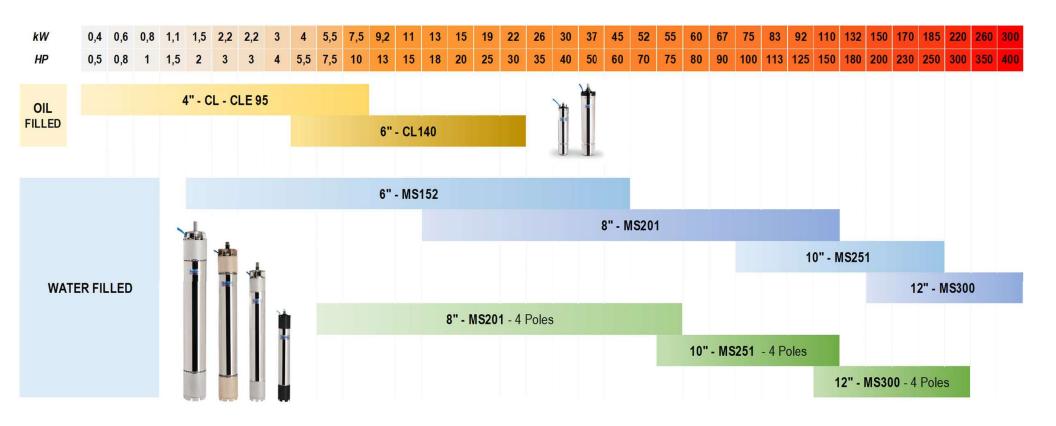
SAERSUBMERSIBLE MOTORS

SUBMERSIBLE MOTORS - RANGE4" 6" 8" 10" 12"

2-4 poles 50-60Hz


SAER® Elettropompe S.p.A. Any unauthorized use, such as distributing, copying, modifying, or reprinting, is not permitted. This document is not intended for reproduction or distribution. To obtain permission to reproduce or distribute this document contact info@saer.it

SAER - SUBMERSIBLE MOTORS 210528 - EN

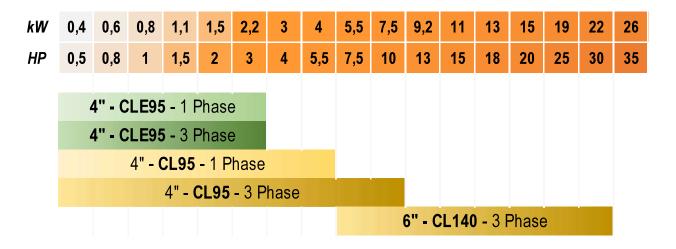
Submersible Motors

RANGE Overview

Oil Filled

SUBMERSIBLE MOTORS

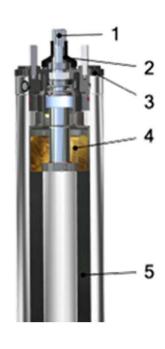
CL - Oil Filled SUBMERSIBLE MOTORS 4" 6" 50-60Hz


Range

Oil 4" & 6"

CL Range

- Re-windable motor
- NEMA 4" & 6" coupling
- VFD use compliant
- IP68 class F insulation
- Sing.ph PSC motor
- Vertical & Horizontal inst.
- Max water temp 35°C
- Quick connector


*Available in opposite direction upon request

SAER® Elettropompe S.p.A. Any unauthorized use, such as distributing, copying, modifying, or reprinting, is not permitted. This document is not intended for reproduction or distribution. To obtain permission to reproduce or distribute this document contact info@saer.it

SAER - SUBMERSIBLE MOTORS 210528 - EN

CL Range - main features

Oil 4" & 6"

- **1.Shaft** in Stainless Steel AlSI431 (1.4057) CLXV Shaft in Duplex Stainless Steel (shaft protrusion)
- 2. Triple **seal system**: bi-directional mechanical seal + radial seal + sand-guard
- 3. Coupling dimensions according to **NEMA** standards Plug wire connection
- **4.Atoxic Oil** NSF approved, FDA compliant
- 5. High **thermal tolerance** up to 35°C (25°C CLE) and 3~ motors suitable for VFD

CL Range - main features

Oil 4" & 6"

- 6. Axial thrust oversized bearings NSK or SKF, up to 6,5 kN (18 kN CL140) Double bearing comes as standard over 2,2kW (CL95).
- 7. Metallic thrust bearing seat
- 8. Compensation system: rubber membrane
- 9. Compensation spring for motors starting from 1,5 HP

	Thrust Bearing							
LE95	CL95	CL140	HP	kW				
			0,5	0,37				
			0,75	0,55				
5 kN	3 kN		1	0,75				
JAIN	JAN		1,5	1,1				
			2	1,5				
			3	2,2				
kN			3	2,2				
	6,5 kN		4	3				
			5,5	4				
			7,5	5,5				
		10 kN	10	7,5				
		IO KIN	12,5	9,2				
			15	11				
			17,5	13				
			20	15				
		18 kN	25	18,5				
			30	22				

Filling Oil

Oil 4" & 6"

This product is acceptable as a lubricant with incidental food contact (H1) for use in and around food processing areas. Such compounds may be used on food processing equipment as a protective anti-rust film, as a release agent on gaskets or seals of tank closures, and as a lubricant for machine parts and equipment in locations in which there is a potential exposure of the lubricated part to food.

Marcol 82 meets the requirements of the following specifications:

- USA FDA, 21 CFR 172.878 and 21 CFR 178.3620(a), White Mineral Oil
- US Pharmacopoeia/National Formulary, USP 24/NF 19, Light Mineral Oil
- USDA (Department of Agriculture), USDA H1 approved
- European Pharmacopoeia, 4th Edition 2002, Light Liquid Paraffin
- Japanese Pharmacopoeia, JPXIV, Light Liquid Paraffin
- British Pharmacopoeia, BP 2001, Light Liquid Paraffin

EXXON MOBIL CORPORATION ROOM 4111J 80 BELL STREET HOUSTON, TX 77052 UNITED STATES

Category Code: H1 NSF Registration No. 123208

NSF has processed the application for Registration of MARCOL 82 to the NS Pospiretary Substances and Nonfood Compounds (2003), which are available Nenfood Compounds Registration Program is a continuation of the USDA pri pagans, which is based on inceiting regulatory requirements including FDA 2 injection and ableding.

This product is acceptable as a lubricant with incidental food contact (III precessing and such compounds may be used on food processing equipment of the product of the pr

NSF Registration of this product is current when the NSF Registration Numbo Registration Mark appear on the NSF-approved product label, and the register the current NSF White Book Listing of Nonfood Compounds at the NSF web The NSF Registration Mark can be downloaded from the NSF website, at htp://www.nsf.org/mark/download marks.html.

Registration status may be verified at any time via the NSF web site, at http://formulation.or-label, without the prior written consent of NSF, will void regis

1. men Duntato

ExonMobil

Lubricants & Specialties

Marcol 82 Product Description

Applications

Murcol 82 is widely used as a component of a great variety of cosmetic products:

- Emollients and moisturisers (cleansing oils and milks, body lotions and creams, suntan lotions and milk, lipsticks

up powders, ...)

- Eaby products (shampoos, baby oils, bath oils)

Properties & Specifications

Marcol 82 meets the requirements of the following specifications:
- USA FDA, 21 CFR 172.878 and 21 CFR 173.820(a), White Mine
- USA FMA, 22 CFR 173.820(a), White Mine
- USP harmacopoenia-National Formaday, USP 24MF 19, Light Mr
- Operationant of Agriculture), USDA H1 approved
- in Pharmacopoenia, MPZOI, Light Liguid Paraffin
- To Jese Pharmacopoenia, JPXVI, Light Liguid Paraffin
- Bridish Pharmacopoenia, JPXVI (Light Light Paraffin
- Selfish Pharmacopoenia, JPZOI), Light Light Qaraffin

INCI name (Furnne): Paraffinum Liquidum

Test Method	Typical	Min	Max
Visual		Clear & Bright	
Olfactory		Absent	
ASTM D 156		+ 30	
ASTM D 445		13.5	16.5
ASTM D 445	3.5		
Calculated	29		
Calculated		20	25
ASTM D 4052		843	855
ASTM D 4052		840	852
ASTM D 4052		0.844	0.856
ASTM D 97			-6
ASTM D 92		180	
ASTM D 1218		1.462	1.468
ASTM D 2140	67/33/0		
ASTM D 1533			35

Versions

0il 4"

CL95-S

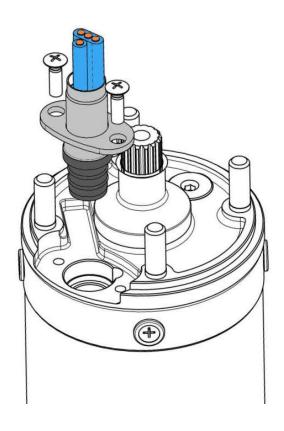
Brass

CL95-0-S

AISI 304

CLX95-S

AISI 316



Power Connector

Oil 4"

All 4" motors are equipped with **Power connector** for:

- Easier and quicker installation
- Block oil infiltration into cable
- Quick maintainance/replacement

50m

50m

Attention to motor power and distance to avoid voltage drop

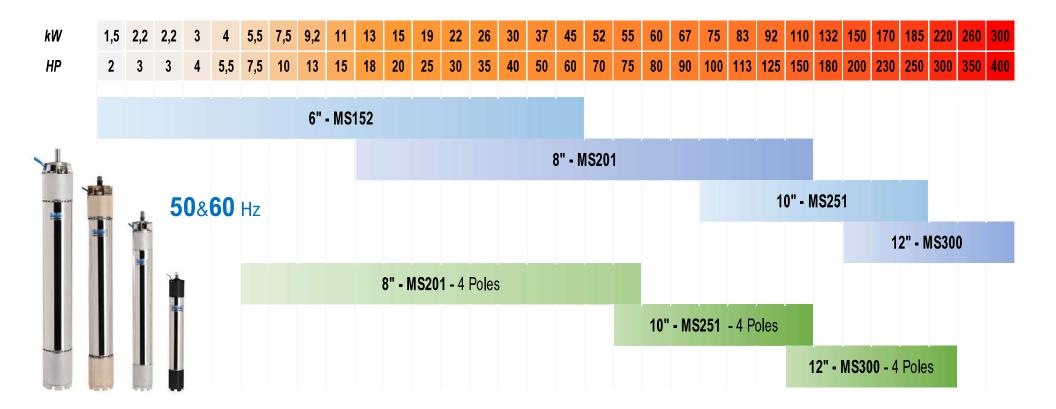
Water Filled

SUBMERSIBLE MOTORS

MS - Water Filled SUBMERSIBLE MOTORS 6" 8" 10" 12" 50-60Hz

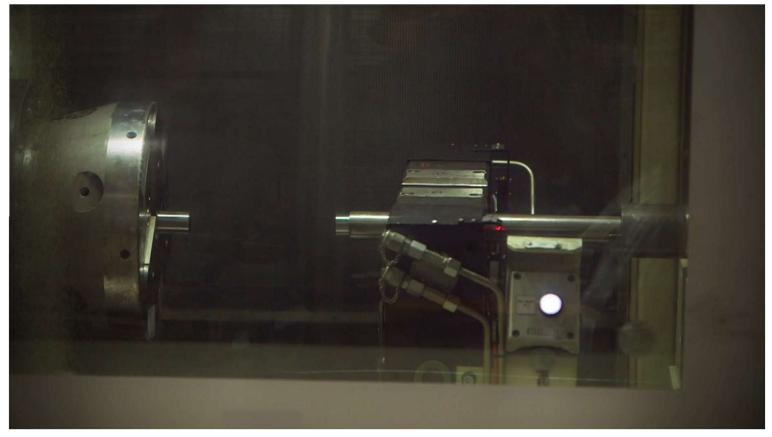
MS – Water filled Motors Range

MS SERIES 6", 8", 10", 12", up to 400 HP


- Water Filled motors
- Completely Re-windable
- **PVC** winding (70°C- water up to 30°C)
- **PE+PA** winding (95°C –water up to 50°C & VFD use).
- Kingsbury Thrust Bearings Bi-directional
- Double Mechanical Seal
- 50 Hz & 60 Hz
- 2 & 4 poles

MS – Water filled Motors Range

Technical Construction



		Th	rust Bearin	g		
	MS152	MS201	MS251	MS300	HP	kW
					2	1,5
					3	2,2
					4	3
	10 kN				5,5	4
	IO KIN				7,5	5,5
					10 13	7,5 9,2
					15	9,2
					18	13
					20	15
						22
	18 kN				30 40	30
		45 kN				
					60	45
					80	60
i	9				100	75
7			70 kN		150	110
4					200	150
	V				250	185
				70 kN	300	220
		1			350	260
	A CONTRACTOR				400	300

Technical Construction

Shaft Friction welding

Special Versions

Available in different metallurgies:

- CAST IRON EN-GJL-250
- SS AISI 316
- BRONZE G-CuSn10
- DUPLEX SS
- ... Super Duplex SS (PREN > 40)

Metallurgies

Corrosion strenght

Attention: temperature affects very much the metal alloy strenght to corrosion.

Corrosion	Ni-Al Br	Duplex SS	Super Duplex SS	316 SS	Superauste nitic SS	Ni-Resist SS
General	9	10	10	10	10	8
Pitting	10	5	9	4	9	10
Crevice	8	4	8	3	8	10
Erosion	8	10	10	10	10	6
Cavitation	8	8	8	8	8	5
Stress	10	9	9	8	8	5
Polluted Sea Water	4	5	9	4	9	7
Fatigue	9	9	9	6	6	6
TOTAL SCORE	66	60	72	53	68	57

source: Dr J W Oldfield and Dr G L Masters, Collation of Data Comparing Properties of Aluminium Bronze With Cast Stainless Steels and Ni-Resist in Offshore Sea Water Environments 1996

Super Duplex over 1000 ppm

AISI 316 1000 ppm Bronze

AISI 304 - 500 ppm

Cast Iron

200

... max clorides % at 20°C

MS – Water filled Motors Motor Windings

Suitable for VFD use

VOLTAGE FLUCTUATION

MAX TOLERANCE

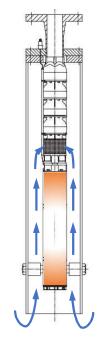
CL95 +6 -6 % CL140 +6 -10 % MS-all +10 -10 %

MAX TOLERANCE

to guarantee performance and efficiency:

+5 -5 % (IEC 60034)

STAR-DELTA


Submersible motors can be ordered with double cable exit (open windings) In order to be started with star-delta method

Max cooling water temperature

Based on winding (PVC or PE+PA) and water speed MS motors can cope with higher temperatures

SAER supplies cooling shell in different material

	Potenza nominate Rated power - Мощность		Massima temperatura dell'acqua di raffreddamento Max cooling water temperature Макслемпература охлаждающей жидкости							
			/40,5 /≤ì	0,5 ₌ (m/		V≥1 [m/s]				
	[kW] - [idBt]		PE+PA	Standard	PE+PA		PE+PA			
	≤9,2	35	55	40	60	45	65			
6" MS152	11 ÷ 26	30	45	35	50	40	55			
	30	25	40	30	45	35	50			
	37	1	40	1	45	1	50			
	45	V.	30	1	35	١	40			
	≤ 75	30	45	35	50	40	55			
8" MS201	83 ÷ 92	25	40	30	45	35	50			
110201	110	1	40	\	45	1	50			
	75 ÷ 110	30	45	35	50	40	55			
10" MS251	132 ÷ 150	25	40	30	45	45	50			
	170 ± 185	15	35	20	40	25	45			
12"	150 ÷ 185	1	35	1	40	\	45			
MS300	220 ÷ 300	1	30	\	35	1	40			

SAER® Elettropompe S.p.A. Any unauthorized use, such as distributing, copying, modifying, or reprinting, is not permitted. This document is not intended for reproduction or distribution. To obtain permission to reproduce or distribute this document contact info@saer.it

SAER - SUBMERSIBLE MOTORS 210528 - EN

Accessories

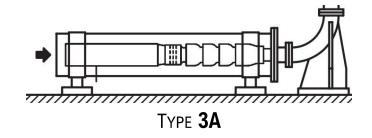
COOLING SHROUD

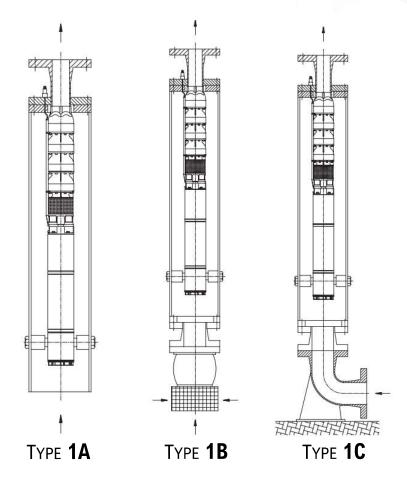
Cooling water flow must be

0.15 m/s min

3 m/s max

in order to secure proper cooling to the motor


$$v = \frac{Q \times 354}{(D^2 - d^2)}$$


v = water speed (m/s)

Q = flow at DP (m3/h)

D = shroud inner diameter (mm)

d = motor outer diameter (mm)

6" Submersible Motors

Oil and Water filled - comparison

MS WATER FILLED RE-WINDABLE

Winding: Copper winding with PVC or PE+PA insulation

Filling: mono-propylene glycole and water.

Advantages:

- Motor fully repairable (motor replacement not frequent)
- Water infiltration no problem
- Heavy duty construction (kingsbury thrust bearing)
- Wide range of sizes and metallurgies

Disadvantages:

- Re-winding needs expert operator

Winding: enamelled copper wire (same as surface motors)

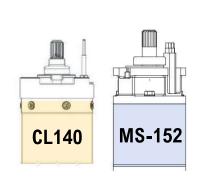
Filling: non-toxic oil (FDA approved) suitable for potable water

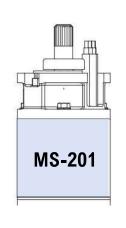
Advantages:

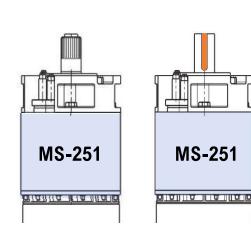
- Class F winding
- Motor fully repairable (same rewinding as normal el. motor)
- Commercial bearing for axial thrust
- Good price

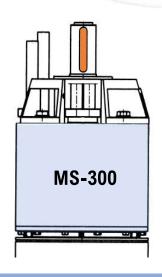
Disadvantages:

- Often oil is not desirable for potable applications non-toxic
- Water leaking will be a problem
- Standard applications
- Limited range and metallurgies


PE+PA wire (polyethylene with sheathing of polyamide)


Coupling


Standards



4" 6" 8" 10" 12"	4"	6"	8"	10"	12"
------------------	----	----	----	-----	-----

NEMA 4"

ANSI B92.1. cl-5

Z 14

NEMA 6"

ANSI B92.1. cl-5

Z 15

NEMA 8"

ANSI B92.1. cl-5

Z 23

ANSI B92.1.1970

Z 30 / key

key

VFD - inverter control

Reccomandations

Windings

- Water filled MS motors require PE+PA windings
- CL Oil filled are suitable

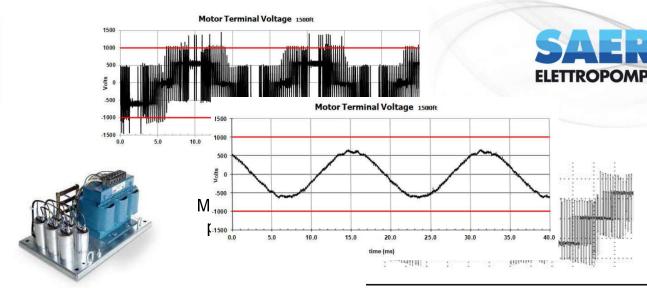
Max frequency NOT over motor rated frequency

Min frequency enough to guarantee water cooling of 0,1 m/s and NOT below 30Hz in order not to damage thrust bearing.

Start/stop ramp around 4 seconds (0 – 30Hz)

Max frequency variations per minute 8

VFD – inverter control

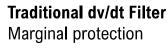

Sine Wave Filter

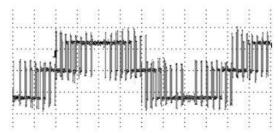
Motor

Motors controlled by VFD are subjected higher stresses and losses and especially vulnerable become premature failure when the cable lengths between VFD and motor are long.

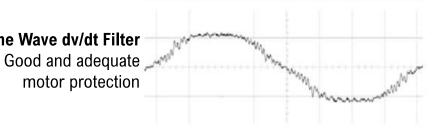
filters output Sine Inverter wave improve voltage quality.

Cable length ≤ 20 m




Filters and cable length

Cable length > 20 m


Applications in water can cause bigger stress on the windings and the motor insulation than applications in the air.

Tables of max cable lengths in VFD documentation are not valid for submersible motors.

Sine Wave dv/dt Filter Max.dU/dt

Insulation Filter Max.dU/dt Insulation Filter Upeakmax Upeakmax CL95, CL140 850 V 2000 V/µs 850 V 2000 V/µs standard None standard Sine wave filter 6" MS < 30kW PE + PA None 850 V 500 V/us PE +PA Sine wave filter 850 V 500 V/us 6"-8"-10"-12"MS PE + PA Sine wave filter 850 V 500 V/us PE +PA Sine wave filter 850 V 500 V/us

Filters must be sine wave type. Traditional du / dt filters are not effective in the protection of the submersible motors. Please consult the inverter supplier for more information.

Reccomandations

the passage of an electric

current through a conductor

Proper sizing ensures a suitable power supply to motor (voltage and current)

Parameters to consider:

Installation details 0

- Line rated voltage
- Type of starting
- Motor max current
- Motor power factor (cosφ)
- Distance to panel

Cable type

- Conductor material
- Single/multi core
- Insulation material

Cable installation

Installation method (laying conditions)


produces heat

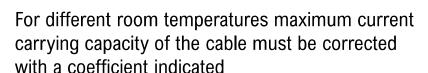
Joule law

- Ambient/soil temp
- Fluid temp
- Cable grouping/spacing
- IEC inst. Ref methods

B

§ c

D2


Ampacity and temperature

is the maximum current carrying capacities of a cable. This table apply for room temperatures of 30°C.



	Rated crass-section	Mo	x. cable capa	Resistance *	Reatance		
Type of cable	mm²	1 lines	2 lines	4 lines	R	X	
		A	A	A	Ω/Km	Ω/Km	
Quadripole	1,5	24	21	19	16,17	0,168	
Quadripole	2,5	33	29	26	9,70	0,155	
Quadripole	4	45	40	36	6,02	0,143	
Quadripole	6	58	51	46	4,01	0,135	
Quadripole	10	80	70	64	2,32	0,119	
Quadripole	16	107	94	86	1,47	0,112	
Quadripole	25	141	124	113	0,949	0,106	
Quadripole	35	176	155	141	0,674	0,101	
Unipolar	50	216	190	173	0,469	0,0779	
Unipolar	70	279	246	223	0,331	0,0751	
Unipolar	95	342	301	274	0,251	0,0762	
Unipolar	120	400	352	320	0,196	0,0740	
Unipolar	150	464	408	371	0,153	0,0745	
Unipolar	185	533	469	426	0,129	0,0742	
Unipolar	240	634	558	507	0,0974	0,0752	

AMBIENT TEMPERATURE	CORRECTION FACTOR
10	1,22
15	1,17
20	1,12
25	1,06
30)
35	0,94
40	0,87
45	0,79
50	0,71
55	0,61
60	0,50

^{*}Resistance is calculated at 75°C of inside temperature

Voltage Drop

Cable choice has to guarantee max voltage drop of 3% for correct motor operating

Several website give support in calculating **Ampacity** and **Volt drop**

$$\Delta V\% = 0.173 \cdot I \cdot L \cdot (R \cdot \cos \varphi + X \cdot \sin \varphi) / V$$

Star/delta starting

$$\Delta V\% = 0.116 \cdot I \cdot L \cdot (R \cdot \cos\varphi + X \cdot \sin\varphi) / V$$

I = rated current in Amperes

L = length of line in metres

 $cos \phi = power factor$

R, X = resistance and reactance of cable in ohms/metre

V = input voltage

Quick reference table

In order to simplify cable sizing SAER submersible pump catalog offers sizing tables quick reference.

According to starting method (DOL or Star-delta).

Example - DOL starting:

LXuii	.,,,,,	OL Otal till	9.															=0/		
100 CO 100 F	nominale xer of motor	Tensione nominale Rated voltage	Corrente nominale Rated current	Sezione	e del cavo (m	n²) - Cavi qua - Quadripola	dripolari		Se	zione del co able section	ovo (mm²) -	Cavi unipo	lari les			voltag	•			CAUGH.
Potenci Puissance nor Nenn	a nominal minale du mateur nleistung a nominal	Tencion nominal Tension nominale Nennspannung Tensão nominal	Corriente nominal Courant nominal Nennstrom Corrente nominal	Section of Section of Kab	del cable (mm lu câble (mm² velschnitt (mm²	2) - Cables cua 1 - Câbles gua 1 - Vierpolige 1 - Cabos qu	adripolares Idripolaires Kabel		Sect.	ion del cab ion du câble (abelschnitt io do cabo	le (mm²) - (e (mm²) - C (mm²) - Eir	Cables unip ables unipo pooliae Kab	olares laires sel		Seccion o Section o Kabe Secção do	lel cable (mi lu câble (mm elschnitt (mm cabo (em m	m²) - (Cables 1²) - (Câbles 1²) - (Einpolig 1m²) - (Caba	s unipolares unipolaires ge Kabel - 2 os unipolares	- 2 lineas en - 2 lineas en - 2 lignes en lineen in pai - 2 linhas er	paralelo) parallèle) rallel) n paralelo)
HP	kW	٧	Α	10	16	25	35	50	70	95	120	150	185	240	2x50	2x70	2x95	2x120	2x150	2x185
		220	135	1940	(743)	55*	75	107	147	186	230	273	313	386	214	294	373	460		
		240	124	-	-	65*	90	128	175	222	273	325	373	459	255	350	444			
50	37	380	78	69*	108	163	225	320	439											
		400	74	77*	119	181	249	355	486											
		415	71	82*	128	195	268	382												
		220	162	-	7-0	(# # 5)	62*	89	122	154	190	227	260	320	177	243	309	381	453	
		240	149	**	(340)	##S	74*	106	145	184	226	270	309	381	211	290	367	453		
60	45	380	94	-	89*	135	186	264	363	461										
		400	89	**	98*	149	206	293	402											
		415	86		106*	161	222	315	433											

The following tables define the maximum length of the cables depending on the power of the motors, input voltage, size of the cables.

Room temperature: 30°C

Cable internal temperature: 75°C

Installation form

Reccomandations

To be completed and kept for future references

Very useful in requesting assistance.

INSTALLATI	ON					
Duty point:	Flow:	Head:				
Date of instal	lation:		Operation time: Hour			
Incoming vol	tage:	V	Motor insulation re	veiete	unces.	Mohm
Running Amp	os.	A	Woldi ilisulation re	bioloid	ince	119,500,000
Max. tempera	ature of the pumped liquid	t .		257		°C
E	1 (0)	Well/casi	ng diameter	187		mm
100		Pipe diar	neter	- 63		mm
la la		Pipe mat	erial			
-	0	Nr. of Sti	cks of pipe			
0-		Static wa	ter level	#25 #35		m
0_	#	Dynamic	water level			m
0)—————————————————————————————————————		Spring as	Spring assist check valves		m type	
0	100		meters and types)	2	m type	
		No.	We Any	3	m type	100
0-4	E	Pump inl	et setting	- 00		m
01		Flow slee (if preser	eve diameter it)	Ĺ		mm
-		Case en	le		from m to	m
		CGSC CIT		2	from m to	m
0		Well dep	th			m
0						
1,25	86	1 Electri	c submersible pump	2	Cable holder clamps	
		3 Level	probes	4	Check valve	
		5 Pipe		6	Cable	
	l 	7 Contro	l box	8	Priming air valve	
	leve	9 Manor	neter	10	Gate valve	
	25.34	A Static	level	В	Dynamic level	

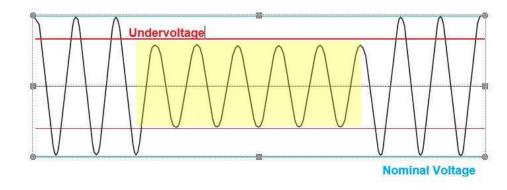
Notes:		

Re-windable vs Encapsulated

Differences

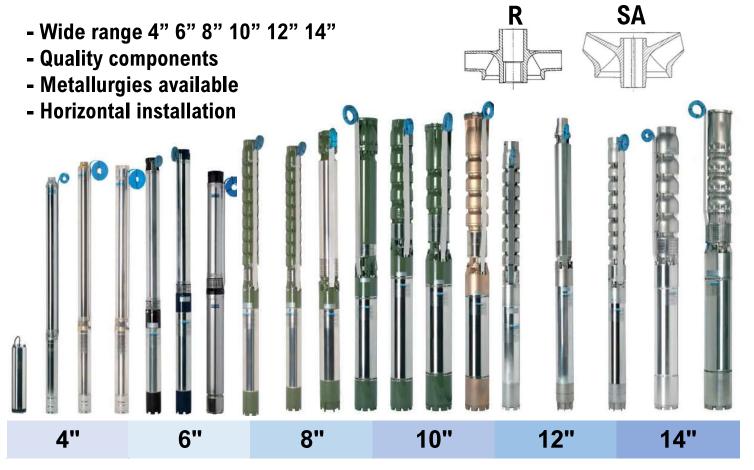
Re-windable

Re-windable motors offer as name says, the possibility to repair. Re-winding a motor is quite accurate operation and requires full access to stator caves to ease wire introduction.



SAER offers the **winding kit** or, in alternative, the motor stator fully winded for an easy and quick repair.

Voltage fluctuation

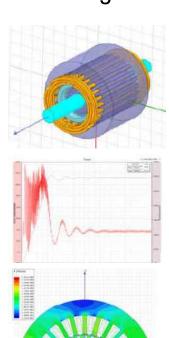

Voltage fluctations increase electrical current and therefore inner temperature. Should it protract in duration, windings will damage.

Re-windable motors, repairable, are preferable to **incapsulated** which have to be totally replaced.

SUBMERSIBLE BORE-HOLE

RANGE

100% SAER


MANUFACTURING

Bore-hole pump Range							
Q max 700 m ³ /h							
H max 860 m							
P ₂ max	300 kW						
Metallurgies							
Cast Iron							
Bro	nze						
AISI 316							
Super Duplex							

SAER Motor production

3D Design & Simulation - Production - Test

MT2 - MT4

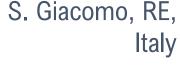
SURFACE MOTORS 2/4 POLES – B3 B5

SAER

Manufactures Surface motors:

- TEFC Normalized IEC 60034
- 50 60 Hz
- 2 and 4 poles
- 0,18 110 kW
- Mountings (EN 50347): **B3 B5 B14 B35**
- Efficiency class (IEC 60034-30): IE1, 2, 3, 4
- Single phase 1~ and three phases 3~

M	IEC	71	80	90	100	112	132	160	180	200	225	250	280
	IP	54*		55									
		*IP55 on request											


SAER

Motor factory

SAER MOTOR DIVISION S. Giacomo, RE,

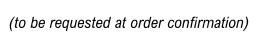
Accessories

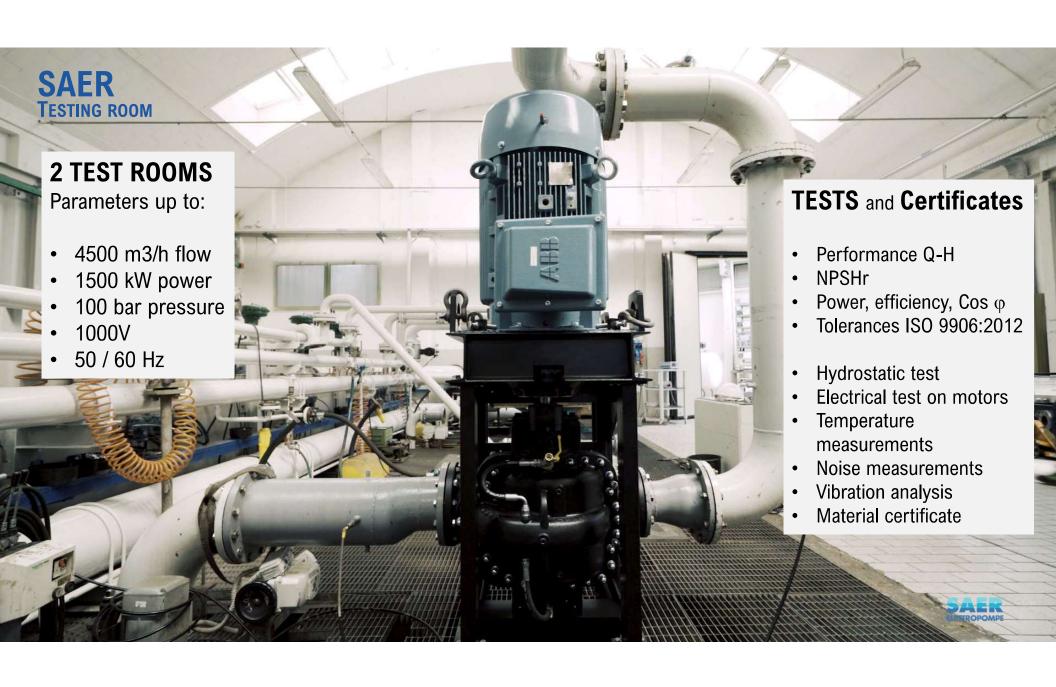
Control Panels & thermal sensors

SAER

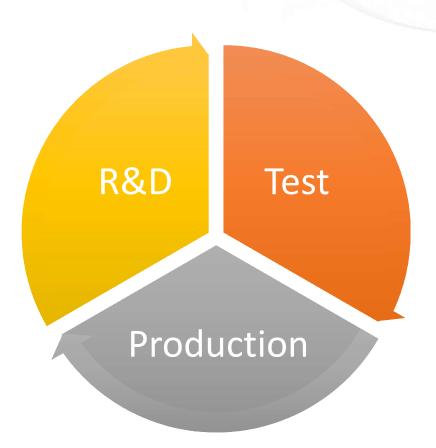
Offers a wide range of **control panel** for submersible and surface motors:

- Direct start (electromechanical or electronic)
- Star-delta
- Impedance start
- Soft start
- Inverter (VFD)




As well as thermal sensors

- PTC
- PT100
- anti-condensation heaters



SAER

100% QUALITY CONTROL PROCESS

The control of whole process
design to final tests
confers to SAER products
Top reliability & longest life span

