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Abstract: The Army replaced the Johnson Criteria with the Targeting Task Performance (TTP) 

metric circa 2001. However, the developers of the Night Vision Integrated Performance Model 

(NVIPM) decided to change the definition of a critical TTP input, and the modified metric has 

not been validated. Nonetheless, current peer reviewed articles refer to NVIPM as a robust 

target acquisition model and reference the original validation data in support of that model. 

This paper describes the change from TTP to NVIPM and summarizes the validation data 

supporting each metric. 

1. Introduction 

This paper describes the validation method and data supporting two different image quality 

metrics (IQM). The first IQM was the basis for the 2001 release of the Night Vision Thermal 

and Image Processing (NVThermIP) model [1-7]. The second IQM is the basis of the current 

Army target acquisition model, the Night Vision Integrated Performance Model (NVIPM) 

[8,9]. The Army model developers use the same name for both metrics. In this paper, the 

original metric is called Targeting Task Performance (TTP), and the modified metric is labeled 

NVIPM. 

The two metrics are confused in the literature, and validation data supporting the original 

metric is incorrectly associated with NVIPM [10,11]. The paper [12] described the difference 

in the metrics and presented a comparison of the accuracy of metric probability predictions for 

a limited set of validation data. This paper summarizes all the validation data supporting each 

metric. Also, the psychophysical and targeting task assumptions underlying the two metrics are 

described. 

The original TTP compared the frequency content of the displayed target to single 

frequency eye thresholds. When measuring eye thresholds at each display luminance, the sine 

wave pattern has enough periods to provide single-frequency threshold values. Also, the lit area 

on the display is big enough that the eye adapts to the display luminance. At left in Figure 1, 

the data from several individuals are averaged to create a Contrast Threshold Function (CTF) 

of thresholds versus spatial frequency at a variety of display luminances. At right, the observer 

is represented by the average CTF of several young observers with good eyesight, and the eye 

thresholds are compared to the Fourier spectrum of the targets.  

NVIPM uses thresholds measured using the sine wave patterns illustrated in Figure 2 at left. 

The CTF sine waves are limited to a specific angle subtended at the eye, and data are taken at 

many angles. Three angles are shown in the figure, but data are taken one pattern at a time and 

one subject at a time. 

In the NVIPM, the target is viewed on a display the size of the target. If the target angular 

size is smaller than ten or fifteen degrees, the CTF experiment subject’s eyes were not 

luminance  adapted, and that raises threshold values. Also, if there are fewer than seven sine 

wave periods, then single-frequency thresholds are not obtained using that experiment design.  
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In other words, the original TTP is a frequency domain model that uses eye thresholds 

established with luminance adapted eyes when viewing at least seven sine wave periods. 

NVIPM uses thresholds measured with non-luminance-adapted eyes viewing sine wave periods 

that fit on a display the size of the displayed target image. The reason for the change has not 

been explained. 

Both TTP and NVIPM generate CTF values using a numerical algorithm published by 

Barten [13].When the developers of NVIPM argue that the TTP metric does not use Barten’s 

CTF algorithm correctly, we cite Beaton’s analysis stating that Barten’s algorithm generates 

single-frequency thresholds if a wide display angle is input, and Beaton recommends that 

algorithm because it is both accurate and easy to use [14].   

The TTP metric uses Barten’s CTF numerical algorithm with a wide-angle input to generate 

single frequency CTF values. Also, Barten’s numerical approximation of the visual cortex 

spatial filter channels is used in TTP metric calculations, but his IQM metric and other research 

are not. Whatever the reason that Barten used the CTF data of Carlson for his own research 

purposes [14], Barten’s CTF algorithm must be used with a wide-angle display input to generate 

the single frequency threshold values needed for the TTP algorithm. Again, the reason for doing 

otherwise has not been explained by the current Army researchers. 

Figures 3 and 4 show an example to illustrate TTP and NVIPM differences. The NVIPM 

metric has a different range dependence than the TTP IQM. Figure 3 shows metric values versus 

range, and Figure 4 shows PID when viewing a tactical vehicle target set through a spotting 

scope with 4.3-inch diameter aperture and 20 magnification. The target set has 0.24 contrast, 

and the atmosphere has 0.5 transmission per kilometer through aerosol. The two metrics 

generate different values given the same target set and range, and the behavior of PID versus 

range is not the same. 
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In the years between 2003 and 2008, that change was tested using the TTP data base and 

the accuracy of probability predictions were degraded. Only part of that validation exercise has 

been published, and that available data will be discussed in Section 5. Nonetheless, the angle 

of individual targets subtended at the observer’s eye is now input to Barten’s algorithm to 

calculate the metric values used in NVIPM.  

Section 2 describes the function of target acquisition models and the visual task used to test 

the efficacy of those models. Section 3 provides background on several subjects to simplify the 

discussion in Sections 4 and 5. The misstatements about the TTP noise model are corrected in 

the background section. Sections 4 and 5 describe the original TTP IQM and NVIPM validation 

data, respectively. Conclusions are in Section 6. 

 

2. The function of a target acquisition model and the visual task used for test 

An imaging sensor bought today will likely be used for the next three decades. That imager will 

be used by someone, somewhere in the world, to do some visual task. The cost, reliability, 

maintainability, weight, size, and power are all factors in a purchase decision, but performance 

is also a critical consideration. What do we mean by “performance” and how can it be 

evaluated?  

Figure 5 shows a person trying to identify an approaching tactical vehicle. Many factors 

affect the rendering of the target on the display, including the size and contrast of visual cues 

like the target silhouette, the atmosphere, the interplay of optics, detector, digital processing, 

and imager gain and level, plus the display blur, brightness, contrast, and glare. One imager 

might provide long range imaging under good contrast conditions but does not image when 

contrast drops, and another imager might provide moderate range target identification under all 



expected environmental conditions. We can only evaluate which imager best meets operational 

needs if we have a way of predicting imager behavior under diverse conditions against a variety 

of targets. That is, we need an IQM that predicts the effect of myriad factors on a person’s 

ability to visually understand scene details. 
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The ability to identify objects in a scene, the “what is it and where is it” capability of human 

vision, are higher order visual discriminations, and that image quality is quantified by the ability 

to perform those visual tasks.  

Figure 6 illustrates the probability of identification (PID) task. PID is the average 

probability that trained observers will identify the objects in a test set. A test set might include 

tactical vehicles, letters, faces, shapes, or other things. The experiments are always forced 

choice, and the subjects are trained and tested on their ability to identify all the objects in the 

test set. 

              
                         igure F6Fgllrsteat sFth FpeobabglgtyFofFgd ntgfgcatgonFtask. 

Note that PID is defined by the set, because we cannot quantify the difficulty of a PID task 

without specifying the alternatives. For example, Egypt was an ally of the United States in the 

conflict with Iraq, and Egypt operated both American M60 and Russian T62 tanks. Iraq fields 

Russian T72 tanks. The three tanks are shown in Figure 7. A friend verses foe decision would 

be more difficult if the Egyptians fielded T62 tanks than if they fielded the M60. 

As another example, consider a patient at the Optometrist’s getting a new prescription for 

glasses. The patient is asked to read the next smaller line on the eye chart. The first letter is an 

L; that is easy. The next letter is an M, also easy. But the third letter might be a C or maybe an 

O. If there were no O in the alphabet, the patient would read the next line, but that would not 

make his or her eyesight better. The probability of identifying the letter C increases because the 

absence of the letter O makes the visual task easier. 



Figure 7 shows three aspects each of eight tactical tracked vehicles used in a metric 

validation field test [4]. Note that the T62 and T72 look alike but are different than the M60 

even though all are tanks. The M113 is a box, and it looks like no other vehicle in the eight-

vehicle set. Figure 8 shows the PID versus range curve for one imager configuration. The PID 

drops to 0.9 at close range because some vehicles like the T62 and T72 Russian tanks look alike 

at most aspects, and they get confused. At mid-range, some aspects of other vehicles look 

somewhat alike, and PID value drops. At long range, the little M113 has a high PID, presumably 

because of its box shape. 

                          

                                                        
Figure 7 shows the three aspects of eight vehicles used in a field test. Note that some vehicles look alike, and others have 

a unique shape. 

The visual cues that differentiate each tracked vehicle vary from vehicle to vehicle and 

aspect to aspect. Fender shapes are different, the thermal heat patterns from engine, exhaust, 

and road wheels varies from vehicle to vehicle, track and wheel configurations vary, hatch 

shape and locations are different between vehicles, and so is the location of a gun barrel, if 

present. PID range is determined by the fraction of the set visual cues identified at each range. 

The “target signature” is the average size and contrast of the visual cues for the entire target 

set. The vehicles are distinguished by a diverse variety of visual cues associated with individual 

vehicle aspects. PID is the average probability for the complete set; the PID for tactical vehicles 

does not apply to each or any member of the target set. 
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The character set in Figure 9 is also a diverse target set because the characters vary in size 

and contrast. The character set in Figure 5 can be represented by a Normal Distribution with an 

average size and contrast. Clearly, the PID for the Figure 5 target set does not apply to each 

member of the set. 
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Figure 10 shows a tank receding in range from a thermal imager. The red squares represent 

photo detector pixel instantaneous field of view. As range increases, the tank becomes angularly 

smaller in the imager field of view and therefore smaller on the display, fewer and fewer pixels 

intersect the vehicle, and the frequency content of visual cues transitions to higher and higher 

spatial frequencies within the camera electronics.  
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The signature of a target set with diverse discrimination cues is represented by a Normal 

Distribution with average size and contrast. As the set recedes in range, the number of 

discrimination cues that are visible through the camera decreases and therefore PID for the set 

decreases. 

On the other hand, the signature for the Figure 11 symbol set is the Fourier Transform of 

one rectangle. Since the characters get smaller on the display as range increases, the Fourier 

Transform of the rectangle is transformed into imager angle space and is range dependent. In 

that case, we know the spatial frequency content of the discrimination cue and should be able 

to predict PID. Again, the PID is the average for the set, but in this case, PID also applies to 

each member of the set. 
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The visual cues that discriminate faces do not have the shape and size diversity of the 

tactical vehicle set, and the visual cues for facial discrimination cannot be treated as a Normal 

Distribution. The Fourier Transform of a representative face must be included in the TTP 

calculation, because we know that the facial discrimination cues reside within that frequency 

spectrum. When the target set consists of look-alike objects, then PID versus range depends on 

the camera rendering that specific type of object, and an example Fourier spectrum must be 

included in the scene-to-display Fourier Domain Transfer Function.  



 

3. Background topics 

3.1 Modeling video cameras 

This section provides background for the later discussion of TTP versus NVIPM treatment of 

imager noise.  

Figure 12 shows the layout of one image intensifier ocular. Scene light is amplified and 

presented almost instantaneously to the eye, and that allows our eyes to view the scene in a 

normal, naked-eye fashion. It is true that the I2 adds noise and blur and limits field of view, but 

the primary effect is a brighter scene so that we can see on a dark night. 

                         

                             Figure 12 shows the components in one image intensifier ocular. 

Both movies and video, whether television or computer video, image the scene quite 

differently than image intensifiers, because they depend on what psychophysicists call smooth 

apparent motion [24]. Figure 13 shows a strip of film. When placed in a projector, the first 

picture, a snapshot of the scene, is moved into place while the projector light is covered by a 

shutter. Once the movie frame is in place and film motion has stopped, the shutter is opened, 

and the static scene is projected onto the movie screen. Then the shutter is closed, and the next 

movie frame is moved into place.  

                    

              

Figure 13. A strip of film is a series of still pictures. When presented in time sequence, however, the eye sees 

smooth apparent motion. 

Apparent motion refers to the perceptual phenomenon where still images displayed in rapid 

succession are perceived as moving. The eye executes smooth ocular pursuit of the statically 

projected pictures, and we perceive smooth motion of the car. 

Video also depends on smooth apparent motion. See Figure 14. Video is a series of 

snapshots presented 1/60th of a second apart. What the eye sees is smooth apparent motion of 

the car across the display.  



                      

                 Figure 14. Video, like film, depends on smooth apparent motion. 

Smooth apparent motion requires gathering a series of still pictures, and each picture must 

be of the quality desired in the final image. If the scene moves relative to the camera during 

exposure, that causes blur. Also, because the eye fixation point is moving smoothly across the 

display, if the picture presented on the display is held on for too long, then the scene is blurred 

even if the picture is sharp.  

3.2 Predicting the effect of aliasing on target identification 

The Aliasing as Noise (AAN) experiments modeled ten imager designs at six ranges [15,16]. The AAN 

experiments provided data supporting TTP validation. Further, display viewing distance was controlled 

during the AAN series of experiments.  

The NVIPM uses an early version of sampling correction [3,17]. The first set of sampling experiments occurred 

before we had characterized the displays for perception experiments. Therefore, targets were displayed like the 

one shown in Figure 15; all the targets were placed at close range. The problem with our first experiment was 

that the visual cues that differentiate the target set vehicles were not aliased. Only unimportant target 

details like bolts on the hatch were aliased. The position of road wheels, fender and hatch shapes, heat 

distribution from the engine and exhaust, those visual cues were not aliased. We incorrectly concluded 

that in-band aliasing had no effect on imagery interpretation. 

                                       
              Figure 15. In the Equivalent Blur experiment, all targets were placed at close range. 

After the displays were properly characterized, additional experiments were performed with 

the targets realistically sized on the display by placing them at longer ranges, and the results are 

shown in the Figure 16 graphs [15,16]. The graphs show PID with no sampling correction (NC), 

correction using the Equivalent Blur (EB) model [17], and PID correction using the AAN model. 

Figure 16 show four of the ten imager designs modeled and illustrate the accuracy of AAN 

predictions. 

Note that aliasing is generated over the target area, and that normalizing the aliasing noise 

requires inputting the actual presented area of the target. The TTP model does not depend on target 

area unless aliasing is present. 



                    
                               Figure 16. The plots shows PID for no correction (NC), EB, and AAN. 

 

3.3 Fourier Domain representation of target signatures. 

Diverse and specific target sets were described earlier in this paper; see Figures 9 and 11. When 

the target set consists of look-alike objects, the original TTP metric is calculated using the 

Fourier Transform of a set member. That is, for a set of faces or characters or shapes, the Fourier 

Transform of a set member is included in the TTP calculation, and the scene-to-display Transfer 

Function includes the Fourier Transform of a set member.  

For diverse visual cue target sets, the TTP metric uses root of the sum of squares (RSS) 

averaged over the target set. It appears that NVIPM uses area weighted average temperature 

(AWAT) [9]. RSS for thermal and reflective images are defied by Equations 1 and 2, 

respectively. AWAT is defined as the area weighted temperature of the target minus the area 

weighted temperature of the local background.  
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All reflective contrast values in this paper are modulation contrast consistent with a Fourier Domain 

model. For thermal contrast, ΔT is Effective Blackbody Temperature (EBT) in Kelvin (K). EBT is 

defined as the imager in-spectral-band-flux generated by the rate of change of Plank’s Equation at 300 

K; see Equation 3 where L is Plank’s blackbody equation, Γ is target contrast in Kelvin (K), T is 

temperature in K, and λ is wavelength in meters. Although ΔT is called temperature, it is of course a 

radiometric unit and not the temperature of the viewed object. For both thermal and reflective contrast, 

the mean difference of the target area and an equal background area surrounding the target are RSS 

with the standard deviation σtgt of the target. 
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Plots of RSS and AWAT contrasts for twelve aspects each of twelve tactical vehicles are 

shown in Figure 17. AWAT values are always less than RSS, and on occasion, AWAT contrast 

can be near zero when the target is easily visible. Figure 18 shows tracked vehicles with high 

and low RSS contrast and high and low AWAT contrast.  

 

                     

              Figure 17. Plot of RSS and AWAT contrasts for 12 vehicle/12 aspect target set. 

                           

Figure 18. The maximum and minimum contrast vehicles with RSS at top and AWAT bottom. 

The developers of NVIPM have not stated why they switched from RSS to AWAT. TTP 

uses RSS, and that decision was based on a mutual agreement with the authors of the 

Johnson/Ratches model and NVThermIP [3] and based on the strong recommendation of war 

game representatives. All TTP validation data is based either on RSS contrast or using the 

Fourier Transform of a set object.  

 

3.4 Empirically derived task difficulty parameter 

The difficulty of identifying one member of a target set depends on how much that object looks 

like other members of the set. The task difficulty parameter is established empirically by 

performing a PID experiment and curve fitting metric values to PID data. Once established, the 

same parameter value is used for all PID experiments, except the parameter values are different 

for emissive and reflective imagery. The parameters are called N50 when using the Johnson 

model, V50 when using either the NVThermIP or NVIPM models, and Φ84 when using the 

TTP in journal literature. 

3.5 The functional relationship between metric values and probability. 

The Central Limit Theorem states that, regardless of the underlying statistics, if there are many 

contributing factors to a statistical outcome, then the probability is related to the metric value 



by the error function erf. It therefore seems logical to assume that PID should be functionally 

related to TTP IQM values by the erf function.  

TTP metric value ϕ is related to PID by erf. See Equation 4 and Figure 19.  
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           Figure 19 showing area integrated to get erf value. 

NVIPM uses Equation 5 to calculate PID from metric values (V).  
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3.6 Misrepresentation of TTP in Night Vision Integrated Performance Model literature 

NVIPM literature has described many aspects of the original TTP metric incorrectly, and 

NVIPM has a wide audience. It seems prudent to dispel misconceptions before describing the 

TTP metric. 

For example, the NVIPM developers state that TTP uses different noise parameters in the 

thermal and reflective models. The thermal model treats noise in the frequency domain and the 

reflective model treats noise in the time domain, so the values of the TTP noise parameter are 

different because the units are different.  

We RSS eye noise and detector noise as shown in Equation 6 
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For reflective imagers, the signal Eav photo electrons per second is integrated for an eye 

integration time teye. 

   av eyesignal E t=       7 

and the noise is 
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For thermal imagers, the signal and noise are: 
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The signal to noise is the same, namely √(Eavteye), but we RSS noise and not signal to noise. In our reflective 

equations,  

  169.6photon proportional eyet = =     11 

and there is no explicit dependence on eye integration time in those equation. For thermal, however,  

  det 862ectivity proportional = =      12 

and explicit teye dependence is in the thermal imager metric equations. The proportionality constant is 

the same, but the reflective equations count photons while the thermal equations model current. The 

reflective and thermal models use different units and treat eye noise differently mathematically, and 

that requires a different value for the proportionality constant when calculating the TTP metric value. 

If the noise parameters representing the eye were different, that would be a major flaw, but they 

are not. The need for different values for the reflective and thermal models was explained in a 

report included with the NVThermIP computer model [3]. 

Another example of misinformation about the TTP metric is that the NVIPM documentation 

states that we do not differentiate between static and dynamic video noise; refer to the first line 

on page 17260 of [7] and to Equation 13 to understand how we treat the two differently. If Vstatic 

is single frame video metricteye is eye integration time in seconds, and Frate is video frame rate 

per second, then 

dynamic static eye rateV V t F=        13                  

NVIPM literature states that TTP does not correct for the number of eyes used to view the 

display, and that is incorrect. TTP increases CTF by the square root of two when only one eye 

is used. 

NVIPM literature states that TTP do not predict the effect of noise on the Contrast 

Threshold Function correctly, but [7] describes TTP predictions of empirical data collected by 

independent researchers, and the comparisons are accurate. Some of the comparisons are shown 

in Section 4. 

NVIPM developers suggest that we have ignored retinal quantal noise. Not at all, we just 

do not agree with their treatment. The retinal photon noise is in the TTP noise model once and 

in the NVIPM model twice. That issue is addressed further in Sections 4 and 5. In [9], current 

Army researchers state that adding a noise term prior to the visual cortex hurts rather than helps 

model predictive accuracy. The authors find that result illogical and add the retina photon noise 

term regardless. That result is logical if one realizes that the photon noise is already included 

in the CTF threshold values. 

The NVIPM documentation suggests that the TTP metric has trouble with modeling target 

images that subtend different angles at the observer’s eye. The data they showed, however, was 

only a fraction of the experimental data, and the model curve was not generated using TTP. In 



other words, they did not show the model to data comparison available in the TTP literature. 

TTP has accurately predicted PID for over forty target display angles ranging from 0.9 to 40 

degrees, and all those instances are documented in journal literature published prior to NVIPM 

release.  

NVIPM authors claim that their Fig. 21 shows the poor predictive accuracy of the old TTP 

noise model. There are three problems with presenting that figure and making that statement. 

First, if the two-hand, hand-held target set is diverse, the authors of [9] should use the RSS 

contrast with the TTP model. Second, the two-hand, hand-help target set is not diverse. True, 

that is a judgement based on just looking, but diverse target sets have visual discrimination cues 

that are Normally distributed in size and contrast; few target sets are diverse. Third, those 

authors have made statements in earlier conferences and conference papers that they use their 

own version of the TTP noise model, not the model in the TTP literature [7]. The legacy 

NVThermIP model incorporated into NVIPM is not the NVThermIP model and cannot be used 

to compare the two metrics.                    

 

4. Targeting Task Performance calculation and validation 

The TTP IQM is calculated using either Eq. 14 or Eq. 15 where ξ is spatial frequency in imager 

angle space and ξcut and ξlow define integration limits where CTFsys is less than target RSS 

contrast (CTGT). See [7] for the parameters needed to calculate CTFsys. The CTFsys algorithm 

requires calculating the imager transfer function and then applying the display modulation 

transfer function (MTF), eye MTF, and visual cortex filter MTF to the imager noise. Supplying 

those details here would not significantly contribute to the current discussion. 

The second version of TTP is found in the later references. Both equations return the same 

metric values except when the displayed image is barely visible due to glare. CTF is
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In these equations, ϕ is the TTP IQM value in imager angle space. The function δ of the 

ratio of CTGT to CTFsys is the probability that the sine wave at spatial frequency ξ is visible. The 

δ function is derived from CTF experiment data. A similar TTP value is calculated for vertical, 

and the geometric mean used to calculate the final ϕ. See [7] for the parameters and formulas 

needed to calculate CTFsys. 

The viewing scenario is foveating and fixating display details at mid-mesopic to photopic 

luminance. Even on dark nights, people do not set display luminance below 0.1 footlamberts 

(fL), and cones mediate vision down to about 3E-4 fL. We assume that the observer is fixating 

the target image and seeing the color of the display phosphor, and that describes cone vision. 

TTP is a cone model, and the only dependence on luminance enters TTP calculations via the 

observers CTF. To be clear, if the noise parameters in the TTP calculation changed based on 

either target signatures or imager type, that would be considered a fatal flaw in the IQM.  

The authors of [9] state that the TTP does not distinguish static from dynamic video, and 

that is not the case. As stated in [7], a correction factor √(0.04 Frame rate) is applied to the 

video noise. The 0.04 eye integration time is based on [18], and our understanding of the 



psychophysical literature is that there is no evidence that cones change temporal behavior until 

they no longer strongly mediate vision at about 3E-4 fL.  

Predicting the effect of noise on CTF uses the engineering model of the eye shown in Figure 

20. As showed by that figure, the MTF of the display, eyeball, and cortical bandpass filters are 

applied to the camera signal prior to the root-of-the-sum-of-squares (RSS) of display and 

cortical noise. The figure shows the single point where noise is injected into the visual signal. 

Based on the experiments of Nagaraja [19] and others [20-22], the effect of noise can be 

explained by assuming the brain is taking the RSS of display noise and some internal eye noise. 

Further, for display luminance above the de-Vries Rose Law region and for foveated and fixated 

targets, the RSS of eye and display noises occurs in the visual cortex. 

             
                 Figure 20. Engineering model showing blurring of image signal before RSS with cortical noise. 

We do not include retinal photon noise. The TTP noise model modifies the Barten CTF, 

and that CTF was measured at the same display luminance. Therefore, the photon noise 

contributed to the naked-eye CTF and including it again would be a mistake.  

The photon noise contributes to the subject’s CTF, so the retinal quantal noise has already 

degraded the CTF used in our model. That is different than Barten’s treatment, because he is 

predicting the CTF while we are modifying it. We start by using Barten’s numerical 

approximation to generate CTF, and then we degrade that CTF based on the blur and noise 

characteristics of the camera and display. 

The authors of [9] suggest that the TTP noise model does not predict their CTF data, but no 

examples of that failure are described, so addressing their concerns directly is not possible. In 

any event, their CTF data were not taken in the generally accepted manner, and it is not clear 

why the TTP noise model should predict their data. 

However, the TTP noise model was compared to several examples of CTF in noise data 

found in the literature, and those comparisons support the accuracy of the TTP metric 

calculations [7]. Four examples are included from [7] and shown in Figures 21and 22. The 

Contrast Sensitivity Function (CSF) is the inverse of CTF. The TTP predictions of CTFsys are 

not as good as those of Barten [23]. However, Barten modifies the naked eye CTF of each 

observer, while TTP modifies the Barten CTF representing a single nominal observer.  

 

               

      Figure 21. These plots compare TTP prediction of the effect of noise on naked-eye CTF [7]. 

`  



           

           Figure 22. The plots compare CTFsys to empirical data of independent researchers [7].  

The first validation of the CTF model used data from a limiting light experiment where three 

experienced observers viewed Air Force 3-bar charts to establish limiting resolution of image 

intensifiers versus chart illumination [1-3]. The experiment used chart contrasts of 1.0 and 0.4. Data 

were collected with and without laser protective eyewear situated between the goggle and eye 

that reduced apparent luminance by a factor of ten. Light to the eye varied from as little as 3.4E-4 

fL to 35 fL Chart illuminance varied from 2.88E-6 to 3.39E-3-foot candles, and that variation in 

illumination means that the image intensifier tubes were operated from noise limited to resolution 

limited conditions. Details on image intensifier tube data and other goggle parameters can be found in 

[1-3]. The plot in Figure 23 shows data on the abscissa and model predictions on the ordinate. The line 

represents perfect predictions. 

The TTP calibration constant labeled α was derived from the image intensifier data, and α did not 

change when Barten’s visual cortex spatial filters were introduced to predict the effect of colored noise 

on CTF. As previously stated, the α parameter does not change. However, in the reference literature, 

the value of α is different for the thermal model and reflective model because the units are different. 

                                 

                            Figure 23 compares metric predictions to limiting light data. 

In Figure 24, each PID is based on the average of 20 calls by an active Army aviation or 

tank gunner, tank commander, Tow operator, or other soldier with an appropriate military 

specialty. The low-contrast and high-resolution data points were displayed on a medical 

monitor with a special computer interface so that the target set had a minimum five-bit gray 

scale. Targets were displayed with four varied sizes from 0.9 to 4.1 degrees. 

The PID data in Figure 24 were taken on two display types, one color and one high 

resolution monochrome with a special computer digital interface. There were twelve sizes of 



target displayed to represent 6 ranges on each display. The data included four different blur 

shapes, five contrasts, four noise spectrums, and five target set contrasts.  

          
Figure 24. The target set was twelve aspects each of twelve tracked, tactical vehicles. 

TTPF is a curve fit to all data using the Logistics Function. The erf is now used to calculate 

PID given a metric value, and that is true regarless of target type. See [4]. 

The data in Fgure 24 are re-plotted in Figure 25 to show that the TTP metric does not rely 

on presenting the target with a specific size on the display. Targets were presented with twelve 

different sizes in the alaising experiments, and in that case the observers viewing distance was 

controlled. The target angular size on the display also changed twleve times during the field 

test to be described below. In other tests described below, the target angular size changed at 

least twenty times.  

                                

Figure 25 showing that PID predictive accuracy does not depend on the size of target on 

display.  

Figure 26 shows predicted PID for various colored (that is, non-white) noise [4].  

 



 

Figure 26 shows TTP PID predictions with several types of noise. See [4]. 

 Figure 27 shows PID predictions of the characters in Figure 11 using the Fourier Transform 

of a rectangle as targt signature [5]. 

                           

Figure 27. PID of characters in Figure 11 versus TTP metric value. See [5]. 

Figure 28 shows facial identification for two sets of ten faces. These results are for naked 

eye, two spotting scopes, and binoculars [6]. Figure 29 shows facial PID when the faces were 

digitally captured and displayed on a computer screen or printed on paper and then identified 

outdoors at range [6]. Facial PID predictions use the Fourier Transform of one face in the target 

set as target signature. 

                       

Figure 28. plots facial PID versus TTP value for faces viewed on a computer screen with 

and without noise and for faces printed on paper and identified at range outdoors. See 

[6]. 



                   

Figure 29. plots facial PID verus metric value when faces were displayed  on  comuter 

monitors or printed on paper. See [6]. 

Figure 30 shows shape discrimination for the three shapes in Figure 11 plus a square [5]. 

    

 

                                   Figure 30. Shape discrimination predicted by TTP. See [5]. 

Two thermal imagers were field tested using eleven vehicle and eight aspect target set 

described in [3]. One imager was an F/1.1 long wave sensor with a 2.2 degree field of view. 

The second was a 2nd Generation F/3.6 long wave imager with a 3.1 degree field of view. The 

PID verus NVThermIP model predictions are shown in Figure 31. Again, the NVThermIP 

model incorporated into NVIPM is not NVThermIP. 

The TTP metric also predicts the effect of environment on the utility of pilotage imagers. 

In this case, no ϕ84 is needed because we are not comparing PID performance but rather 

comparing the utility of different types of imagers to do a visual task. See Table 1 for a summary 

of TTP metric value predictions for the imagers and aviator assessments of imager utility [24]. 

ANVIS are Aviator’s Night Vision Imaging System consisting of two Third Generation 

image intensifier oculars. First Generation thermal is 180 element Common Module thermal 

technology. Second Generation thermal is time-delay-and-integrate thermal technology. Both 

first and second generation thermal are cryogenically cooled, long wave imagers. Both thermal 

systems are head-tracked. The pilot assessment is based on two surveys of over one hundred 

experienced aviators taken ten years apart at the end of the 20th Century. We cite these surveys 

because they represent field-feedback of the efficacy of the TTP metric. 



               

 

           Figure 31 shows TTP PID from a field test of two thermal imagers. See [3]. 

                              Table 1. Aviator assessment of imager performance. 

Sensor Condition TTP Pilot assessment 

ANVIS overcast starlight 1.05 Poor 

ANVIS starlight 3.3 Fair 

ANVIS Quarter Moon 5.8 Good 

1st  Gen thermal 0.1 K scene 1.0 Poor 

1st  Gen thermal 1.0 K scene 2.6 fair 

1st  Gen thermal 5.0 K scene 3.1 fair 

2nd  Gen thermal 0.1 K 2.4 fair 

  2nd  Gen thermal 1.0 K 5.9 Good 

2nd  Gen thermal 5.0 K 6.7 Good 

 

5. Night Vision Integrated Performance Model validation 

The subject of [9] is a re-vamping of the TTP noise model because of unspecified and 

undocumented problems with that model. The authors of [9] reject their calibration of the noise 

model using their CTF data. If they had not, the CTF experiment design described in [9] would 

receive more discussion here, but the authors themselves dismissed the  results. 

A authors describe a two-hand, hand-held object experiment and use the results to calibrate 

the noise model. However, in doing that, their data are used for calibration, and they change γ, 

β, and target contrast to fit PID predictions to data. In other words, that experiment is model 

calibration and not validation. 

The Army has a data base with tactical vehicles, faces, characters, and shapes, but NVIPM 

is validated against only those tactical vehicle experiments with target contrast of 0.21 and 

display target size 4.1 degrees at the eye. That data from experiments 13, 19, and 20 are 

compared to NVIPM predictions in Figure 33. Note that Figures 25 and 26 are PID with image 

display angle from 0.9 to 4.1 degrees, whereas Figure 33 compares NVIPM predictions to 

images displayed with a 4.1-degree angle. 

NVIPM predictions of face, character, and shape PID have not been published. 

 

                      

 



                         

Figure 32 shows NVIPM predictions of PID data from experiments 13, 19, and 20 [4]. In 

these experiments, target RSS contrast is 0.21 and target size on the display is 4.1 

degrees. See [9] for original NVIPM versus PID plot. 

The authors of [9] incorporated a two-parameter noise model into NVIPM with γ equal to 

240 and β equal to 4.3. The parameter γ serves the purpose of α, and β is added to model retinal 

photon noise. Those numbers are based on the two-hand, hand-help PID experiment. They note, 

however, that the CTF data calibration best fits for those two parameters is 330 and 4.9, 

respectively. They also note two features of the model that they consider illogical. The first is 

that the photon noise best fit works best if the photon noise is inserted after the visual cortex 

spatial filters. The second anomaly is that, for high noise levels, one-eye predicted performance 

is better than two-eye. These anomalies are accepted, however, because the new noise model 

works better than the old TTP noise model.  

 

6. Conclusions      

As can be seen by examining Eq. 1, CTFsys is a critical factor in the calculation of TTP values. 

The original TTP modeled imagers in the frequency domain and compared the threshold 

amplitude of the eye at each spatial frequency to the range dependent Fourier Transform of the 

targets. Psychophysical research suggested that the effect of imager noise on the eye’s 

thresholds should be modeled by RSS of display and eye noise in the visual cortex, and that 

model was successfully validated by comparing TTP CTFsys with the CTFsys data measured by 

independent researchers. 

However, the robustness of the TTP model can only be proven by comparing TTP PID 

predictions with experiment data. In support of the TTP model, seventy-six experiments and 

field tests were performed, and the results published in journals and books. The experiments 

assessed both thermal and visible targets, targets as complex as tactical vehicles and faces and 

as simple as characters and shapes.  

The TTP metric predicts image intensifier bar thresholds for image intensifier operation 

from overcast starlight to moonlight. Also, the bar thresholds tested luminance at the eye from 

3E-4 to 35 fL. Some TTP experiments assessed TTP predictions when the image was limited 

by colored (non-white) noise. Also, TTP predictions use the erf function to derive PID from 

metric values, meaning that one of the two empirical fits used by most IQM modelers has been 

surrendered. The original TTP metric also predicts the experience of Army aviators using night 

vision pilotage aids. 

The IQM in NVIPM has been tested against only three of the seventy-six experiments and 

field tests, and those PID predictions are scattered when compared to TTP PID predictions of 



all the experiments. No other validation of the revised TTP incorporated into NVIPM has been 

offered.  

The reason that the TTP metric was changed, substituting the target angle for display angel, 

has never been explained. Several of Barten’s Square Root Integral (SQRI) metric papers are 

listed in the references of [9], but Barten’s SQRI is not used in NVIPM. In any event, it is the 

TTP validation that supports the TTP metric and not Barten’s research. 

We understand that Barten’s interest was in predicting the effect of small display size when 

viewed in a dark room. We understand why Barten used Carlson’s CTF data when developing 

his CTF numerical algorithm. We use Barten’s CTF algorithm and his numerical approximation 

to the visual cortex spatial filters in the original TTP metric and appreciate the quality of his 

work.  

NVIPM does not use Barten’s SQRI and depends for credibility on the validation of the 

original TTP metric. If the current Army modelers have an idea for a new metric or wish to 

incorporate Barten’s SQRI, then they have that authority.  

 Instead, in both conference papers and journal articles, the NVIPM modelers have 

discredited the TTP model. Although the authors of NVIPM have offered no evidence of the 

failings of the original TTP model, their approach of continual discrediting that model has been 

successful. The Army is the authority on these models, and technical support for their 

statements is apparently unnecessary. 

We understand that the current modelers represent Army authority, and we cannot sway the 

Army to examine their current approach. We can, however, ask engineers and scientists 

interested in these models who might review future articles to question statements that discredit 

other researchers without saying why. The TTP model has been discredited without offering 

any examples to prove inadequacy.  

We also request future reviewers to consider the Optical Engineering paper [9]. We do not 

conclude that their CTFsys model is not validated, they do. We do not conclude that their noise 

model has two major flaws, they do. We do not conclude that their new noise model needs 

correction, they do. In the last paragraph of their conclusions, however, they state without 

explanation that the new model is better than the validated TTP model and that NVIPM has 

been thoroughly validated. 

It took years and commitment and funds to gather the TTP validation data and publish 

several conference papers, six journal papers, and four books to document TTP validation. The 

Army has all that experiment data, and validation of NVIPM should not be a problem. Instead, 

the Army continues to use discrediting of the original TTP as a reason for changing their target 

acquisition model. Simultaneously, journal articles are appearing crediting NVIPM with TTP 

validation. 
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