
A Tip-Toe Through the Forest

Price Prediction for Used Cars
Using Ensemble Methods

Statistical Learning - DAT 402

R. Vincent Caldwell
School of Mathematical and Statistical Sciences

Arizona State University
Tempe, AZ

rvcaldw1@asu.edu

Abstract—The purpose of this project is to predict used car
pricing from a supplied data set. This will be done by applying
machine learning techniques that are well suited to this specific
problem. We will use, for this project, data contained in the used
car data set supplied by Dr. Robert McCulloch, which includes
not just pricing, but data about the mechanical attributes for each
vehicle. This is a final project for DAT 402: Statistical Learning
taught by Dr. Robert McCulloch at Arizona State University.

Index Terms—Regression, Tree, Random Forest, Boosting,
XGBoosting, Machine Learning.

I. INTRODUCTION

The used car market is a very important part of the global
economy and it has a very large and growing footprint. The
industry is so large, in fact, that its size and scope may be
difficult to envision. For example, it is forecasted that the
used car market will be worth a whopping $885 billion by
2026 [1], and, in 2018, more than 40.2 million used cars
were sold in the US [2].

The market for used cars is huge, but not yet easily
predictable. This has a lot to do with the annual differences
in variance when it comes to supply and demand. So,
understandably, we should want to know what the price
distribution would look like if we were able to predict the
price for a particular vehicle using the available data, and,
of course, machine learning methods. This project attempts
to predict used car pricing from different mechanical attributes.

The related work in this domain is broad [3]. It includes
the estimation of not just pricing, but a multitude of related
and unrelated factors that contribute to a consumer’s decision
whether or not they desire a particular vehicle. However, the
scope of this project will be fairly narrow and includes only
the prediction of price for used cars by analyzing the past
trends. Consequently, the results may be used not just by
corporate stakeholders but by private citizens as well. We,
therefore, want to predict as accurately as possible to extract
the most useful information from the small amount of data

we have available.

Having already defined our business understanding. We
will also pursue the data science life cycle in the following
order [4]:

Data Collection - in which we gather and scrape the
data necessary for the project.
Preprocessing - correct the inconsistencies within the data
and handle any missing or erroneous values.
Initial Exploration - here we will investigate the data set
and report on any interesting findings as well as an initial
visualization of the data.
Feature Engineering - for this step, we will select important
features and construct more meaningful ones using the raw
data that we have. This also includes processing categorical
variables using one-hot encoding.
Predictive Modeling - finally, we train machine learning
models, evaluate their performance, and use them to make
predictions.
Data Visualization - then, communicate the findings with
key stakeholders using plots and interactive visualizations.

II. DATA SET

Our data set contains a variety of structured data.

Data Collection The data was obtained directly
from Dr. Robert McCulloch’s website: http://www.rob-
mcculloch.org/data/index.html. Attempting to locate other
data via scraping online webpages, scouring databases, or
any other means of available data mining was unnecessary.
The following, Table I, is a description of the variables
included within the data set.

Preprocessing Preprocessing normally takes the most
amount of time. However, the available data set was already
semi-processed. Luckily there was no missing or ’NA’

Price Prediction for Used Cars Using Ensemble Methods by R. Vincent Caldwell, Arizona State University

TABLE I
VARIABLE EXPLANATION

Variable name: Definition:

Price this variable contains the price of a used car, and its
collection of values ranges from 599.00 to 79,999.00.

Trim this variable contains the trim level that makes
each model identifiable by particular features. These
may involve both interior and exterior options.
The unique values within the trim packages
include ’320’, ’420’, ’430’, ’55 AMG’, ’500’,
’550’, ’63 AMG’, ’350’, ’400’, and ’65 AMG’.

isOneOwner this variable contains a binomial response of either
a 1 or a 0 - corresponding to whether or not the
vehicle has been previously owned by only one owner.

Mileage this variable contains the mileage of a used car, and
its collection of values ranges from 8 to 488525.

Year this variable contains the year of the car, and its
collection of values ranges from 1994 to 2014.

Color this variable contains the exterior color of the car.
The values included are ’Black’, ’White’, ’Silver’,
’Gray’, ’Blue’, ’other’, and ’unsp’ (unspecified).

Displacement this variable commonly measures engine size, and can
be an indicator for the general power an engine may
produce. The range of values varies from 3.2 to 6.3.

Fuel this variable contains the vehicle fuel type. Val-
ues include ’Gasoline’, ’Diesel’, and ’Hybrid’.

Region this variable contains whether or not the car was made
in a certain region. The values include ’SoA’ (Super
output Areas), ’Mid’ (Midwest), ’ESC’ (East South
Central, ’ENC’ (East North Central), ’WSC’ (West
South Central), ’New’ (New England), ’Mtn’ (Moun-
tain), ’Pac’ (Pacific), and ’WNC’ (West North Central).

soundSystem this variable contains the sound system available
in the given vehicle. The values contained
are ’Premium’, ’Bose’, ’Harmin Kardon’,
’Bang Olufsen’, and ’unsp’ (unspecified).

wheelType this variable contains the type of wheels on
the vehicle. The values included are ’Alloy’,
’Premium’, ’other’, and ’unsp’ (unspecified).

values. This alone exponentially sped up the preprocessing.
Had there been missing or other values within the data
set that needed to be addressed, we would need to invoke
several methods in order to reach a satisfactory resolution.
For instance, had the data represented what one would
normally expect in the wild, we would preform the following
steps before continuing with the initial exploration of the data:

• Installing and loading all necessary packages and
libraries.

• Remove all of the white space and non-numeric elements.
This includes dollar signs ($) and commas (,) from
variables like currency, for instance.

• Check for missing values, and, if there are any, either
remove the entry or replace the missing values with
correct information or median values for all similar
entries.

• Remove all ’NA’ values with median values. Using the
median will give you a middle value that is not effected
by outliers unlike the mean value. In this regard, the
median is preferred to the mean only because mean
values are more sensitive to potential outliers.

• Then, we can rename columns for clearer reference.

• Finally, add any new columns that are not already in the
dataframe.

We must bear in mind that, commonly, it is only a personal
judgment call when we replace or remove NA, empty, or
other values and rows from a data frame. In general, there
are no hard and fast rules for replacement and removal.

Outlier Detection It is imperative that we perform outlier
detection on the data set. Without performing outlier detection
there is a chance that the results we get from our predictive
modeling will be inaccurate.

It is important that the data we are using for our predictive
modeling is accurate otherwise it could lead to false
conclusions and affect the decisions we make. One of the
most important steps in any analytical model is outlier
detection or outliers in general. Outliers can have a large
impact on univariate or multivariate analysis and can change,
distort, enhance, or decrease predictive power when present
in a dataset.

For our purposes, we will use an ensemble method called
Isolation Forest to perform our outlier detection. Isolation
Forest is a classification and regression algorithm, see Fig.
1 [5]. It belongs to a family of machine learning algorithms
called ensemble methods. Isolation forest is an improvement
on the original ID3 algorithm for induction of decision trees.

The aim of isolation forest is to learn a set of decision trees
so that each tree is accurate in its own right and independent
from the other trees in the ensemble. This makes isolation
forest a kind of ’noisy decision forests’. Discarding the rules
learned by individual trees, Isolation Forest can generate
ensemble rules that are efficient, accurate, and interpretable.
The algorithm classifies each data point as either an outlier
or not. If the result is -1, then it is an outlier. Otherwise, the
result will return 1. We can simply sort our dataframe and
remove all entries that are marked with the outlier designation.

Fig. 1. Presentation of an Isolation Forest

[6]

III. INITIAL EXPLORATION

Our initial exploration begins by producing a pairplot to
visualize potential relationships within the data. Pairplots are
a convenient way to visualize and explore how two variables
interact with each other. In general, pairplots can be used
to explore many different kinds of relationships, such as the
relationship between price and mileage or mileage and year,
see Fig. 2.

An interesting visualization we can use if we did not
already have a specific purpose is a word cloud. This can
be helpful to get a sense of how many occurrences of a
word appear in the data and what the most common words are.

For example, we can use the size of the word to potentially
infer its importance - since the size of the word is specifically
tied to how many times it occurs within the data set. This is
what we see here with the words ”Gasoline” and ”Alloy”.
It makes sense these two words are large, because they are
also the most commonly found attributes of cars on the road
today. Since word clouds are not interactive, it can be difficult
to read that text. However, our data set is reasonable enough
that a word cloud can be produced, see Fig. 3.

Finally, we can use a correlation matrix to show the
correlation between all of the variables. The matrix does not
show relationships between two variables directly, but rather
how they relate to each other. We see that the columns and
rows are ordered by value from highest to lowest. The closer
two values in the matrix are to 1, the more strongly they are

Fig. 2. Most Common Words in the Used Car Data Set

Fig. 3. Most Common Words in the Used Car Data Set

correlated, see Fig. 4.

Fig. 4. Most Common Words in the Used Car Data Set

IV. FEATURE ENGINEERING

As we move on to feature engineering, we need to make
sure that our features are both useful and necessary. We
must dummy-up our categorical variables and determine
whether we will be using every column, or if we can apply
dimensionality reduction. This is where one of the main
concepts for feature engineering comes into play: feature
selection. In a nutshell, feature selection attempts to reduce
the number of features so that we have more control over our
model.

Our goal is to find a subset of columns in our dataset
which has maximum predictive value for our target variable.
This can be done by using various statistical measures,
developed over time for this very purpose. Selection can
be done on different subsets independently based on their
value and pull features derived from them. For instance, we
may use LASSO regression as a means of dimensionality
reduction and an initial baseline to compare accuracy to
future ensemble methods, see Fig. 5 [5].

After computing the LASSO regression, we are left with 5
of the original 55 possible features, see Fig.6. These are:

’mileage’: − 0.10990378584660783

’year’: 2.344278526269592

’trim 430’: − 1.7309638957334854

’trim 63 AMG’: 5.816693107028769

’displacement 4.6’: 5.935140458040483

We can test the overall accuracy of the LASSO regression
and error by using the Mean Squared Error (MSE) and r2

score, see Fig. 7. This is because LASSO identifies the model
with the most optimal log-likelihood. The goal of LASSO

Fig. 5. Lasso Dimensionality Reduction

Fig. 6. Visualizing Coefficient Importance

regression is to select the subset of variables that have the
greatest possible predictive power. Below are the calculated
MSE and r2 scores for both the train and test data - this is
for comparison only, in-sample testing is an inappropriate
measure of success.

We can examine the accuracy of the predicted variables
and actual values in our predicted quantities from our LASSO
regression model. The mean squared error (MSE) is given as
follows:

MSE [Training data]: 49.36165366103956

MSE [Test data]: 48.786511998326034

r2 [Training data]: 0.8515505827794099

r2 [Test data]: 0.8546526934199903

LASSO is more flexible than ordinary least squares
because it does not require the constraint of equal slopes
for all variables. When the goal is prediction accuracy, then
LASSO has a more straightforward interpretation. LASSO
regression attempts to estimate linear models, which are
easier to interpret.

Fig. 7. MSE Per Fold

V. PREDICTIVE MODELING

Decision Tree Initially, we chose to model a single
decision tree with no hyperparameter tuning to set a baseline
for all future iterations of alternative ensemble methods. This
decision tree was able to achieve accuracy above 88%. This
particular algorithm was chosen because it requires less effort
for preparation. Not only does a decision tree not require
normalization, but it also does not require scaling nor is it
sensitive to missing data. However, with every advantage
there is a disadvantage.

Fig. 8. Visualizing Decision Tree Prediction

Decision trees are quite sensitive to any change in the data
causing instability. Additionally, decision trees can require
more time to train a model, being both computationally
expensive and greedy [5].

However, below you will find the calculated measures of
accuracy and error.

Measures of accuracy and error
Root Mean Squared Error: 6.1678

Mean Squared Error: 38.0415

Mean Approximate Error: 4.3639

r2: 0.8882

Model Accuracy[Single Tree]: 88.82%

We were able to plot a single decision tree diagram using
the graphviz package from python, see Fig. 9.

Fig. 9. Visualizing Sample Decision Tree

Random Forest The Random Forest algorithm is a
very powerful and popular method for prediction using
categorical and numeric input variables [5]. As a mainstay
of the ensemble methods, it is particularly well suited to
make fairly accurate predictions out of the box. However,
we used GridSearch for hyperparameter optimization and
cross validation to achieve a score of 91.53%. The best
parameters included: n estimators=41, min samples split=2,
min samples leaf=2, max features=’sqrt’, max depth=4,
bootstrap=True.

A few of the advantages of Random Forest include error
handling on imbalanced data sets, and insensitivity to outliers.
Random Forest also preforms error handling quite well. Due
to this particular feature, individual error is minimized and
overall variance is reduced. Although, while features need
to be relevant, the algorithm can be difficult to understand -
earning the black box label.

Black box aside, we were able to successfully improve
our accuracy score from the Decision Tree, below are the
calculated measures of accuracy and error.

Fig. 10. Visualizing Random Forest Prediction

Measures of accuracy and error
Root Mean Squared Error: 5.3691

Mean Squared Error: 28.8267

Mean Approximate Error: 3.6636

r2: 0.9153

Model Accuracy[Random Forest]: 91.53%

Like the decision tree, we were able to plot a single
Random Forest tree diagram, see Fig. 11.

Fig. 11. Visualizing Sample Random Forest Tree

Boosting Boosting is an ensemble algorithm that
sequentially builds models and combines them to form
a one strong learner [5]. Boosting methods are shown to
be consistent and powerful when learning from complex
regions of the function space, which contain most of the
data variance in a typical distribution. Our interest in
boosting methods, however, lies in their ability to generally
outpreform Random Forest. We were not disappointed.
Using RandomizedSeachCV, we were able to achieve
an accuracy score of 93.01%. We were also able to
determine that the best parameters were: n estimators=505,
warm start=True, min samples split=2, max depth=2, and
a learning rate=0.021. We are confident that with further
tuning the accuracy score could still be improved.

Boosting is preferred over Decision Trees and Random
Forest because of its clone method - specifically bagging.

Bagging is the creation of multiple copies of the exact
same model and in turn a final prediction is made using
the average of all of the results. Bagging provides better
generalization initially by preventing over-fitting, and, due
to this, improves overall accuracy on unseen data. When
prediction accuracy is measured through cross validation, the
bagging algorithm provides an average of the accuracy scores
of multiple trees with different bootstrap samples. This will
produce different scores for each tree, so at the end we can
average them to obtain a final score. For this reason, bagging
is very useful in situations where data variations are very
high, and samples are potentially low. It also provides an
advantage over other algorithms that don’t use this K-fold
method when trying to predict unseen data. This is because
they may not work as well on improving performance with
new observations - unlike bagging [5].

Fig. 12. Visualizing Boosting Prediction

To show the improvement in both accuracy and error, the
results of the Boosting algorithm are supplied below.

Measures of accuracy and error
Root Mean Squared Error: 4.8795

Mean Squared Error: 23.8096

Mean Approximate Error: 3.2735

r2: 0.9301

Model Accuracy[Boosting]: 93.01%

Below you will also find a plot for a Boosting tree diagram,
see Fig. 13.

XGBoosting XGBoost stands for Extreme Gradient
Boosting, and is a framework that allows people to train
complex machine learning algorithms on large datasets [5].
Though there are many advantages to using XGBoost, one
of the major benefits is that experts can use it to quickly

Fig. 13. Visualizing Sample Boosting Tree

and efficiently process data sets that would take months with
slower methods. What’s more, because XGBoost uses both
stochastic gradient descent and gradient boosting algorithms, it
does not need to spend time preprocessing data - which other
systems often need. XGBoost has been gaining popularity
over the years, and now it is one of the most popular
frameworks because of its ability to train machine learning
models on “big data” and winning many Kaggle competitions.

We often don’t know what the optimal way to solve a
problem is out of the gate. Instead, we pick an algorithm
that’s good at solving the problem in our data set. Generally
speaking, there aren’t many rules that can help you pick an
algorithm for each individual data set. If you’re not sure
which algorithm will be best for your data set, it might seem
impossible to choose one from a list of many; however, with
XGBoost, just like Random Forest, you can quickly find an
ideal combination.

After fitting our data to the XGBoost model and running
a RandomizedSearchCV, it was determined that the best
parameters for achieving the highest accuracy were setting
n estimators=753, max depth=2, and the learning rate=0.041.
This combination triumphed and gave us our best accuracy
score of 93.15%. Similar to our Boosting algorithm, I feel
confident that with further optimization and hyperparameter
tuning we would be able to increase that accuracy score.

Unlike some of the previous ensemble methods, overfitting
is possible if the hyperparameters are not properly tuned,
and generally is a much more complicated beast to handle.
However, with excellent model performance, stability in
the face of outliers, and swift interpretation, XGBoost is a
powerhouse in the ensemble learning space.

As previously mentioned, XGBoost is very popular among
Kaggle competitions. This is due to the particularly noticeable
improvements in achievable model accuracy. Though many
ensemble methods are renowned for having high accuracy, the
fact that XGBoost can score 93% on a target validation set is
remarkable. For this reason, many experts turn to XGBoost
when choosing a method for their machine learning projects
- usually after establishing a baseline with something like

Random Forest.

Fig. 14. Visualizing XGBoosting Prediction

The improvement to our accuracy and error is shown below
in the error plot. It clearly shows that even at the beginning
predictions, our accuracy increases by a large margin. This
is comparable to using the GradientBoostingRegressor. In
addition, while many ensemble methods suffer from unstable
training; meaning they may perform poorly for certain
training data sets or feature combinations, XGBoost can be
awfully resilient to this problem.

Measures of accuracy and error
Root Mean Squared Error: 5.595

Mean Squared Error: 31.3044

Mean Approximate Error: 3.6897

r2: 0.9315

Model Accuracy[XGBoosting]: 93.15%

Finally, we come to the plot of the XGBoost tree diagram,
see Fig. 15. This diagram looks different from the rest
due to the required processing and necessary visualization
differences required by XGBoost. There is, unfortunately, no
way to currently use graphviz.

There are a few improvements we could make to help
increase the accuracy of our XGBoost model. Namely, we
can increase the range of potential hyperparameter values
and use the computationally expensive GridSearchCV to
test all potential values instead of RandomizedSearchCV.
Additionally, we could use Bayesian optimization techniques
such as Sequential Model-Based Optimization for General
Algorithm Configuration (SMAC) or an Autoencoder to
improve overall accuracy and efficiency.

Fig. 15. Visualizing Sample XGBoosting Tree

VI. FUTURE DIRECTIONS

While the journey began by learning to crawl, currently
we are still learning to walk through our deep, dark forest.
Achieving success in mastering the many ensemble methods
requires developing many different skills, and it would be
an absolute tragedy if we did not even attempt to develop
some of them. Ideally, in the near-term, we will continue
developing the existing systems — specifically Isolation
Forests, Random Forests, XGBoosting, and other potential
alternatives. These methods will continue to be developed in
the near-term to better understand why they are successful
and what can be done to reduce errors to further improve
scoring accuracy. In the long term, we could move into neural
networks - specifically incorporating softmax to classify only
those forecasts that have a score above a certain threshold
- this advancement is predicted to significantly improve our
accuracy.

One final avenue worth pursuing is to develop ensemble
models that leverage the power of other machine learning
algorithms - such as introducing an autoencoder to the
XGBoost algorithm.

VII. CONCLUSION

The purpose of this project was to identify appropriate
methods which can predict with reasonable accuracy the
price of used automobiles from a representative data set.
Employing several well-known machine learning methods,
namely LASSO, Isolated Forests, Decision Trees, Random
Forests, Boosting, and XGBoost we have achieved an

impressive 93.1520% score on an out-of-sample test set.

By applying each of the models to our data set, we have
identified that the model which consistently achieved the
highest accuracy was the XGBoosting model.

To accomplish this, we first started by applying a wide
variety of outlier detection and feature engineering techniques
to our dataset in order to derive as much relevant information
as possible from the attributes provided. We then used
LASSO to preform dimensionality reduction. XGBoost was
then used on top of this final step to achieve near perfect
scores on our test set — showing promising evidence that it
will be ideal for use in an actual working environment.

REFERENCES

[1] L. Wood. United states used car market volume report 2020: Market is
forecasted to be more than $885 billion by the end of 2026. [Online].
Available: https://bit.ly/3vvMBD0

[2] T. James. Used vehicle market poised for record sales in 2019,
according to new report from edmunds. [Online]. Available:
https://www.edmunds.com/industry/press/used-vehicle-market-poised-
for-record-sales-in-2019-according-to-new-report-from-edmunds.html

[3] M. Bentenrieder and S. Coccorullo. A better approach to
residual value. [Online]. Available: https://www.oliverwyman.com/our-
expertise/insights/2019/jun/a-better-approach-to-residual-value.html

[4] S. Agarwal. Understanding the data science lifecycle. [Online]. Available:
http://sudeep.co/data-science/Understanding-the-Data-Science-Lifecycle/

[5] A. Géron, Hands-on Machine Learning with Scikit-Learn, Keras, and
TensorFlow. O’Reilly Media, Inc, 2019.

[6] Miro. Isolation forest image. [Online]. Available:
https://miro.medium.com/max/875/0*0GuMixLdSZo3V3Nh.

