

Considerations of stratified cell crosstalk and signaling

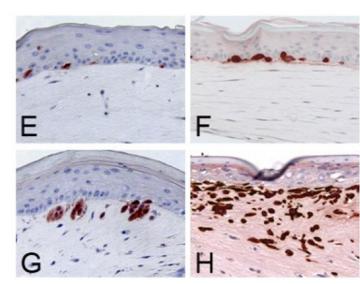
Considerations of <u>diverse cell types</u> (i.e. keratinocytes, fibroblasts, immune cells and bacteria)

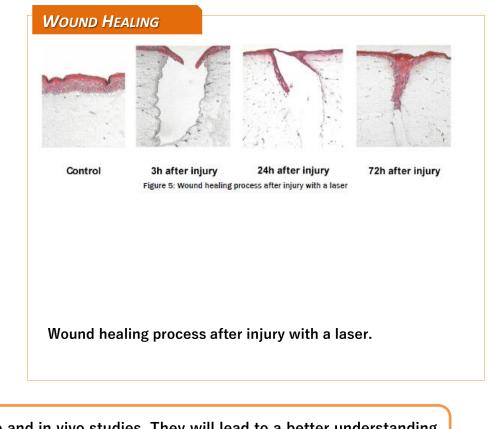

Considerations of human-to-human variations (age, race, hair, etc.)

Adherence to regulatory guidelines for in vitro skin tests


APPLICATIONS OF THE HSE

APPLICATIONS OF THE HSE



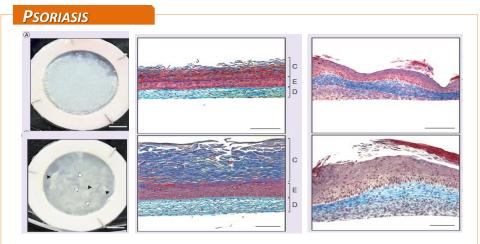

PUBLICATIONS USING HSE

RECONSTRUCTED SKIN-DISEASE MODELS

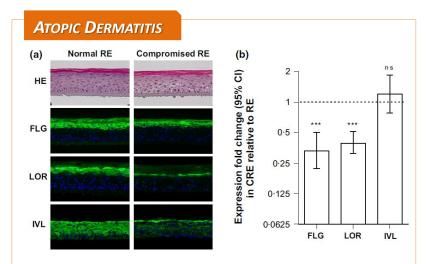
CANCER

Skin reconstructs of different stages of melanomas. Metastatic melanoma cells grow in all directions and invade deep into the dermis as single cells or clusters.

FUTURE DIRECTION


Skin reconstruct models bridge the gap between in vitro and in vivo studies. They will lead to a better understanding of which genes are involved in transformation and how stem cells contribute to that transformation.

J. Vis. Exp. (54), e2937, doi:10.3791/2937 (2011).


PUBLICATIONS USING HSE

RECONSTRUCTED SKIN-DISEASE MODELS

Macroscopic and histological analyses of the tissue -engineered psoriatic substitutes. the tissue-engineered psoriatic substitutes treated with cytokines display further irregular epidermis with protuberances and thinner region s, which is typical of psoriatic tissues.

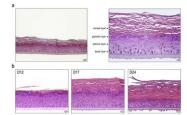
> Regen Med, 11 (6), 545-57 (2016)

Difference between normal RE and CRE model. The inflammatory cocktail alters the morphology and epidermal protein expression in reconstructe d epidermis.

FUTURE DIRECTION

Skin reconstruct models bridge the gap between in vitro and in vivo studies. They will lead to a better understanding of which genes are involved in transformation and how stem cells contribute to that transformation.

J. Vis. Exp. (54), e2937, doi:10.3791/2937 (2011).



PUBLICATIONS USING HSE

RECONSTRUCTED HUMAN SKIN VARIATION MODELS

AGING

Property characterization of reconstructed human epidermis equivalents, and performance as a skin irritation model

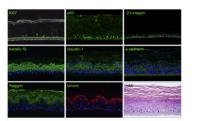
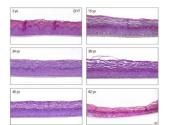



Fig1. Morphological study of human epidermis equivalent.

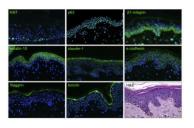


Fig2. Comparison of reconstructed human epidermises with keratinocytes isolated from donors of different ages (3, 15, 24, 39, 45 or 62 years old). Fig3. Immunodetection of various markers in the model of epidermal equivalent (a) and in native skin (b).

• CONCLUSION

 \checkmark The model presented in this study is a 3D reconstructed human epidermis model

developed from keratinocytes that were isolated from human skin.

✓ It is alternatively possible to select the age, the gender, or the ethnicity of the donors, and the differentiation stage of the tissue in order to develop specific models. HAIR

Engineered building blocks to print endogenous tissues and complex organs in vitro

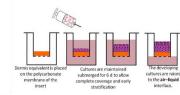


Fig1. Schematic procedure for human skin equivalent

Fig2. hair implantation inside the maturation chamber (b) and 3D dermis equivalent with hair after 2 weeks of maturation time (c)

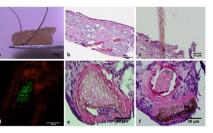


Fig3. biohybrid with exogenous hair (a); H&E staining of HSE with hair implantation (b-c); immunofluorescence analysis of hair follicle (Versican, CD133) (d); H&E staining of exogenous hair bulb (e-f).

Alessandro Garziano on 01 June 2016. SCIENTIFIC REPORTS | (2018) 8:13434 Toxicology in Vitro(2018), S0887-2333(18)30355-2

• CONCLUSION

- ✓ The goal of this study is to develop skin substitutes with greater homology to native skin, in terms of dermis layer, extra cellular matrix, epidermal differentiated layer, and hair follicles.
- ✓ The introduction of anagen hairs in our 3D human skin equivalent, demonstrates the relevance of the endogenous ECM. The mature hair follicles are able to growth in several kind of conditions, fresh medium, conditioned medium, in exogenous ECM and fibroblasts

AGE OF ON-DEMAND RESEARCH SOLUTIONS

EPITEM, THE HUMAN SKIN ON-DEMAND

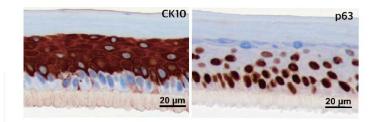
EpiTem: 3D Bioprinted HSE

"I'd like to use ready-to-use 3D bioprinted human epidermis"

EpiTem Creator Kit


"I'D LIKE TO EXPLORE DIVERSE HUMAN SKIN STUDY DESIGNS ON MY OWN"

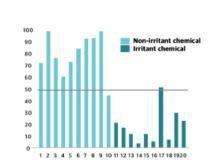
EPITEM VALIDATION: STRUCTURAL & FUNCTIONAL


Feature

Stratum granulosum Stratum spinosum Stratum basale

Fig 1. EpiTem had the multi-layered and highly differentiated epidermis.

Histological morphology is observed following H&E staining after 18 days of reconstruction and characterization of the localization proteins expression.


Fig 2. Immunohistochemistry results of (A) Cytokeratin10 and (B) p63.

IHC was performed by histological cross-sections of the EpiTem to characterize the expression localization of these proteins.

3.03hr ≤ ET50 ≤ 5.9hr 100 90 80 70 /lability (%) 60 50 40 30 20 10 0 NC

Barrier Function Test

Fig 3. Barrier function result depends on time exposure.

Time (hr)

Exposure Time 50 (ET50) corresponds to the time to observe 50% cell mortality after treatment of 1% Triton X-100 on EpiTem.

Fig 4. Irritation test results of 20 chemicals according to TG439 guidelines.

Non-irritation chemicals show over than 50% cell viability, but classified chemicals represent less than 50% viability.

Discover EpiTem

Advanced, Customized Human Skin Equivalent

To be used in Cosmetic, Chemical & Pharmaceutical industry

BIOPRINTING: AUTOMATED, HUMAN, SMART SOLUTION

BIOPRINTING IS A PLATFORM BIO-MANUFACTURING TECHNOLOGY WITH APPLICATIONS FOR ALL MAJOR-FUNDED RESEARCH FIELDS

Organ systems		Cell Types used in 3D E	lioprinting		
Cardiovascular tissue	ESCs (8) MSCs(10, 18, 19)			PLATFORM	MANUFACTURED HUMAN TISSUES
iviusculoskeletai	MSCs (<u>36</u>) MDSCs (<u>35</u>) Myoblasts (<u>31</u> , <u>32</u>)	ja			
Neural tissue	ESCs(<u>41, 42</u>) MSCs (<u>7, 43</u>) Glioma stem cells NSCs(<u>39, 46, 47</u>)	(40)			Neural tissue
Hepatic tissue	hepatocyte-like ce	atic progenitor cells (<u>57</u>)			Skin tissue Cardiovascular tissue
Adipose tissue	ADSCs(<u>61</u>)				
Skin tissue	AFSCs (65) MSCs (65, 66, 67, 70) ADSCs (70) Epithelial progenitor cells (69)			Hepatic tissue Adipose tissu	
Bioink pol	ymers	Bioink concentration	Applications		
Collagen		0.223%	Perfusable artificial tissue		
Collagen/alginate		15 mg/mL collagen 0.1 g/mL alginate	Cartilage TE		9
Gelatin		10–20%	TE, stem cell, & cane		
Gelatin/ Agarose		0.06%	Heart valve regenera		Musculoskeletal tissue
Gelatin with transglu		5% (w/v) with 2.5–20 un TG/g of gelatin	Tumor modeling & realeration of the second s		Musculoskeletal ussue
Hyaluronic acid (HA)		0.5% (w/v) HA-Ph, 3.0% (w)) Gelatin-Ph, Ru(II) & SPS		12, 30, 122, 127	
HA with methylcellul	ose (MC)	2.0 wt% HA, 5–9 wt% of MC	TE DIOINU		
Fibrin		10 mg/ml, 20 U/ml	Nerve TE BIOINK	S	
Silk/PEG		5–10% w/v	TE	[<u>97</u> , <u>122</u>]	
Decellularized the ad		3%	TE, in vitro drug screening &	tiss [<u>100</u> , <u>103</u> , <u>122</u>]	
cartilage (cdECM) &			ue/cancer model.		
HdECM with vitamin	B2 & VEGF	20 mg/MI	Cardiac TE	1.	

• Source: Ong, C. S. (2017). 3D bioprinting using stem cells. *Nature*. & Gopinathan, J. (2018). Recent trends in bioinks for 3D printing. *Biomaterials*.

Thank You for Pioneering with Us

Contact Us At:

Authroized Distributor of Rokit Healthcare INVIVO 4D/4D6 bioprinters & Bioinks in US

Senthil S PhD General Manager Senthil.s@onsbio.com www.onsbio.com

Organ Regeneration Platform Company

4D "Regenerator" Human Cell-Based Biolnks Clinical Product Development

Da-Yae Lee

Senior Bio-Consultant invivo@rokit.co.kr www.rokithealthcare.com

