

INSTALLATION AND SERVICE PROCEDURE

XP16

Corp. 0626-L5 May 1, 2006 Revised April 14, 2017

XP16 (HFC-410A) SERIES UNITS

A WARNING

Improper installation, adjustment, alteration, service or maintenance can cause personal injury, loss of life, or damage to property.

Installation and service must be performed by a licensed professional installer (or equivalent) or a service agency.

A CAUTION

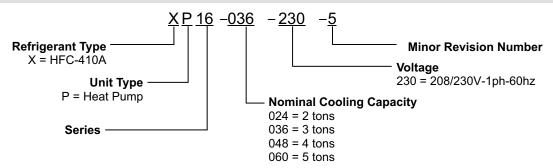
As with any mechanical equipment, contact with sharp sheet metal edges can result in personal injury. Take care while handling this equipment and wear gloves and protective clothing.

▲ IMPORTANT

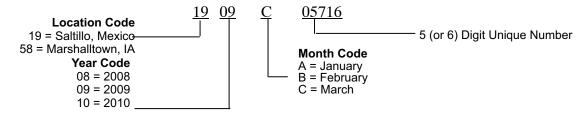
The Clean Air Act of 1990 bans the intentional venting of refrigerant (CFCs, HCFCs and HFCs) as of July 1, 1992. Approved methods of recovery, recycling or reclaiming must be followed. Fines and/or incarceration may be levied for noncompliance.

TABLE OF CONTENTS

I. OVERVIEW


Model Number Identification	2
Typical Serial Number Identification	2
Specifications	2
Electrical Data	3
Unit Dimensions	5
Unit Parts Arrangement	6
Operating Gauge Set and Service Valves	8
II. SYSTEM OPERATION AND SERVICE	
System Operation	10
Defrost System	10
Maintenance	17
Unit Wiring Diagram and Sequence of	
Operations	
Checklists	24
III. INSTALLATION	
Unit Placement	25
Unit Placement	25 27
Removing and Installing Panels	27
Removing and Installing Panels	27 28
Removing and Installing Panels Electrical New or Replacement Line Set	27 28 30
Removing and Installing Panels Electrical New or Replacement Line Set Brazing Connections	27 28 30 32
Removing and Installing Panels Electrical New or Replacement Line Set Brazing Connections Flushing Line Set and Indoor Coil	27 28 30 32 35
Removing and Installing Panels Electrical New or Replacement Line Set Brazing Connections Flushing Line Set and Indoor Coil Leak Test Line Set and Indoor Coil	27 28 30 32 35 37
Removing and Installing Panels Electrical New or Replacement Line Set Brazing Connections Flushing Line Set and Indoor Coil Leak Test Line Set and Indoor Coil Evacuating Line Set and Indoor Coil	27 28 30 32 35 37
Removing and Installing Panels Electrical New or Replacement Line Set Brazing Connections Flushing Line Set and Indoor Coil Leak Test Line Set and Indoor Coil Evacuating Line Set and Indoor Coil IV. SYSTEM CHARGE	27 28 30 32 35 37 38

APPENDIX A - UNIT CHARGING STICKERS


The XP16 is a high efficiency residential split-system two-stage heat pump unit, which features a scroll compressor and HFC-410A refrigerant. XP16 units are available in 2, 3, 4 and 5 tons. tons. XP16 units are rated for 230 volts only. Applications where supply voltage is less requires a hard start kit. The series is designed for use with an indoor unit with an expansion valve approved for HFC-410A.

I. OVERVIEW

Model Number Identification

Typical Serial Number Identification

Specifications

	L	Jnit	Outdoor Fan		
Model Number	Sound Rating Number (dB) ¹	Factory Refrigerant Charge ²	Number of Blades	Diameter - inches.	
XP16-024-230-01	74	9 lbs. 9 oz.	3	18	
XP16-024-230-03	74	7 lbs. 13 oz.	3	18	
XP16-024-230-04	74	7 lbs. 13 oz.	3	18	
XP16-024-230-05, -07	74	8 lbs. 7 oz.	3	18	
XP16-024-230-08	74	8 lbs. 11 oz.	3	18	

	U	nit	Outdoor Fan		
Model Number	Sound Rating Number (dB) ¹	Factory Refrigerant Charge ²	Number of Blades	Diameter - inches.	
XP16-036-230-01	76	12 lbs. 8 oz.	4	22	
XP16-036-230-02	76	12 lbs. 8 oz.	4	22	
XP16-036-230-03	76	10 lbs. 4 oz.	4	22	
XP16-036-230-04	76	10 lbs. 4 oz.	4	22	
XP16-036-230-05	76	10 lbs. 9 oz.	4	22	
XP16-036-230-06	76	10 lbs. 3 oz.	4	22	
XP16-036-230-07, -08	76	10 lbs. 11 oz.	4	22	

	U	Init	Outdoor Fan		
Model Number	Sound Rating Number (dB) ¹	Factory Refrigerant Charge ²	Number of Blades	Diameter - inches.	
XP16-048-230-01	76	15 lbs. 7 oz.	4	22	
XP16-048-230-02	76	15 lbs. 7 oz.	4	22	
XP16-048-230-03	76	15 lbs. 7 oz.	4	22	
XP16-048-230-04	76	15 lbs. 7 oz.	4	22	
XP16-048-230-05	76	11 lbs. 12 oz.	3	26	
XP16-048-230-06	76	11 lbs. 6 oz.	3	26	
XP16-048-230-07	76	10 lbs. 9 oz.	3	26	

Page 2 XP16

	U	Init	Outdoor Fan		
Model Number	Sound Rating Number (dB)			Diameter - inches.	
XP16-060-230-01	78	13 lbs. 8 oz.	3	26	
XP16-060-230-02	78	13 lbs. 8 oz.	3	26	
XP16-060-230-03	78	11 lbs. 7 oz.	3	26	
XP16-060-230-04	78	11 lbs. 7 oz.	3	26	
XP16-060-230-05, -06	78	12 lbs. 15 oz.	3	26	
XP16-060-230-07	78	11 lbs. 8 oz.	3	26	

Electrical Data

208/230V-60 Hz-1 Ph

	U	Unit		Compressor		Condenser Fan			
Model Number	Maximum Over- current Protection (amps) ¹	Minimum Circuity Ampacity ²	Rated Load Amps (RLA)	Locked Rotor Amps (LRA)	Motor HP	Motor Type	Nominal RPM	Full Load Amps (FLA)	Locked Rotor Amps (LRA)
XP16-024-230-01	20	14.0	10.25	52.0	1/10	PSC	1075	0.7	1.4
XP16-024-230-03	20	14.0	10.25	52.0	1/10	PSC	1075	0.7	1.4
XP16-024-230-04	20	14.0	10.25	52.0	1/10	PSC	1075	0.7	1.4
XP16-024-230-05	20	14.0	10.25	52.0	1/10	PSC	1075	0.7	1.4
XP16-024-230-07	20	13.5	10.25	52.0	1/10	PSC	1075	0.7	1.4
XP16-024-230-08	20	15.3	11.7	58.3	1/10	PSC	1075	0.7	1.4

208/230V-60 Hz-1 Ph

	U	Unit		Compressor		Condenser Fan				
Model Number	Maximum Over- current Protection (amps) ¹	Minimum Circuity Ampacity ²	Rated Load Amps (RLA)	Locked Rotor Amps (LRA)	Motor HP	Motor Type	Nominal RPM	Full Load Amps (FLA)	Locked Rotor Amps (LRA)	
XP16-036-230-01	35	22.0	16.67	82.0	1/6	PSC	825	1.1	2.1	
XP16-036-230-02	35	22.0	16.67	82.0	1/6	PSC	825	1.1	2.1	
XP16-036-230-03	35	22.0	16.67	82.0	1/6	PSC	825	1.1	2.1	
XP16-036-230-04	35	22.0	16.67	82.0	1/6	PSC	825	1.1	1.87	
XP16-036-230-05, -06	35	22.5	16.67	82.0	1/4	PSC	825	1.7	3.1	
XP16-036-230-07, -08	35	20.8	15.3	83.0	1/4	PSC	825	1.7	3.1	

208/230V-60 Hz-1 Ph

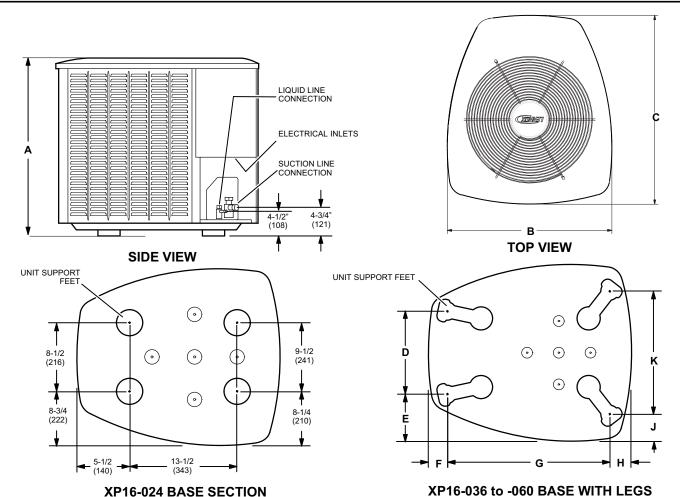
	U	Unit		Compressor		Condenser Fan			
Model Number	Maximum Over- current Protection (amps) ¹	Minimum Circuity Ampacity ²	Rated Load Amps (RLA)	Locked Rotor Amps (LRA)	Motor HP	Motor Type	Nominal RPM	Full Load Amps (FLA)	Locked Rotor Amps (LRA)
XP16-048-230-01	45	28.2	21.15	96.0	1/4	PSC	825	1.7	3.1
XP16-048-230-02	45	28.2	21.15	96.0	1/4	PSC	825	1.7	3.1
XP16-048-230-03	45	28.2	21.15	96.0	1/4	PSC	825	1.7	3.1
XP16-048-230-04	45	28.2	21.15	96.0	1/4	PSC	825	1.7	3.1
XP16-048-230-05, -06	45	28.2	21.15	96.0	1/3	PSC	825	1.8	2.9
XP16-048-230-07	45	28.3	21.2	104.0	1/3	PSC	825	1.8	2.9

Page 3 XP16

 $^{^{\}rm 1}$ Tested according to AHRI Standard 270-2008 test conditions. $^{\rm 2}$ Refrigerant charge sufficient for 15 feet length of refrigerant lines.

208/230V-60 Hz-1 Ph

	U	nit	Compressor		Condenser Fan					
Model Number	Maximum Over- current Protection (amps) ¹	Minimum Circuity Ampacity ²	Rated Load Amps (RLA)	Locked Rotor Amps (LRA)	Motor HP	Motor Type ³	Nominal RPM	Full Load Amps (FLA)	Locked Rotor Amps (LRA)	
XP16-060-230-01	55	33.9	25.64	118.0	1/3	PSC	825	1.8	2.9	
XP16-060-230-02	60	33.9	25.87	118.0	1/3	PSC	825	1.8	2.9	
XP16-060-230-03	60	33.9	25.87	118.0	1/3	PSC	825	1.8	2.9	
XP16-060-230-04	60	33.9	25.87	118.0	1/3	PSC	825	1.8	2.9	
XP16-060-230-05,	60	35.1	25.87	118.0	1/3 VS	VS	700 (1st Stage)	2.8	N/A	
-06		33.1	23.07	110.0	1/3	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	820 (2nd Stage)	2.0	IN/A	
XP16-060-230-07	60	36.8	27.1	152.9	1/3	VS	700 (1st Stage)	2.8	N/A	
XP 10-000-230-07	60 36.8		21.1 132.9		1/3		820 (2nd Stage)	2.0	IN/A	


¹ HACR type circuit breaker or fuse.

Page 4 XP16

² Refer to National or Canadian Electrical Code manual to determine wire, fuse and disconnect size requirements.

 $^{^3}$ PSC = permanent split capacitor motor (single speed); VS = variable speed.

Unit Dimensions - Inches (mm)

Model Number Α В С D Ε F G Н Κ XP16-024-01. 31 (889) 27 (686) 28 (711) -02, -03, -04 XP16-024-05 35 (889) 27 (686) 28 (711) and later. XP16-036-01. 39-1/2 35 (889) 30-1/2 (775) 13-7/8 (352) 7-3/4 (197) 3-1/4 (83) 27-1/8 (689) 3-5/8 (92) 4-1/2 (114) 20-5/8 (524) -02, -03, -04 (1003)XP16-036-05 39-1/2 35 (889) 35-1/2 (902) 27-1/8 (689) 13-7/8 (352) 7-3/4 (197) 3-1/4 (83) 3-5/8 (92) 4-1/2 (114) 20-5/8 (524) and later. (1003)XP16-048-01, 39-1/2 30-1/2 (775) 3-1/8 (79) 45 (1143) 16-7/8 (429) 8-3/4 (222) 30-3/4 (781) 4-5/8 (117) 3-3/4 (95) 26-7/8 (683) (1003) -02, -03, -04 XP16-048-05 39-1/2 35 (889) 35-1/2 (902) 16-7/8 (429) 8-3/4 (222) 3-1/8 (79) 30-3/4 (781) 4-5/8 (117) 3-3/4 (95) 26-7/8 (683) and later. (1003)XP16-060-01, 39-1/2 39 (991) 35-1/2 (902) 16-7/8 (429) 8-3/4 (222) 3-1/8 (79) 30-3/4 (781) 4-5/8 (117) 3-3/4 (95) 26-7/8 (683) -02, -03, -04 (1003)XP16-060-05 39-1/2 45 (1143 35-1/2 (902) 16-7/8 (429) 30-3/4 (781) 26-7/8 (683) 8-3/4 (222) 3-1/8 (79) 4-5/8 (117) 3-3/4 (95) and later. (1003)

Typical Unit Parts Arrangement

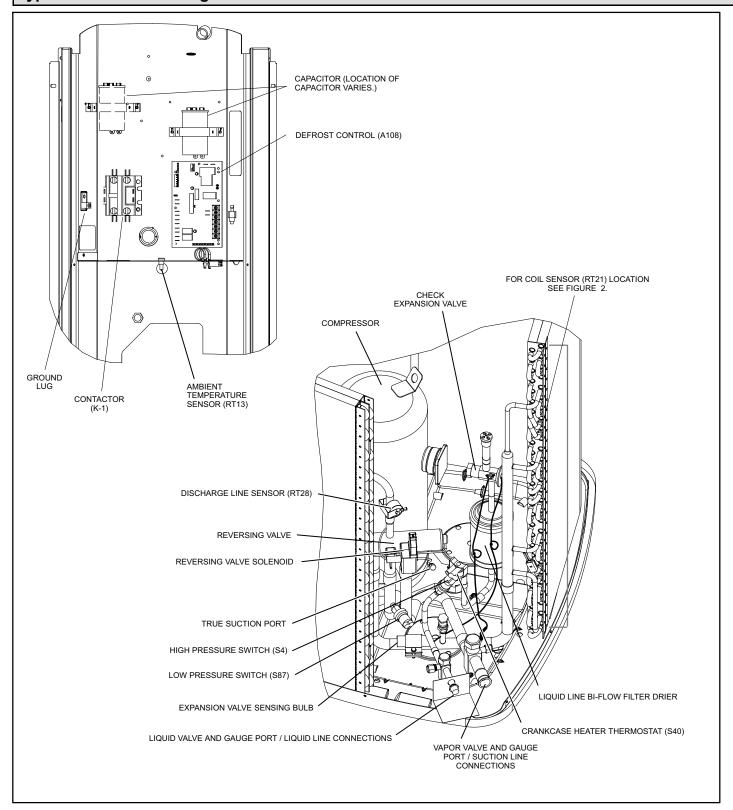


Figure 1. Typical Parts Arrangements

Page 6 XP16

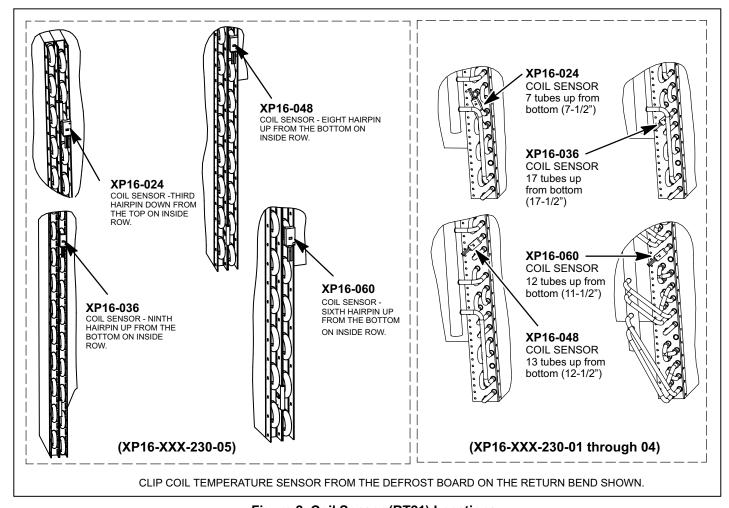


Figure 2. Coil Sensor (RT21) Locations

AWARNING

This product contains a chemical known to the State of California to cause cancer, birth defects, or other reproductive harm.

Operating Gauge Set and Service Valves

These instructions are intended as a general guide and do not supersede local codes in any way. Consult authorities who have jurisdiction before installation.

TORQUE REQUIREMENTS

When servicing or repairing heating, ventilating, and air conditioning components, ensure the fasteners are appropriately tightened. Table 1 lists torque values for fasteners.

▲ IMPORTANT

Only use Allen wrenches of sufficient hardness (50Rc - Rockwell Harness Scale minimum). Fully insert the wrench into the valve stem recess.

Service valve stems are factory-torqued (from 9 ft-lbs for small valves, to 25 ft-lbs for large valves) to prevent refrigerant loss during shipping and handling. Using an Allen wrench rated at less than 50Rc risks rounding or breaking off the wrench, or stripping the valve stem recess.

See the Lennox Service and Application Notes #C-08-1 for further details and information.

▲ IMPORTANT

To prevent stripping of the various caps used, the appropriately sized wrench should be used and fitted snugly over the cap before tightening.

Table 1. Torque Requirements

Parts	Recommended Torque			
Service valve cap	8 ft lb.	11 NM		
Sheet metal screws	16 in lb.	2 NM		
Machine screws #10	28 in lb.	3 NM		
Compressor bolts	90 in lb.	10 NM		
Gauge port seal cap	8 ft lb.	11 NM		

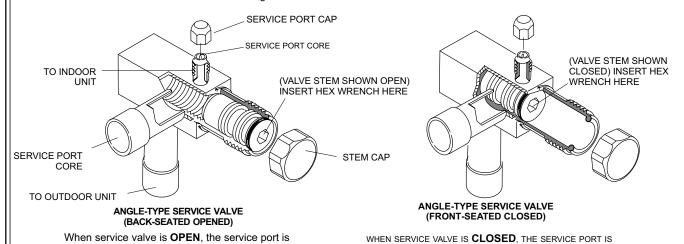
USING MANIFOLD GAUGE SET

When checking the system charge, only use a manifold gauge set that features low loss anti-blow back fittings.

Manifold gauge set used with HFC-410A refrigerant systems must be capable of handling the higher system operating pressures. The gauges should be rated for use with pressures of 0 - 800 psig on the high side and a low side of 30" vacuum to 250 psig with dampened speed to 500 psi. Gauge hoses must be rated for use at up to 800 psig of pressure with a 4000 psig burst rating.

OPERATING SERVICE VALVES

The liquid and vapor line service valves are used for removing refrigerant, flushing, leak testing, evacuating, checking charge and charging.

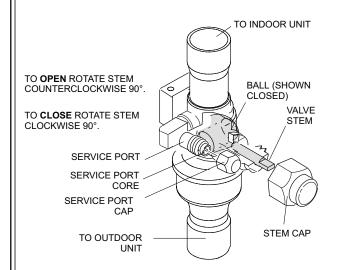

Each valve is equipped with a service port which has a factory-installed valve stem. Figure 3 provides information on how to access and operating both angle and ball service valves.

Page 8 XP16

SERVICE VALVES ANGLE AND BALL

Operating Angle Type Service Valve:

- 1. Remove stem cap with an appropriately sized wrench.
- 2. Use a service wrench with a hex-head extension (3/16" for liquid line valve sizes and 5/16" for vapor line valve sizes) to back the stem out counterclockwise as far as it will go.



open to linE set, indoor and outdoor unit.

Operating Ball Type Service Valve: To Access Service Port:

1. Remove stem cap with an appropriately sized wrench.

 Use an appropriately sized wrenched to open. To open valve, roate stem counterclockwise 90°. To close rotate stem clockwise 90°.

A service port cap protects the service port core from contamination and serves as the primary leak seal.

- 1. Remove service port cap with an appropriately sized wrench.
- 2. Connect gauge set to service port.

OPEN TO THE LINE SET AND INDOOR UNIT.

- When testing is completed, replace service port cap and tighten as follows:
 - With torque wrench: Finger tighten and torque cap per table 1.
 - Without torque wrench: Finger tighten and use an appropriately sized wrench to turn an additional 1/6 turn clockwise.

110 1/6 TURN 110 1/2 1 2 3 8 7 6 5

Reinstall Stem Cap:

Stem cap protects the valve stem from damage and serves as the primary seal. Replace the stem cap and tighten as follows:

- With Torque Wrench: Finger tighten and then torque cap per table 1.
- Without Torque Wrench: Finger tighten and use an appropriately sized wrench to turn an additional 1/12 turn clockwise.

NOTE — A label with specific torque requirements may be affixed to the stem cap. If the label is present, use the specified torque.

Figure 3. Angle and Ball Service Valves

II. SYSTEM OPERATION AND SERVICE

System Operation

The outdoor unit and indoor blower cycle on demand from the room thermostat. When the thermostat blower switch is in the **ON** position, the indoor blower operates continuously.

SECOND-STAGE OPERATION

If the board receives a call for second-stage compressor operation Y2 in heating or cooling mode and the first-stage compressor output is active, the second-stage compressor solenoid output will be energized.

If first-stage compressor output is active in heating mode and the outdoor ambient temperature is below the selected compressor lock-in temperature, the second-stage compressor solenoid output will be energized without the Y2 input. If the jumper is not connected to one of the temperature selection pins on P3 (40, 45, 50, 55°F), the default lock-in temperature of 40°F (4.5°C) will be used.

The board de-energizes the second-stage compressor solenoid output immediately when the Y2 signal is removed or the outdoor ambient temperature is 5°F above the selected compressor lock-in temperature, or the first-stage compressor output is de-energized for any reason.

THERMOSTAT OPERATION

Some indoor thermostats incorporate isolating contacts and an emergency heat function (which includes an amber indicating light). The thermostat is not included with the unit and must be purchased separately.

EMERGENCY HEAT (AMBER LIGHT)

An emergency heat function is designed into some room thermostats. This feature is applicable when isolation of the outdoor unit is required, or when auxiliary electric heat is staged by outdoor thermostats. When the room thermostat is placed in the emergency heat position, the outdoor unit control circuit is isolated from power and field-provided relays bypass the outdoor thermostats. An amber indicating light simultaneously comes on to remind the homeowner that he is operating in the emergency heat mode.

Emergency heat is usually used during an outdoor unit shutdown, but it should also be used following a power outage if power has been off for over an hour and the outdoor temperature is below 50°F (10°C). System should be left in the emergency heat mode at least six hours to allow the crankcase heater sufficient time to prevent compressor slugging.

FILTER DRIER

The unit is equipped with a large-capacity bi-flow filter drier which keeps the system clean and dry. If replacement is necessary, order another of like design and capacity. The replacement filter drier must be suitable for use with HFC-410A refrigerant.

Defrost System

DEFROST SYSTEM DESCRIPTION

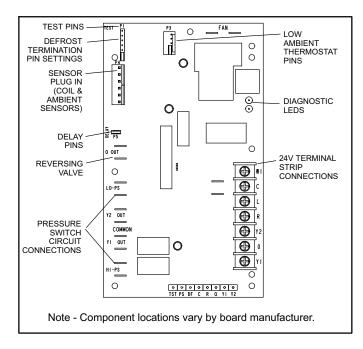


Figure 4. Defrost Control Board

The demand defrost controller measures differential temperatures to detect when the system is performing poorly because of ice build-up on the outdoor coil. The controller *self-calibrates* when the defrost system starts and after each system defrost cycle. The defrost control board components are shown in figure 4.

The control monitors ambient temperature, outdoor coil temperature, and total run time to determine when a defrost cycle is required. The coil temperature probe is designed with a spring clip to allow mounting to the outside coil tubing. The location of the coil sensor is important for proper defrost operation.

NOTE - The demand defrost board accurately measures the performance of the system as frost accumulates on the outdoor coil. This typically will translate into longer running time between defrost cycles as more frost accumulates on the outdoor coil before the board initiates defrost cycles.

DEFROST BOARD PRESSURE SWITCH CONNECTIONS

The unit's automatic reset pressure switches (LO PS - S87 and HI PS - S4) are factory-wired into the defrost board on the LO-PS and HI-PS terminals, respectively.

Page 10 XP16

Low Pressure Switch (LO-PS)—When the low pressure switch trips, the defrost board will cycle off the compressor, and the strike counter in the board will count one strike. The low pressure switch is ignored under the following conditions:

- During the defrost cycle and 90 seconds after the termination of defrost
- When the average ambient sensor temperature is below 15° F (-9°C)
- For 90 seconds following the start up of the compressor
- During test mode

High Pressure Switch (HI-PS)—When the high pressure switch trips, the defrost board will cycle off the compressor, and the strike counter in the board will count one strike.

DEFROST BOARD PRESSURE SWITCH SETTINGS

High Pressure (auto reset) - trip at 590 psig, reset at 418.

Low Pressure (auto reset) - trip at 25 psig; reset at 40.

PRESSURE SWITCH 5-STRIKE LOCKOUT

The internal control logic of the board counts the pressure switch trips only while the Y1 (Input) line is active. If a pressure switch opens and closes four times during a Y1 (Input), the control logic will reset the pressure switch trip counter to zero at the end of the Y1 (Input). If the pressure switch opens for a fifth time during the current Y1 (Input), the control will enter a lockout condition.

The 5-strike pressure switch lockout condition can be reset by cycling OFF the 24-volt power to the control board or by shorting the TEST pins between 1 to 2 seconds. All timer functions (run times) will also be reset.

If a pressure switch opens while the Y1 Out line is engaged, a 5-minute short cycle will occur after the switch closes.

UNIT TEMPERATURE SENSORS

Sensors connect to the defrost board through a field-replaceable harness assembly that plugs into the board as illustrated in figure 4. Through the sensors, the board detects outdoor ambient, coil, and discharge temperature fault conditions. As the detected temperature changes, the resistance across the sensor changes. Sensor resistance values can be checked by ohming across pins shown in table 2.

Table 2. Sensor Temperature /Resistance Range

Sensor	Temperature Range °F (°C)	Resistance values range (ohms)	Pins/W ire Color
Outdoor	-35 (-37) to 120 (48)	280,000 to 3750	3 & 4 (Black)
Coil	-35 (-37) to 120 (48)	280,000 to 3750	5 & 6 (Brown)
Discharge (if applicable)	24 (-4) to 350 (176)	41,000 to 103	1 & 2 (Yel- low)
Note: Sensor	resistance increases as	sensed temperature de	creases.

Figure 5 shows how the resistance varies as the temperature changes for both type of sensors.

NOTE - When checking the ohms across a sensor, be aware that a sensor showing a resistance value that is <u>not</u> within the range shown in table 2, may be performing as designed. However, if a shorted or open circuit is detected, then the sensor may be faulty and the sensor harness will need to be replaced.

Ambient Sensor—The ambient sensor considers outdoor temperatures below -35°F (-37°C) or above 120°F (48°C) as a fault. If the ambient sensor is detected as being open, shorted or out of the temperature range of the sensor, the board will not perform demand defrost operation. The board will revert to time/temperature defrost operation and will display the appropriate fault code. Heating and cooling operation will be allowed in this fault condition.

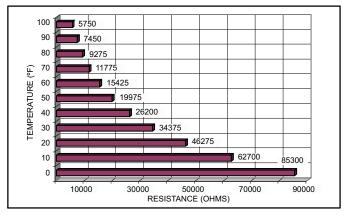


Figure 5. Temperature/Resistance Chart (Ambient and Coil Sensors)

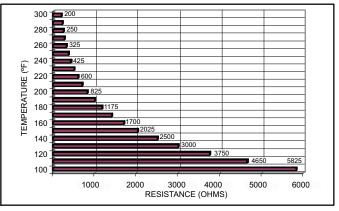


Figure 6. Temperature/Resistance Chart (Discharge Sensor)

Coil Sensor—The coil temperature sensor considers outdoor temperatures below -35°F (-37°C) or above 120°F (48°C) as a fault. If the coil temperature sensor is detected as being open, shorted or out of the temperature range of the sensor, the board will not perform demand or time/temperature defrost operation and will display the appropriate fault code. Heating and cooling operation will be allowed in this fault condition.

High Discharge Line Sensor—If the discharge line temperature exceeds a temperature of 285°F (140°C) during compressor operation, the board will de-energize the compressor contactor output (and the defrost output, if

active). The compressor will remain off until the discharge temperature has dropped below 225°F (107°C) and the 5-minute anti-short cycle delay has been satisfied. This sensor has two fault and lockout codes:

- 1. If the board recognizes five high discharge line temperature faults during a single (Y1) compressor demand, it reverts to a lockout mode and displays the appropriate code. This code detects shorted sensor or high discharge temperatures. Code on board is Discharge Line Temperature Fault and Lockout.
- 2. If the board recognizes five temperature sensor range faults during a single (Y1) compressor demand, it reverts to a lockout mode and displays the appropriate code. The board detects open sensor or out-of-temperature sensor range. This fault is detected by allowing the unit to run for 90 seconds before checking sensor resistance. If the sensor resistance is not within range after 90 seconds, the board will count one fault. After five faults, the board will lockout. Code on board is *Discharge Sensor Fault and Lockout*.

The discharge line sensor, which covers a range of 150° F (65°C) to 350° F (176°C), is designed to mount on a $\frac{1}{2}$ " refrigerant discharge line.

NOTE - Within a single room thermostat demand, if 5-strikes occur, the board will lockout the unit. Defrost board 24 volt power R must be cycled OFF or the TEST pins on board must be shorted between 1 to 2 seconds to reset the board.

Defrost Temperature Termination Shunt (Jumper) Pins—The defrost board selections are: 50, 70, 90, and 100°F (10, 21, 32 and 38°C). The shunt termination pin is factory set at 50°F (10°C). If temperature shunt is not installed, default termination temperature is 90°F (32°C).

DELAY MODE

The defrost board has a field-selectable function to reduce occasional sounds that may occur while the unit is cycling in and out of the defrost mode. When a jumper is installed on the DELAY pins, the compressor will be cycled off for 30 seconds going in and out of the defrost mode. Units are shipped with jumper installed on DELAY pins.

NOTE - The 30 second off cycle is NOT functional when jumpering the TEST pins.

OPERATIONAL DESCRIPTION

The defrost control board has three basic operational modes: normal, defrost, and calibration.

- Normal Mode—The demand defrost board monitors the O line, to determine the system operating mode (heat/cool), outdoor ambient temperature, coil temperature (outdoor coil) and compressor run time to determine when a defrost cycle is required.
- Calibration Mode—The board is considered uncalibrated when power is applied to the board, after cool mode operation, or if the coil temperature exceeds the termination temperature when it is in heat mode.

Calibration of the board occurs after a defrost cycle to ensure that there is no ice on the coil. During calibration, the temperature of both the coil and the ambient sensor are measured to establish the temperature differential which is required to allow a defrost cycle.

- Defrost Mode—The following paragraphs provide a detailed description of the defrost system operation.
- Test Mode— See Figure 7.

Each test pin shorting will result in one test event. For each TEST the shunt (jumper) must be removed for at least one second and reapplied. Refer to flow chart (figure 7) for TEST operation.

Note: The Y1 input must be active (ON) and the O room thermostat terminal into board must be inactive.

DETAILED DEFROST SYSTEM OPERATION

The demand defrost control board initiates a defrost cycle based on either frost detection or time.

Frost Detection—If the compressor runs longer than 30 minutes and the actual difference between the clear coil and frosted coil temperatures exceeds the maximum difference allowed by the control, a defrost cycle will be initiated.

IMPORTANT - The demand defrost control board will allow a greater accumulation of frost and will initiate fewer defrost cycles than a time/temperature defrost system.

Time—If six hours of heating mode compressor run time has elapsed since the last defrost cycle while the coil temperature remains below 35°F (2°C), the demand defrost control will initiate a defrost cycle.

Actuation—When the reversing valve is de-energized, the Y1 circuit is energized, and the coil temperature is below 35°F (2°C), the board logs the compressor run time. If the board is not calibrated, a defrost cycle will be initiated after 30 minutes of heating mode compressor run time. The control will attempt to self-calibrate after this (and all other) defrost cycle(s).

Calibration success depends on stable system temperatures during the 20-minute calibration period. If the board fails to calibrate, another defrost cycle will be initiated after 45 minutes of heating mode compressor run time. Once the defrost board is calibrated, it initiates a demand defrost cycle when the difference between the clear coil and frosted coil temperatures exceeds the maximum difference allowed by the control or after six hours of heating mode compressor run time has been logged since the last defrost cycle.

Termination—The defrost cycle ends when the coil temperature exceeds the termination temperature or after 14 minutes of defrost operation. If the defrost is terminated by the 14-minute timer, another defrost cycle will be initiated after 30 minutes of run time.

Page 12 XP16

TEST

Placing the jumper on the field test pins (E33) allows the technician to:

- Clear short cycle lockout
- Clear five-strike fault lockout
- Cycle the unit in and out of defrost mode
- Place the unit in defrost mode to clear the coil

When **Y1** is energized and 24V power is being applied to the Control, a test cycle can be initiated by placing a jumper on the Control's **TEST** pins for 2 to 5 seconds. If the jumper remains on the **TEST** pins for longer than five seconds, the Control will ignore the jumpered TEST pins and revert to normal operation.

The Control will initiate one test event each time a jumper is placed on the TEST pins. For each TEST the jumper must be removed for at least one second and then reapplied.

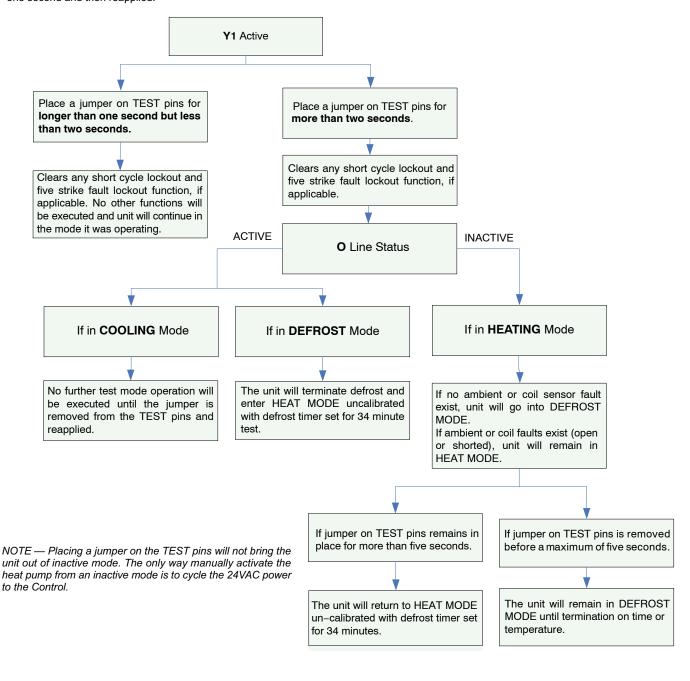


Figure 7. Test Mode

DEFROST BOARD DIAGNOSTIC LEDS

The state (Off, On, Flashing) of two LEDs on the defrost board (DS1 [Red] and DS2 [Green]) indicate diagnostics conditions that are described in table 3.

Table 3. Defrost Control Board Diagnostic LEDs

DS2 Green	.		Possible Cause(s)	Solution			
OFF	FF OFF Power problem		No power (24V) to board terminals R and C or board failure.	Check control transformer power (24V). If power is available to board and LED(s) do not light, replace board.			
Simultaneous SLOW Flash		Normal operation	Unit operating normally or in standby mode.	None required.			
Alternatin Flash	ng SLOW	5-minute anti-short cycle delay	Initial power up, safety trip, end of room thermostat demand.	None required (Jumper TEST pins to override)			
Simultane FAST Fla		Ambient Sensor Problem	Sensor being detected open or shorted or out of temperature range. Board will revert to time/temperature defrost operation. (System will still heat or cool).				
Alternating Coil Sensor Problem FAST Flash		Coil Sensor Problem	Sensor being detected open or shorted or out of temperature range. Board will not perform demand or time/temperature defrost operation. (System will still heat or cool).				
ON ON Circuit Board Failure		Circuit Board Failure	Indicates that board has internal component failure. Cycle 24VAC power to board. If code does not clear, replace board.				

Table 4. Defrost Control Board Diagnostic Fault and Lockout Codes

DS2 Green	DS1 Red	Condition/Code	Possible Cause(s)	Solution			
(Each fa	Each fault adds 1 strike to that code's counter; 5 strikes per code = LOCKOUT)						
OFF	SLOW Flash	Low Pressure Fault	1 Restricted air flow over indoor or outdoor coil. 2 Improper refrigerant charge in system. 3 Improper metering device installed or incorrect operation of metering device. 4 Incorrect or improper sensor location or connection to system.	Remove any blockages or restrictions from coils and/or fans. Check indoor and outdoor fan motor for proper current draws.			
OFF	ON	Low Pressure LOCKOUT		³ Improper metering device installed or ² Check system charge using approach and	1. '		
SLOW Flash	OFF	High Pressure Fault		 Check system operating pressures and compare to charging charts. Make sure all pressure switches and sensors has secure connections to system to prevent refriger leaks or errors in pressure and temperat measurements. 			
ON	OFF	High Pressure LOCKOUT					
SLOW Flash	ON	Discharge Line Temperature Fault	This code detects shorted sensor or high discharge temperatures. If the discharge line temperature exceeds a temperature of 285°F (140°C) during compressor operation, the board will de-energiz the compressor contactor output (and the defrost output if active). The compressor will remain o				
FAST Flash	ON	Discharge Line Temperature LOCKOUT	until the discharge temperature has dropped below 225°F (107°C).				
OFF	Fast Flash	Discharge Sensor Fault	The board detects open sensor or out of temperature sensor range. This fault is detected by allowin the unit to run for 90 seconds before checking sensor resistance. If the sensor resistance is not within range after 90 seconds, the board will count one fault. After 5 faults, the board will lockout.				
Fast Flash	OFF	Discharge Sensor LOCKOUT					

Page 14 XP16

OUTDOOR FAN MOTOR XP16-XXX-230-01 through 05, except XP16-060-230-05)

All units use single-phase PSC fan motors which require a run capacitor. In all units, the condenser fan is controlled by the compressor contactor.

ELECTRICAL DATA tables in this manual show specifications for condenser fans used in XP16's.

Access to the condenser fan motor on all units is gained by removing the four screws securing the fan assembly. See figure 8. The grill fan assembly can be removed from the cabinet as one piece. The condenser fan motor is removed from the fan guard by removing the four nuts found on top of the grill.

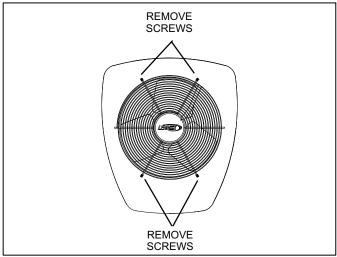


Figure 8. Removing Fan Grille

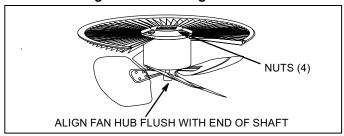


Figure 9. Aligning Fan Hub

XP16-060-230-05 Only

The variable speed condenser fan motor (figure 10) used in all units is a three-phase, electronically controlled d.c. brushless motor (controller converts single phase a.c. to three phase D.C.), with a permanent-magnet-type rotor, manufactured by GE. Because this motor has a permanent magnet rotor it does not need brushes like conventional D.C. motors. The motors consist of a control module and motor. Internal components are shown in figure 10. The stator windings are split into three poles which are electrically connected to the controller. This arrangement allows motor windings to be turned on and off in sequence by the controller.

The controller is primarily an A. C. to D. C. converter. Converted D. C. power is used to drive the motor. The controller contains a microprocessor which monitors varying conditions inside the motor (such as motor workload).

The controller uses sensing devices to know what position the rotor is in at any given time. By sensing the position of the rotor and then switching the motor windings on and off in sequence, the rotor shaft turns the blower.

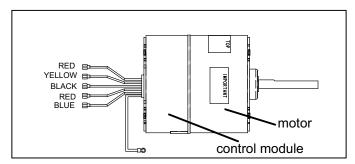


Figure 10. Variable Speed Fan Motor (XP16-060-230-05 only)

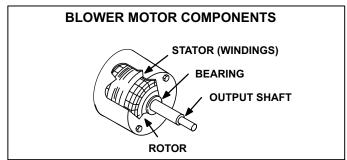
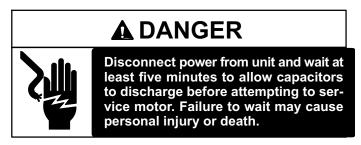


Figure 11. Fan Motor Components

Internal Operation


The condenser fan motor is a variable speed motor with RPM settings at 700 (Y1) and 820 (Y2). The variation in speed is accomplished each time the controller switches a stator winding (figure 11) on and off, it is called a "pulse." The length of time each pulse stays on is called the "pulse width." By varying the pulse width the controller varies motor speed (called "pulse-width modulation"). This allows for precise control of motor speed and allows the motor to compensate for varying load conditions as sensed by the controller. In this case, the controller monitors the static workload on the motor and varies motor rpm in order to maintain constant airflow (cfm).

Motor rpm is continually adjusted internally to maintain constant static pressure against the fan blade. The controller monitors the static work load on the motor and motor amp-draw to determine the amount of rpm adjustment. Blower rpm is adjusted internally to maintain a constant cfm. The amount of adjustment is determined by the incremental taps which are used and the amount of motor loading sensed internally. The motor constantly adjusts rpm to maintain a specified cfm.

Initial Power Up

When line voltage is applied to the motor, there will be a large inrush of power lasting less than 1/4 second. This inrush charges a bank of DC filter capacitors inside the controller. If the disconnect switch is bounced when the disconnect is closed, the disconnect contacts may become welded. Try not to bounce the disconnect switch when applying power to the unit.

The DC filter capacitors inside the controller are connected electrically to the speed tap wires. The capacitors take approximately 5 minutes to discharge when the disconnect is opened. For this reason it is necessary to wait at least 5 minutes after turning off power to the unit before attempting to service motor.

Motor Start-Up

At start-up, the motor may gently rock back and forth for a moment. This is normal. During this time the electronic controller is determining the exact position of the rotor. Once the motor begins turning, the controller slowly eases the motor up to speed (this is called "soft-start"). The motor may take as long as 10-15 seconds to reach full speed. If the motor does not reach 200 rpm within 13 seconds, the motor shuts down. Then the motor will immediately attempt a restart. The shutdown feature provides protection in case of a frozen bearing or blocked fan blade. The motor may attempt to start eight times. If the motor does not start after the eighth try, the controller locks out. Reset controller by momentarily turning off power to unit.

Troubleshooting

If first or second stage thermostat call for cool is present and the variable speed condenser fan motor does not energize, check voltage at the breaker box. If voltage is present perform the following steps and refer to figure 12.

- Check for 240 volts between the compressor RED wires.
- initiate a first stage call for cool. Check for 24 volts between the fan motor YELLOW wire and fan motor BLACK wire.

- Initiate a second stage call for cool. Check for 24 volts between the fan motor YELLOW wire and fan motor BLACK wire, then check for 24 volts between the fan motor BLUE wire and fan motor BLACK.
- 4. Repeat steps 1 and 2 with a HEAT call.

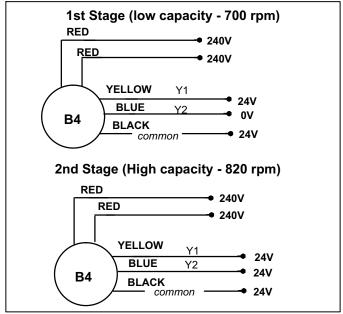


Figure 12. Speed Taps for PSC Fan Motors

Replacement

Flush mounting indicates to mount it at the end of the shaft so that the bottom of the fan blade hub is flush with the end of the motor shaft. Dimension A would be 0 (flush). Torque set screw between 137 - 150 in. lbs (approximately 1/8th turn using a standard socket and wrench).

Table 5. Mounting on Shaft

XP16 UNIT	"A" DIM . <u>+</u> 1/8"		
-024, -036	3/4" (19mm)		
-048, -060	Flush		
-060*	1-7/8" (47.5mm)		

*XP16-060-230-05 only

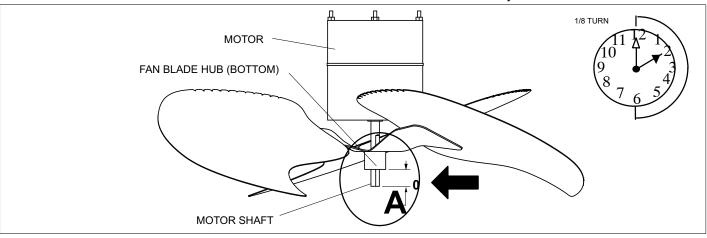


Figure 13. Fan Blade Mounting Position on Motor Shaft

Page 16 XP16

TWO-STAGE MODULATION COMPRESSOR CHECKS

A IMPORTANT

This performance check is ONLY valid on systems that have clean indoor and outdoor coils, proper airflow over coils, and correct system refrigerant charge. All components in the system must be functioning proper to correctly perform compressor modulation operational check. (Accurate measurements are critical to this test as indoor system loading and outdoor ambient can affect variations between low and high capacity readings).

Use this checklist on page to verify part-load and full-load capacity operation of two-stage modulation compressors.

TOOLS REQUIRED

- Refrigeration gauge set
- Digital volt/amp meter
- Electronic temperature thermometer
- On-off toggle switch

PROCEDURE

NOTE - Block outdoor coil to maintain a minimum of 375 psig during testing).

- 1. Turn main power OFF to outdoor unit.
- 2. Adjust room thermostat set point 5°F above the room temperature.
- Remove control access panel. Install refrigeration gauges on unit. Attach the amp meter to the common (black wire) wire of the compressor harness. Attach thermometer to discharge line as close as possible to the compressor.
- **4**. Turn toggle switch OFF and install switch in series with Y2 wire from room thermostat.
- 5. Cycle main power ON.
- **6**. Allow pressures and temperatures to stabilize before taking measurements (may take up to 10 minutes).

- **7**. Record all of the readings for the Y1 demand.
- **8**. Close switch to energize Y2 demand. Verify power is going to compressor solenoid.
- **9.** Allow pressures and temperatures to stabilize before taking measurements (may take up to 10 minutes).
- **10**. Record all of the readings with the Y1 and Y2 demand.
- 11. If temperatures and pressures change in the direction noted in Two-Stage Modulation Compressor Field Operational Checklist on page, the compressor is properly modulating from low to high capacity. (If no amperage, pressures or temperature readings change when this test is performed, the compressor is not modulating between low and high capacity and replacement is necessary).
- **12**. After testing is complete, return unit to original set up.

Maintenance

▲ WARNING

Electric shock hazard. Can cause injury or death. Before attempting to perform any service or maintenance, turn the electrical power to unit OFF at disconnect switch(es). Unit may have multiple power supplies.

▲ WARNING

Improper installation, adjustment, alteration, service or maintenance can cause personal injury, loss of life, or damage to property.

Installation and service must be performed by a licensed professional installer (or equivalent) or a service agency.

Maintenance and service must be performed by a qualified installer or service agency. At the beginning of each cooling season, the system should be checked as follows:

Outdoor Unit

- 1. Clean and inspect outdoor coil (may be flushed with a water hose). Ensure power is off before cleaning.
- 2. Outdoor unit fan motor is pre-lubricated and sealed. No further lubrication is needed.
- 3. Visually inspect all connecting lines, joints and coils for evidence of oil leaks.
- 4. Check all wiring for loose connections.
- 5. Check for correct voltage at unit (unit operating).
- 6. Check amp draw on outdoor fan motor.

Motor Nameplate:_	Actual:	
-------------------	---------	--

7. Inspect drain holes in coil compartment base and clean if necessary.

NOTE - If insufficient heating or cooling occurs, the unit should be gauged and refrigerant charge should be checked.

Outdoor Coil

It may be necessary to flush the outdoor coil more frequently if it is exposed to substances which are corrosive or which block airflow across the coil (e.g., pet urine, cottonwood seeds, fertilizers, fluids that may contain high levels of corrosive chemicals such as salts)

- Outdoor Coil The outdoor coil may be flushed with a water hose.
- Outdoor Coil (Sea Coast) Moist air in ocean locations can carry salt, which is corrosive to most metal. Units that are located near the ocean require frequent inspections and maintenance. These inspections will determine the necessary need to wash the unit including the outdoor coil. Consult your installing contractor for proper intervals/procedures for your geographic area or service contract.

Indoor Unit

- 1. Clean or change filters.
- Lennox blower motors are prelubricated and permanently sealed. No more lubrication is needed.
- Adjust blower speed for cooling. Measure the pressure drop over the coil to determine the correct blower CFM. Refer to the unit information service manual for pressure drop tables and procedure.
- Belt Drive Blowers Check belt for wear and proper tension.
- 5. Check all wiring for loose connections.
- 6. Check for correct voltage at unit. (blower operating)
- 7. Check amp draw on blower motor.

Notor Nameplate: Actual:	_	
--------------------------	---	--

Page 18 XP16

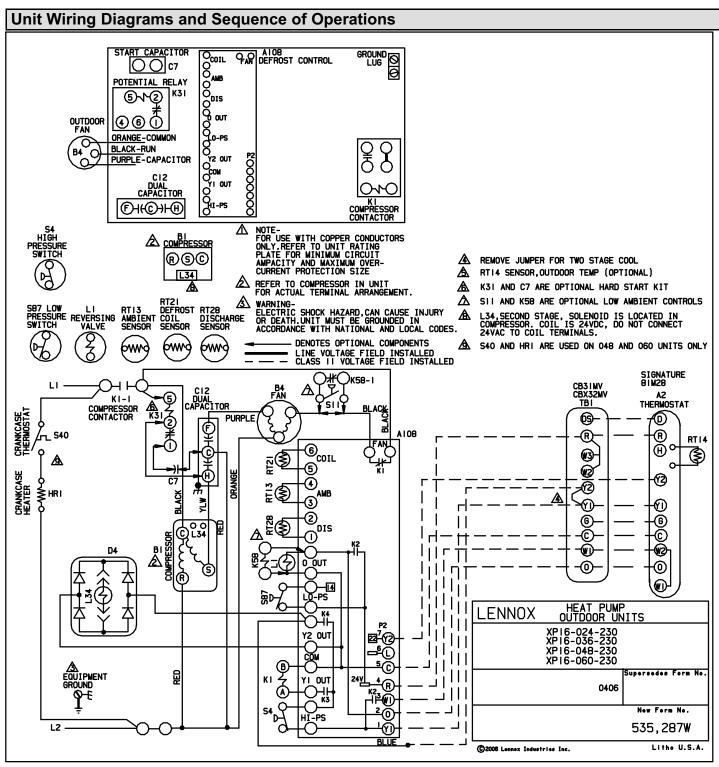


Figure 14. Unit Wiring Diagram (All Sizes) — XP16-XXX-230-01 through 04)

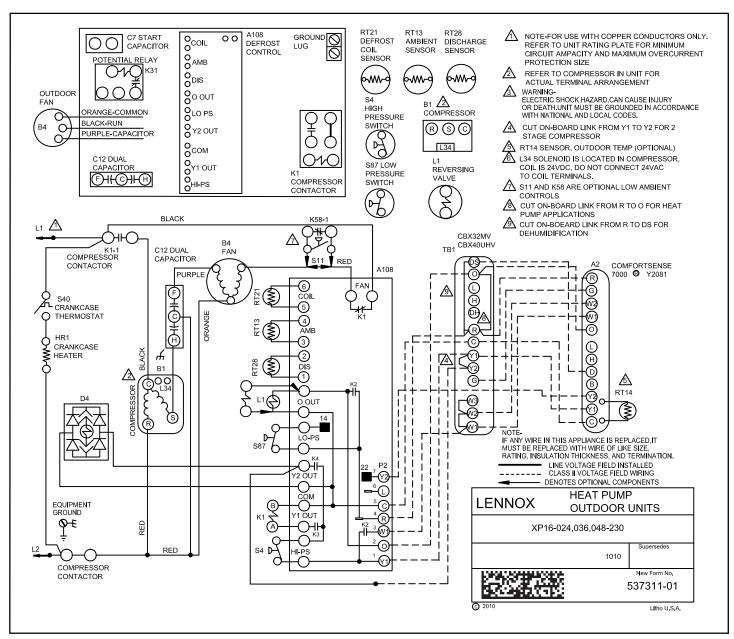


Figure 15. Unit Wiring Diagram (-024, -036 and -048 Sizes) — XP16-XXX-230-05 and later

Page 20 XP16

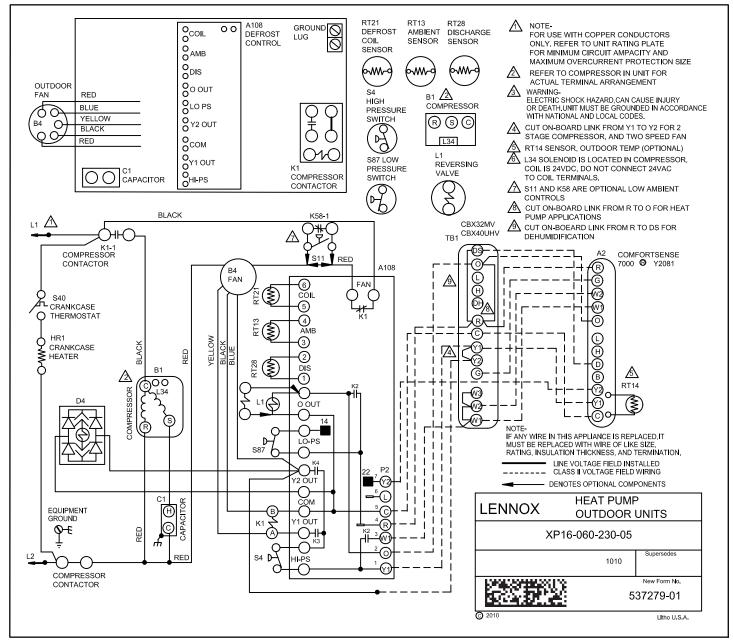


Figure 16. Unit Wiring Diagram (-060 Size Only) — XP16-XXX-230-05 and later

Sequence of Operation XP16-024/060

Cooling

A - First Stage Low Capacity

Transformer from indoor unit supplies 24VAC power to the thermostat and outdoor unit controls.

- 1- Internal wiring energizes terminal O by cooling mode selection, energizing the reversing valve. Cooling demand initiates at Y1 in the thermostat.
- 2 The defrost board checks for open low or high-pressure switches and proper coil, ambient and discharge sensor readings.
 - If checks show no issues, the defrost board sends 24 volts through Y1 OUT signal to the K1 compressor contactor coil.
 - XP16-060-05 only defrost board sends 24 volts through Y1 OUT signal to the yellow wire to the outdoor fan motor.

HARD START KIT IF USED - Compressor begins start up. Relay K31 remains closed during start up and capacitor C7 remains in the circuit. As compressor speeds up K31 is energized, de-energizing capacitor C7.

- 3- K1-1 N.O. closes energizing compressor B1 and outdoor fan motor B4.
- 4- Solenoid L34 is NOT energized.
 - The slider ring remains open limiting compressor to low capacity.
 - XP16-060-05 only The 24 volt input on the yellow wire to the outdoor fan motor will allow it to run on low speed.

B - Second Stage High Capacity

- 5- Second stage thermostat demand goes through Y2 on the defrost board and energizes rectifier plug D4. D4 converts the AC voltage to DC voltage and energizes L34 unloader solenoid.
 - L34 then closes the slider ring, allowing the compressor to operate at high capacity.
 - XP16-060-05 only The 24 volt input to the yellow and blue wires of the outdoor fan will provide high speed operation.

Heating

A - Low Capacity

- 1- Internal wiring de-energizes terminal O by heating mode selection, de-energizing the reversing valve. Heating demand initiates at Y1 in the thermostat.
- 2 The defrost board checks for open low or high-pressure switches and proper coil, ambient and discharge sensor readings.

- If checks show no issues, the defrost board sends 24 volts through Y1 OUT signal to the K1 compressor contactor coil.
- XP16-060-05 only defrost board sends 24 volts through Y1 OUT signal to the yellow wire to the outdoor fan motor.

HARD START KIT IF USED - Compressor begins start up. Relay K31 remains closed during start up and capacitor C7 remains in the circuit. As compressor speeds up K31 is energized, de-energizing capacitor C7.

- K1-1 closes, energizing the compressor and outdoor fan motor.
- 4- Solenoid L34 is NOT energized. The slider ring remains open limiting compressor to low capacity.

B – High Capacity (Ambient temperature <u>above</u> defrost board Y2 lock-in temperature)

- 1- Room thermostat in heating mode. Room thermostat outputs Y1 and Y2 (if applicable to that room thermostat) signal to the defrost board in the heat pump and to the indoor unit.
- 2- The defrost board checks for open low or high-pressure switches and proper coil, ambient and discharge sensor readings.
 - If checks show no issues, the defrost board sends 24 volts through Y1 OUT signal to the K1 compressor contactor coil.
 - XP16-060-05 only defrost board sends 24 volts through Y1 OUT signal to the yellow wire to the outdoor fan motor.
- 3 The defrost board sends:
 - 24 volts through Y2 OUT to the L34 compressor solenoid plug.
 - **XP16-060-05 only** 24 volts through Y2 OUT to the blue wire to the outdoor fan motor.

The 2- wire compressor solenoid plug converts the 24volt AC outputs to a 24volt DC signal input to the L34 internal high capacity solenoid valve in the compressor.

- 4 K1-1 closes, energizing the compressor and outdoor fan motor through the normally closed fan relay contacts on the defrost board.
 - The compressor runs high capacity.
 - XP16-060-05 only The 24 volt input to the The compressor runs high capacity yellow and blue wires of the outdoor fan will provide high speed operation.

Page 22 XP16

B – High Capacity (Ambient temperature <u>below</u> defrost board Y2 lock-in temperature)

- 1 Room thermostat in heating mode. Room thermostat outputs Y1 signal to the defrost board in the heat pump and to the indoor unit.
- 2 The defrost board checks for open low or high-pressure switches and proper coil, ambient and discharge sensor readings.
 - If checks show no issues, the defrost board sends 24 volts through Y1 OUT signal to the K1 compressor contactor coil.
 - XP16-060-05 only defrost board sends 24 volts through Y1 OUT signal to the yellow wire to the outdoor fan motor.
- 3 The defrost board Y2 locks in sends:
 - 24 volts through Y2 OUT to the L34 compressor solenoid plug.
 - **XP16-060-05 only** 24 volts through Y2 OUT to the blue wire to the outdoor fan motor.

The plug converts the 24volt AC outputs to a 24volt DC signal input to the L34 internal high capacity solenoid valve in the compressor.

- K1-1 closes, energizing the compressor and outdoor fan motor through the normally closed fan relay contacts on the defrost board.
 - The compressor runs on high capacity.
 - XP16-060-05 only The 24 volt input to the yellow and blue wires of the outdoor fan will provide high speed operation.

Defrost Mode

When a defrost cycle is initiated, the control energizes the reversing valve solenoid and turns off the condenser fan. The control will also put 24VAC on the "W1" (auxiliary heat) line. The unit will stay in this mode until either the coil sensor temperature is above the selected termination temperature, the defrost time of 14 minutes has been completed, or the room thermostat demand cycle has been satisfied. (If the temperature select shunt is not installed, the default termination temperature will be 90°F.) If the room thermostat demand cycle terminates the cycle, the defrost cycle will be held until the next room thermostat demand cycle. If the coil sensor temperature is still below the selected termination temperature, the control will continue the defrost cycle until the cycle is terminated in one of the methods mentioned above. If a defrost is terminated by time and the coil temperature did not remain above 35°F (2°C) for 4 minutes the control will go to the 30-minute Time/Temperature mode.

Checklists

Two-Stage Modulation Compressors Field Operational Checklist				
Unit Readings	Y1 - First-Stage	Expected results during Y2 demand (Toggle switch On)	Y2 - Second-Stage	
COMPRESSOR				
Voltage		Same		
Amperage		Higher		
OUTDOOR UNIT FAN MOTOR				
Amperage		Same or Higher		
TEMPERATURE				
Ambient		Same		
Outdoor Coil Discharge Air		Higher		
Compressor Discharge Line		Higher		
Indoor Return Air		Same		
Indoor Coil Discharge Air		Lower		
PRESSURES				
Suction (Vapor)		Lower		
Liquid		Higher		

XP16 Start-Up and Performance				
Customer		Addı	ress	
Indoor Unit Model			al	
Outdoor Unit Model		 Seria	al	
Notes:				
START UP CHECKS				
Refrigerant Type:				
1st Stage: Rated Load Amps	Actual Amps		Rated Volts	Actual Volts
2nd Stage: Rated Load Amps	Actual Amps			Actual Volts
Outdoor Unit Fan Full Load Amps				2nd Stage
COOLING MODE				
Suction Pressure: 1st Stage:			2nd Stage:	
Liquid Pressure: 1st Stage:				
Supply Air Temperature: 1st Stage:				
Temperature: Ambient:			Return Air:	
System Refrigerant Charge (Refer to manufaing and approach temperatures.)	cturer's information	n on unit o	or installation instruction	ns for required subcool-
Subcooling:	A		В	SUBCOOLING
Saturated Condensing Temperature (A) minus Liquid Line Temperature (B)		_		=
Approach:	А		В	APPROACH
Liquid Line Temperature (A) <i>minus</i> Outdoor Air Temperature (B)		_		=
Indoor Coil Temperature Drop (18 to 22°F)	Α		В	COIL TEMP DROP
Return Air Temperature (A) <i>minus</i> Supply Air Temperature (B)		_		=

Page 24 XP16

III. INSTALLATION

Unit Placement

A CAUTION

In order to avoid injury, take proper precaution when lifting heavy objects.

See *Unit Dimensions* on page 3 for sizing mounting slab, platforms or supports. Refer to figure 17 for mandatory installation clearance requirements.

POSITIONING CONSIDERATIONS

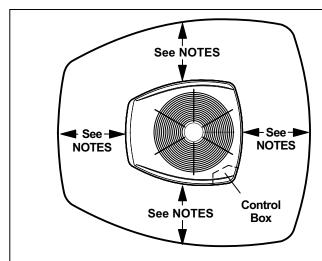
Consider the following when positioning the unit:

- Some localities are adopting sound ordinances based on the unit's sound level registered from the adjacent property, not from the installation property. Install the unit as far as possible from the property line.
- When possible, do not install the unit directly outside a window. Glass has a very high level of sound transmission. For proper placement of unit in relation to a window see the provided illustration in figure 18, detail A.

PLACING UNIT ON SLAB

When installing unit at grade level, the top of the slab should be high enough above grade so that water from higher ground will not collect around the unit. The slab should have a slope tolerance as described in figure 18, detail B.

NOTE — If necessary for stability, anchor unit to slab as described in figure 18, detail D.


ELEVATING THE UNIT

Units are outfitted with elongated support feet as illustrated in figure 18, detail C.

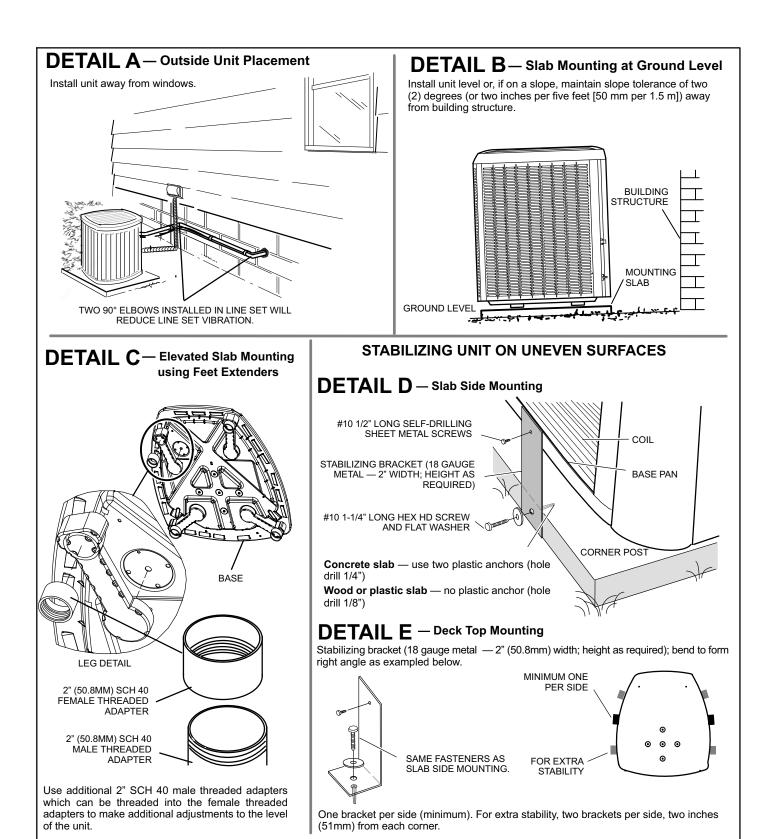
If additional elevation is necessary, raise the unit by extending the height of the unit support feet. This may be achieved by using a 2 inch (50.8mm) Schedule 40 female threaded adapter.

The specified coupling will fit snuggly into the recessed portion of the feet. Use additional 2 inch (50.8mm) Schedule 40 male threaded adaptors which can be threaded into the female threaded adaptors to make additional adjustments to the level of the unit.

NOTE — Keep the height of extenders short enough to ensure a sturdy installation. If it is necessary to extend further, consider a different type of field-fabricated framework that is sturdy enough for greater heights.

NOTES:

Service clearance of 30 in. must be maintained on one of the sides adjacent to the control box.


Clearance to one of the other three sides must be 36 in.

Clearance to one of the remaining two sides may be 12 in. and the final side may be 6 in..

A clearance of 24 in. must be maintained between two units.

48 in. clearance required on top of unit.

Figure 17. Installation Clearances

IMPORTANT — To help stabilize an outdoor unit, some installations may require strapping the unit to the pad using brackets and anchors commonly available in the marketplace.

Figure 18. Placement, Slab Mounting and Stabilizing Unit

Page 26 XP16

STABILIZING UNIT ON UNEVEN SURFACES

A IMPORTANT

Unit Stabilizer Bracket Use (field-provided):

Always use stabilizers when unit is raised above the factory height. (Elevated units could become unstable in gusty wind conditions).

Stabilizers may be used on factory height units when mounted on unstable an uneven surface.

With unit positioned at installation site, perform the following:

- Remove two side louvered panels to expose the unit base.
- 2. Install the brackets as illustrated in figure 18, detail D or E using conventional practices.
- 3. Replace the panels after installation is complete.

ROOF MOUNTING

Install the unit a minimum of 6 inches (152 mm) above the roof surface to avoid ice build-up around the unit. Locate the unit above a load bearing wall or area of the roof that can adequately support the unit. Consult local codes for rooftop applications.

If unit coil cannot be mounted away from prevailing winter winds, a wind barrier should be constructed. Size barrier at least the same height and width as outdoor unit. Mount barrier 24 inches (610 mm) from the sides of the unit in the direction of prevailing winds.

NOTICE

Roof Damage!

This system contains both refrigerant and oil. Some rubber roofing material may absorb oil and cause the rubber to swell when it comes into contact with oil. The rubber will then bubble and could cause leaks. Protect the roof surface to avoid exposure to refrigerant and oil during service and installation. Failure to follow this notice could result in damage to roof surface.

Removing and Installing Panels

▲ IMPORTANT

Do not allow panels to hang on unit by top tab. Tab is for alignment and not designed to support weight of panel.

A IMPORTANT

To help stabilize an outdoor unit, some installations may require strapping the unit to the pad using brackets and anchors commonly available in the marketplace.

▲ WARNING

To prevent personal injury, or damage to panels, unit or structure, be sure to observe the following:

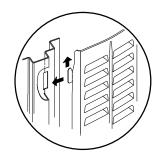
While installing or servicing this unit, carefully stow all removed panels out of the way, so that the panels will not cause injury to personnel, nor cause damage to objects or structures nearby, nor will the panels be subjected to damage (e.g., being bent or scratched).

While handling or stowing the panels, consider any weather conditions, especially windy conditions, that may cause panels to be blown around and battered.

LOUVERED PANEL REMOVAL

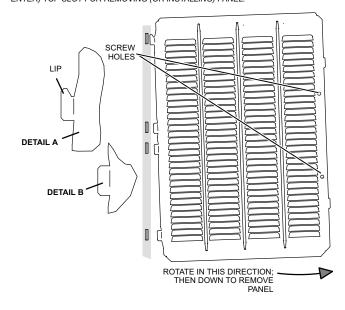
Remove the louvered panels as follows:

- Remove two screws, allowing the panel to swing open slightly.
- Hold the panel firmly throughout this procedure. Rotate bottom corner of panel away from hinged corner post until lower three tabs clear the slots as illustrated in detail B.
- 3. Move panel down until lip of upper tab clears the top slot in corner post as illustrated in **detail A**.


LOUVERED PANEL INSTALLATION

Position the panel almost parallel with the unit as illustrated in **detail D** with the screw side as close to the unit as possible. Then, in a continuous motion:

- Slightly rotate and guide the lip of top tab inward as illustrated in detail A and C; then upward into the top slot of the hinge corner post.
- 2. Rotate panel to vertical to fully engage all tabs.
- Holding the panel's hinged side firmly in place, close the right-hand side of the panel, aligning the screw holes
- 4. When panel is correctly positioned and aligned, insert the screws and tighten.


Detail C

MAINTAIN MINIMUM PANEL ANGLE (AS CLOSE TO PARALLEL WITH THE UNIT AS POSSIBLE) WHILE INSTALLING PANEL.

<u>IMPORTANT!</u> DO NOT ALLOW PANELS TO HANG ON UNIT BY TOP TAB. TAB IS FOR ALIGNMENT AND NOT DESIGNED TO SUPPORT WEIGHT OF PANEL.

PANEL SHOWN SLIGHTLY ROTATED TO ALLOW TOP TAB TO EXIT (OR ENTER) TOP SLOT FOR REMOVING (OR INSTALLING) PANEL.

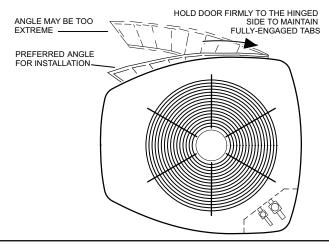


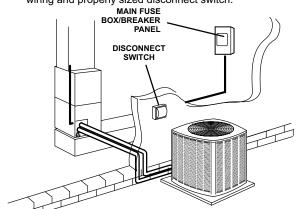
Figure 19. Removing and Installing Panels

Electrical

In the U.S.A., wiring must conform with current local codes and the current National Electric Code (NEC). In Canada, wiring must conform with current local codes and the current Canadian Electrical Code (CEC).

Refer to the furnace or air handler installation instructions for

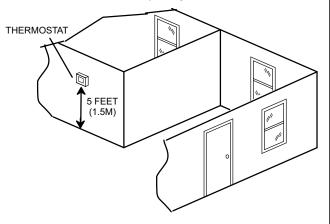
additional wiring application diagrams and refer to unit nameplate for minimum circuit ampacity and maximum overcurrent protection size.

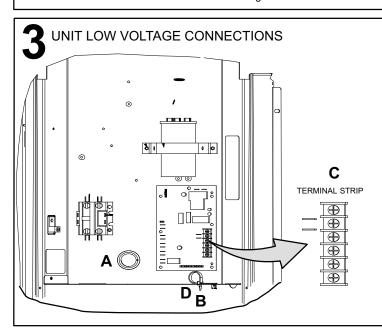

24VAC TRANSFORMER

Use the transformer provided with the furnace or air handler for low-voltage control power (24VAC - 40 VA minimum)

Page 28 XP16

SIZE CIRCUIT AND INSTALL DISCONNECT SWITCH


Refer to the unit nameplate for minimum circuit ampacity, and maximum fuse or circuit breaker (HACR per NEC). Install power wiring and properly sized disconnect switch.


NOTE — Units are approved for use only with copper conductors. Ground unit at disconnect switch or to an earth ground.

INSTALL THERMOSTAT

Install room thermostat (ordered separately) on an inside wall approximately in the center of the conditioned area and 5 feet (1.5m) from the floor. It should not be installed on an outside wall or where it can be affected by sunlight or drafts.

NOTE — 24VAC, Class II circuit connections are made in the control panel.

HIGH VOLTAGE FIELD WIRINGFACTORY WIRING

■ LOW VOLTAGE (24V) FIELD WIRING

WIRE RUN LENGTH	AWG# INSULATION TYPE		
LESS THAN 100' (30 METERS)	18 TEMPERATURE RATING		
MORE THAN 100' (30 METERS)	16 35°C MINIMUM.		

- A Run 24VAC control wires through cutout with grommet.
- B Run 24VAC control wires through wire tie.
- C Make 24VAC control wire connections defrost control terminal strip.
- D Tighten wire tie to security 24V control wiring.

NOTE - FOR PROPER VOLTAGES, SELECT THERMOSTAT WIRE (CONTROL WIRES) GAUGE PER TABLE ABOVE.

NOTE - WIRE TIE PROVIDES LOW VOLTAGE WIRE STRAIN RELIEF AND TO MAINTAIN SEPARATION OF FIELD INSTALLED LOW AND HIGH VOLTAGE CIRCUITS.

NOTE - DO NOT BUNDLE ANY EXCESS 24VAC CONTROL WIRES INSIDE CONTROL BOX.

New or Replacement Line Set

REFRIGERANT LINE SET

This section provides information on installation or replacement of existing line set. If new or replacement line set is not being installed then proceed to *Brazing Connections* on page 32.

A IMPORTANT

Lennox highly recommends changing line set when converting the existing system from HCFC-22 to HFC-410A If that is not possible and the line set is the proper size as reference in table 2, use the procedure outlined under Flushing the System on page 13.

If refrigerant lines are routed through a wall, then seal and isolate the opening so vibration is not transmitted to the building. Pay close attention to line set isolation during installation of any HVAC system. When properly isolated from building structures (walls, ceilings. floors), the refrigerant lines will not create unnecessary vibration and subsequent sounds. See figure 20 for recommended installation practices. Also, consider the following when placing and installing a high-efficiency outdoor unit.

Liquid lines that meter the refrigerant, such as RFC1 liquid lines, must not be used in this application. Existing line set of proper size as listed in table 6 may be reused. If system was previously charged with HCFC-22 refrigerant, then existing line set must be flushed (see *Flushing the System* on page 35).

Field refrigerant piping consists of liquid and vapor lines from the outdoor unit to the indoor unit coil (braze connections). Use Lennox L15 (sweat, non-flare) series line set, or field-fabricated refrigerant line sizes as listed in table 6.

Table 6. Refrigerant Line Set — Inches (mm)

	Valve Field Connections		Recommended Line Set		
Model	Liquid Line	Vapor Line	Liqui d Line	Vapor Line	L15 Line Sets
-018 -024 -030	3/8 in. (10 mm)	3/4 in (19 mm)	3/8 in. (10 mm)	3/4 in (19 mm)	L15-41 15 ft 50 ft. (4.6 m - 15 m)
-036 -042 -048	3/8 in. (10 mm)	7/8 in (22 mm)	3/8 in. (10 mm)	7/8 in (22 mm)	L15-65 15 ft 50 ft. (4.6 m - 15 m)
-060	3/8 in. (10 mm)	1-1/8 in. (29 mm)	3/8 in. (10 mm)	1-1/8 in. (29 mm)	Field Fabricated

NOTE — When installing refrigerant lines longer than 50 feet, see the Lennox Refrigerant Piping Design and Fabrication Guidelines, CORP. 9351-L9, or contact Lennox Technical Support Product Applications for assistance.

To obtain the correct information from Lennox, be sure to communicate the following information:

- Model (XP16) and size of unit (e.g. -036).
- Line set diameters for the unit being installed as listed in table 6 and total length of installation.
- Number of elbows vertical rise or drop in the piping.

The compressor is charged with sufficient Polyol ester oil for line set lengths up to 50 feet. Recommend adding oil to system based on the amount of refrigerant charge in the system. No need to add oil in system with 20 pounds of refrigerant or less. For systems over 20 pounds - add one ounce of every five pounds of refrigerant.

Recommended topping-off POE oils are Mobil EAL ARCTIC 22 CC or ICI EMKARATE™ RL32CF.

▲ WARNING

Polyol Ester (POE) oils used with HFC-410A refrigerant absorb moisture very quickly. It is very important that the refrigerant system be kept closed as much as possible. DO NOT remove line set caps or service valve stub caps until you are ready to make connections.

A IMPORTANT

Mineral oils are not compatible with HFC-410A If oil must be added, it must be a Polyol Ester oil.

Page 30 XP16

Line Set Isolation — The following illustrations are examples of proper refrigerant line set isolation: **REFRIGERANT LINE SET — TRANSITION** REFRIGERANT LINE SET — INSTALLING **VERTICAL RUNS (NEW CONSTRUCTION SHOWN)** FROM VERTICAL TO HORIZONTAL NOTE — Insulate liquid line when it is routed through areas where the surrounding ambient temperature could become higher than the ANCHORED HEAVY NYLON temperature of the liquid line or when pressure drop is equal to or WIRE TIE OR AUTOMOTIVE **AUTOMOTIVE** greater than 20 psig. MUFFLER-TYPE HANGER MUFFLER-TYPE HANGER **OUTSIDE WALL** LIQUID LINE VAPOR LINE WALL WIRE TIE STUD INSIDE WALL STRAP WOOD BLOCK STRAP LIQUID LINE TO VAPOR LINE NON-CORROSIVE BETWEEN STUDS METAL SLEEVE WIRE TIE LIQUID LINE NON-CORROSIVE METAL SLEEVE WOOD BLOCK VAPOR LINE - WRAPPED WIRE TIE IN ARMAFLEX STRAP REFRIGERANT LINE SET — INSTALLING **HORIZONTAL RUNS** SLEEVE To hang line set from joist or rafter, use either metal strapping material or anchored heavy nylon wire ties. WIRE TIE (AROUND VAPOR LINE ONLY) VAPOR LINE WRAPPED WITH ARMAFLEX 8 FEET (2.43 METERS) OUTSIDE **STRAPPING** WALL LIQUID MATERIAL (AROUND LINE VAPOR LINE ONLY) FLOOR JOIST OR ROOF RAFTER TAPE OR WIRE TIE 8 FEET (2.43 METERS) PVC CAULK PIPF NON-CORROSIVE **FIBERGLASS** METAL SLEEVE INSULATION STRAP THE VAPOR LINE TO THE TAPE OR JOIST OR RAFTER AT 8 FEET (2.43 WIRE TIE METERS) INTERVALS THEN STRAP NOTE — Similar installation practices should be used if line set THE LIQUID LINE TO THE VAPOR LINE. is to be installed on exterior of outside wall. FLOOR JOIST OR ROOF RAFTER

Figure 20. Line Set Installation

Brazing Connections

Use the procedures outline in figures 21 and 22 for brazing line set connections to service valves.

WARNING

Danger of fire. Bleeding the refrigerant charge from only the high side may result in pressurization of the low side shell and suction tubing. Application of a brazing torch to a pressurized system may result in ignition of the refrigerant and oil mixture - Check the high and low pressures before applying heat.

▲ WARNING

When using a high pressure gas such as dry nitrogen to pressurize a refrigeration or air conditioning system, use a regulator that can control the pressure down to 1 or 2 psig (6.9 to 13.8 kPa).

▲ CAUTION

Brazing alloys and flux contain materials which are hazardous to your health.

Avoid breathing vapors or fumes from brazing operations. Perform operations only in well-ventilated areas.

Wear gloves and protective goggles or face shield to protect against burns.

Wash hands with soap and water after handling brazing alloys and flux.

A IMPORTANT

Connect gauge set low pressure side to vapor line service valve and repeat procedure starting at paragraph 4 for brazing the liquid line to service port valve.

▲ IMPORTANT

Allow braze joint to cool before removing the wet rag from the service valve. Temperatures above 250°F can damage valve seals.

A IMPORTANT

Use silver alloy brazing rods with 5% minimum silver alloy for copper-to-copper brazing. Use 45% minimum alloy for copper-to-brass and copper-to-steel brazing.

AWARNING

Fire, Explosion and Personal Safety Hazard.

Failure to follow this warning could result in damage, personal injury or death.

Never use oxygen to pressurize or purge refrigeration lines. Oxygen, when exposed to a spark or open flame, can cause fire and/or an explosion, that could result in property damage, personal injury or death.

Page 32 XP16

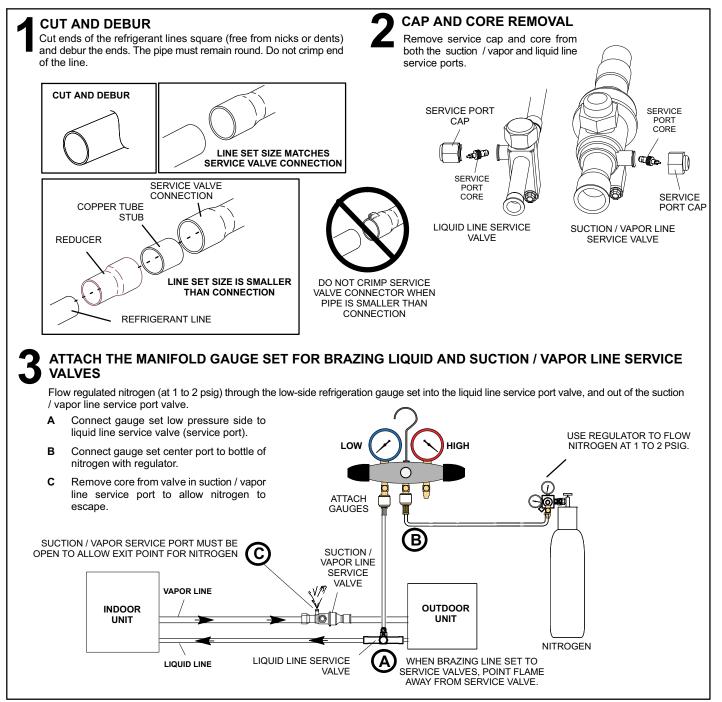
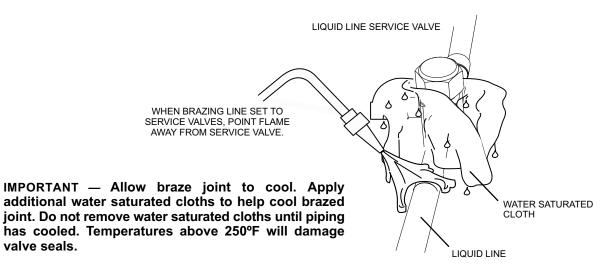
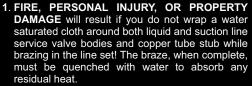


Figure 21. Brazing Procedures

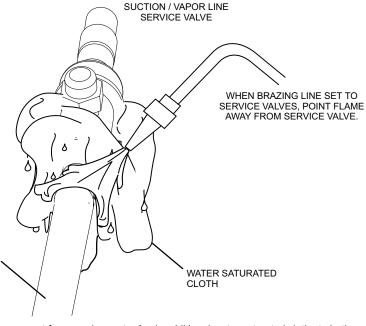

To help protect service valve seals during brazing, wrap water saturated cloths around service valve bodies and copper tube stubs. Use additional water saturated cloths underneath the valve body to protect the base paint.

FLOW NITROGEN


Flow regulated nitrogen (at 1 to 2 psig) through the refrigeration gauge set into the valve stem port connection on the liquid service valve and out of the suction / vapor valve stem port. See steps 3A, 3B and 3C on manifold gauge set connections

BRAZE LINE SET

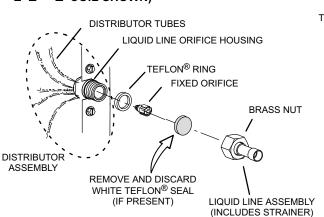
Wrap both service valves with water saturated cloths as illustrated here and as mentioned in step 4, before brazing to line set. Water saturated cloths must remain water saturated throughout the brazing and cool-down process.



valve seals.

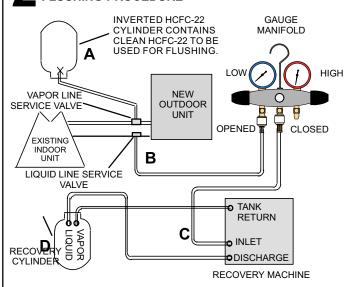
WARNING

Do not open service valves until refrigerant lines and indoor coil have been leak-tested and evacuated. Refer to procedures provided in this supplement.

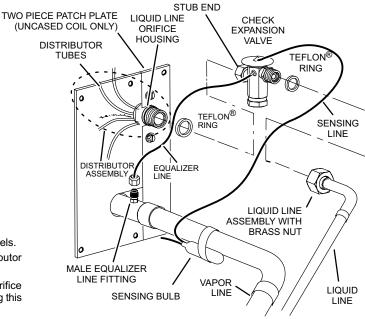


After all connections have been brazed, disconnect manifold gauge set from service ports. Apply additional water saturated cloths to both services valves to cool piping. Once piping is cool, remove all water saturated cloths. Refer to the unit installation instructions for the next step in preparing the unit.

SUCTION / VAPOR LINE


Figure 22. Brazing Procedures (continued)

TYPICAL EXISTING FIXED ORIFICE REMOVAL PROCEDURE (UNCASED OR **COIL SHOWN)**


- On fully cased coils, remove the coil access and plumbing panels.
- В Remove any shipping clamps holding the liquid line and distributor
- C Using two wrenches, disconnect liquid line from liquid line orifice housing. Take care not to twist or damage distributor tubes during this
- D Remove and discard fixed orifice, valve stem assembly if present and A Teflon® washer as illustrated above.
- Ε Use a field-provided fitting to temporary reconnect the liquid line to the indoor unit's liquid line orifice housing.

CONNECT GAUGES AND EQUIPMENT FOR **FLUSHING PROCEDURE**

- Α Inverted HCFC-22 cylinder with clean refrigerant to the vapor service valve
- В HCFC-22 gauge set (low side) to the liquid line valve.
- С HCFC-22 gauge set center port to inlet on the recovery machine with an empty recovery tank to the gauge set.
- D Connect recovery tank to recovery machines per machine instructions.

TYPICAL EXISTING EXPANSION VALVE REMOVAL PROCEDURE (UNCASED COIL SHOWN)

- On fully cased coils, remove the coil access and plumbing panels.
 - Remove any shipping clamps holding the liquid line and distributor assembly.
- С Disconnect the equalizer line from the check expansion valve equalizer line fitting on the vapor line.
- D Remove the vapor line sensing bulb.
- Disconnect the liquid line from the check expansion valve at the liquid Ε line assembly.
- Disconnect the check expansion valve from the liquid line orifice housing. Take care not to twist or damage distributor tubes during this process
- Remove and discard check expansion valve and the two Teflon® G rings.
- н Use a field-provided fitting to temporary reconnect the liquid line to the indoor unit's liquid line orifice housing.

FLUSHING LINE SET

The line set and indoor unit coil must be flushed with at least the same amount of clean refrigerant that previously charged the system. Check the charge in the flushing cylinder before proceeding

- Set the recovery machine for liquid recovery and start the recovery machine. Open the gauge set valves to allow the recovery machine to pull a vacuum on the existing system line set and indoor unit coil.
- Invert the cylinder of clean HCFC-22 and open its valve to allow liquid refrigerant to flow into the system through the vapor line valve. Allow the refrigerant to pass from the cylinder and through the line set and the indoor unit coil before it enters the recovery machine.
- After all of the liquid refrigerant has been recovered, switch the recovery machine to vapor recovery so that all of the HCFC-22 vapor is recovered. Allow the recovery machine to pull down to 0 the system.
- Close the valve on the inverted HCFC-22 drum and the gauge set valves. Pump the remaining refrigerant out of the recovery machine and turn the machine off.

Figure 23. Installing Indoor Expansion Valve

В

Page 35 XP16

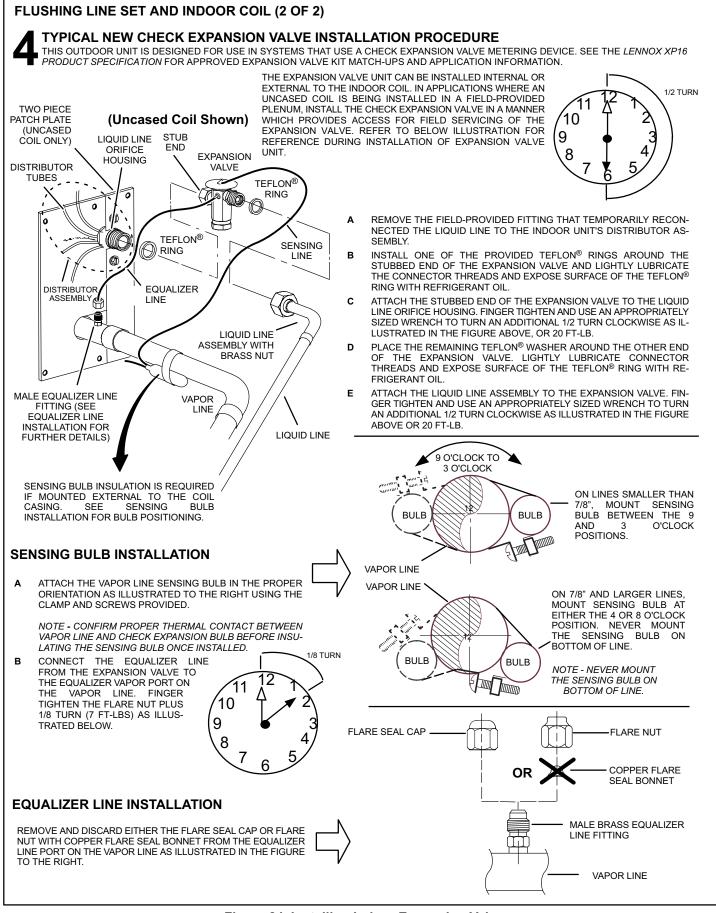


Figure 24. Installing Indoor Expansion Valve

Page 36 XP16

A IMPORTANT

The Environmental Protection Agency (EPA) prohibits the intentional venting of HFC refrigerants during maintenance, service, repair and disposal of appliance. Approved methods of recovery, recycling or reclaiming must be followed.

A IMPORTANT

If this unit is being matched with an approved line set or indoor unit coil which was previously charged with mineral oil, or if it is being matched with a coil which was manufactured before January of 1999, the coil and line set must be flushed prior to installation. Take care to empty all existing traps. Polyol ester (POE) oils are used in Lennox units charged with HFC-410A refrigerant. Residual mineral oil can act as an insulator, preventing proper heat transfer. It can also clog the expansion device, and reduce the system performance and capacity.

Failure to properly flush the system per the instructions below will void the warranty.

Leak Test Line Set and Indoor Coil

▲ WARNING

I OW

When using a high pressure gas such as dry nitrogen to pressurize a refrigeration or air conditioning system, use a regulator that can control the pressure down to 1 or 2 psig (6.9 to 13.8 kPa).

MPORTANT

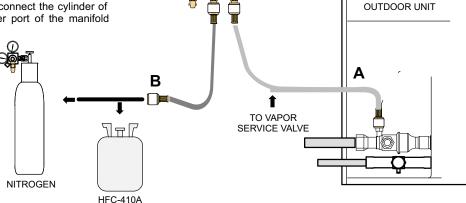
Leak detector must be capable of sensing HFC refrigerant.

WARNING

Refrigerant can be harmful if it is inhaled. Refrigerant must be used and recovered responsibly.

Failure to follow this warning may result in personal injury or death.

MANIFOLD GAUGE SET


CONNECT GAUGE SET

A Connect an HFC-410A manifold gauge set high pressure hose to the vapor valve service port.

NOTE — Normally, the high pressure hose is connected to the liquid line port. However, connecting it to the vapor port better protects the manifold gauge set from high pressure damage.

B With both manifold valves closed, connect the cylinder of HFC-410A refrigerant to the center port of the manifold gauge set

NOTE — Later in the procedure, the HFC-410A container will be replaced by the nitrogen container

HIGH

2

TEST FOR LEAKS

After the line set has been connected to the indoor and outdoor units, check the line set connections and indoor unit for leaks. Use the following procedure to test for leaks:

- A With both manifold valves closed, connect the cylinder of HFC-410A refrigerant to the center port of the manifold gauge set. Open the valve on the HFC-410A cylinder (vapor only).
- B Open the high pressure side of the manifold to allow HFC-410A into the line set and indoor unit. Weigh in a trace amount of HFC-410A. [A trace amount is a maximum of two ounces (57 g) refrigerant or three pounds (31 kPa) pressure]. Close the valve on the HFC-410A cylinder and the valve on the high pressure side of the manifold gauge set. Disconnect the HFC-410A cylinder.
- C Connect a cylinder of dry nitrogen with a pressure regulating valve to the center port of the manifold gauge set.
- D Adjust dry nitrogen pressure to 150 psig (1034 kPa). Open the valve on the high side of the manifold gauge set in order to pressurize the line set and the indoor unit.
- E After a few minutes, open one of the service valve ports and verify that the refrigerant added to the system earlier is measurable with a leak detector.
- **F** After leak testing disconnect gauges from service ports.

Figure 25. Leak Test

Evacuating the System

Evacuating the system of non-condensables is critical for proper operation of the unit. Non-condensables are defined as any gas that will not condense under temperatures and pressures present during operation of an air conditioning system. Non-condensables and water suction combine with refrigerant to produce substances that corrode copper piping and compressor parts.

WARNING

Danger of Equipment Damage. Avoid deep vacuum operation. Do not use compressors to evacuate a system. Extremely low vacuums can cause internal arcing and compressor failure. Damage caused by deep vacuum operation will void warranty.

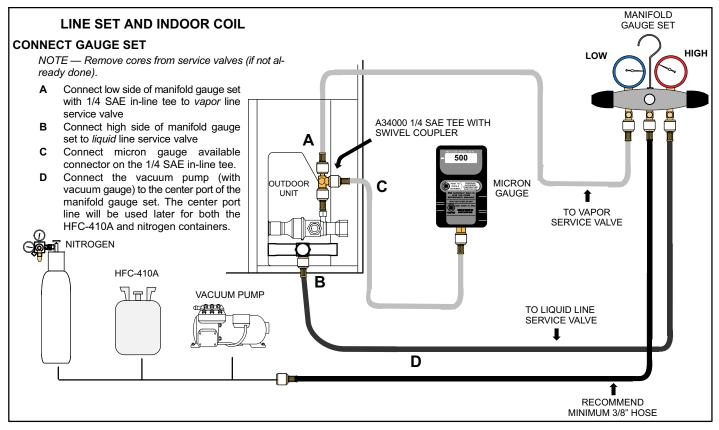


Figure 26. Connecting Gauge Set

EVACUATE LINE SET AND INDOOR COIL

The unit is shipped with a factory refrigerant charge. The liquid and suction line valves were closed after final testing at the factory. Do not operate these valves until the line set and indoor coil have been evacuated and leak checked, or the charge is lost.

Note: Do not use any portion of the factory charge for purging or leak testing. The factory charge is for filling the system only after a complete evacuation and leak check has been performed.

Line set and indoor coil should be evacuated using the recommend deep vacuum method of 500 microns. If deep vacuum equipment is not available, the alternate triple evacuation method may be used by following the specified procedure.

If vacuum must be interrupted during the evacuation procedure, always break vacuum with dry nitrogen.

Deep Vacuum Method

The deep vacuum method requires a vacuum pump capable of pulling a vacuum to 500 microns and a vacuum gauge capable of accurately measuring this vacuum level. The deep vacuum method is the most positive way of assuring a system is free of air and water.

Watch the vacuum gauge as the system is pulling down. The response of the gauge is an indicator of the condition of the system (refer to figure 27).

With no leaks in the system, allow the vacuum pump to run for 30 minutes minimum at the deep vacuum level.

Page 38 XP16

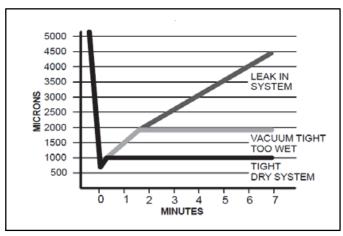


Figure 27. Deep Vacuum Gauge Response and System Conditions

Triple Evacuation Method

The triple evacuation method should only be used when system does not contain any water in liquid form and vacuum pump is only capable of pulling down to 28 inches of mercury (711mm Hg). Refer to figure 28 and proceed as follows:

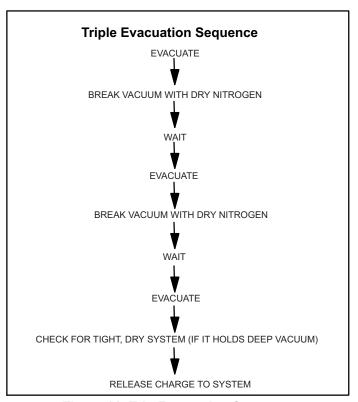


Figure 28. Trip Evacuation Sequence

IV. SYSTEM CHARGE

Servicing Units Void of Charge

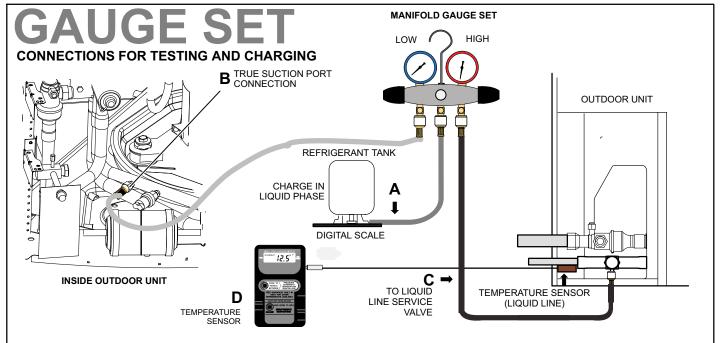
If the outdoor unit is void of refrigerant, clean the system using the procedure described below.

- Leak check system using procedure outlined on page 37.
- 2. Evacuate the system using procedure outlined on Page 38.
- 3. Use nitrogen to break the vacuum and install a new filter drier in the system.
- **4**. Evacuate the system again using procedure outlined on Page 38.
- Weigh in refrigerant using procedure outlined in figure 31.
- 6. Monitor the system to determine the amount of moisture remaining in the oil. It may be necessary to replace the filter drier several times to achieve the required dryness level. If system dryness is not verified, the compressor will fail in the future.

Unit Start-Up

A IMPORTANT

If unit is equipped with a crankcase heater, it should be energized 24 hours before unit start-up to prevent compressor damage as a result of slugging.


1. Rotate fan to check for binding.

- Inspect all factory- and field-installed wiring for loose connections.
- 3. After evacuation is complete, open both the liquid and vapor line service valves to release the refrigerant charge contained in outdoor unit into the system.
- Replace the stem caps and tighten to the value listed in table 1.
- 5. Check voltage supply at the disconnect switch. The voltage must be within the range listed on the unit's nameplate. If not, do not start the equipment until you have consulted with the power company and the voltage condition has been corrected.
- Set the thermostat for a cooling demand. Turn on power to the indoor indoor unit and close the outdoor unit disconnect switch to start the unit.
- 7. Recheck voltage while the unit is running. Power must be within range shown on the nameplate.
- **8**. Check system for sufficient refrigerant by using the procedures listed under *System Charge*.

System Refrigerant

This section outlines procedures for:

- 1. Connecting gauge set for testing and charging;
- 2. Checking and adjusting indoor airflow;
- 3. Adding or removing refrigerant.

- A Close manifold gauge set valves and connect the center hose to a cylinder of HFC-410A. Set for liquid phase charging.
- B Connect the manifold gauge set's low pressure side to the true suction port. See figure 1 for approximate location of the true suction port.
- C Connect the manifold gauge set's high pressure side to the liquid line service port.
- **D** Position temperature sensor on liquid line near liquid line service port.

Figure 29. Gauge Set Setup and Connections

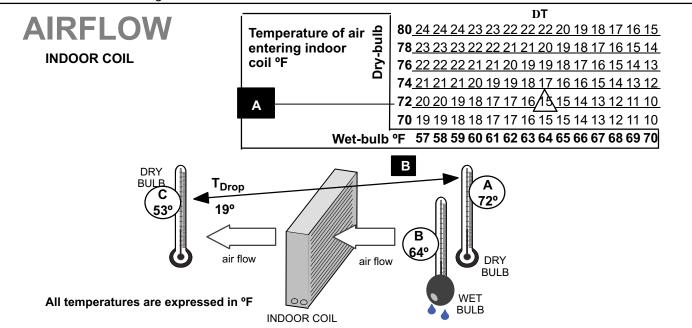
Page 40 XP16

ADDING OR REMOVING REFRIGERANT

This system uses HFC-410A refrigerant which operates at much higher pressures than HCFC-22. The pre-installed liquid line filter drier is approved for use with HFC-410A only. Do not replace it with components designed for use with HCFC-22.

COOLING MODE INDOOR AIRFLOW CHECK

Check airflow using the Delta-T (DT) process using the illustration in Figure 30.


HEATING MODE INDOOR AIRFLOW CHECK

Blower airflow (CFM) may be calculated by energizing electric heat and measuring:

- Temperature rise between the return air and supply air temperatures at the indoor coil blower unit,
- Measuring voltage supplied to the unit,
- Measuring amperage being drawn by the heat unit(s).

Then, apply the measurements taken in following formula to determine CFM:

CFM =
$$\frac{\text{Amps x Volts x 3.41}}{1.08 \text{ x Temperature rise (F)}}$$

Use the following procedure to adjust for optimal air flow across the indoor coil:

- 1. **Determine the desired DT** Measure entering air temperature using dry bulb (**A**) and wet bulb (**B**). **DT** is the intersecting value of **A** and **B** in the table (see triangle).
- 2. Find temperature drop across coil Measure the coil's dry bulb entering and leaving air temperatures (A and C). Temperature Drop Formula: (T_{Drop}) = A minus C.
- 3. Determine if fan needs adjustment If the difference between the measured T_{Drop} and the desired DT (T_{Drop}-DT) is within ±3°, no adjustment is needed. See example below:

Assume **DT** = 15 and **A** temp. = 72°, these **C** temperatures would necessitate stated actions:

C°	T _{Drop} –	DT	=	°F ACTION	Changing air flow affects all temperatures; recheck temperatures to
53°	19 –	15	=	4 Increase the airflow	confirm that the temperature drop and DT are within ±3°.
58°	14 –	15	=	-1 (within <u>+</u> 3° range) no change	
62°	10 –	15	=	-5 Decrease the airflow	
4. A	djust the fa	ın spec	ed —	See indoor unit instructions to increase/decr	ease fan speed.

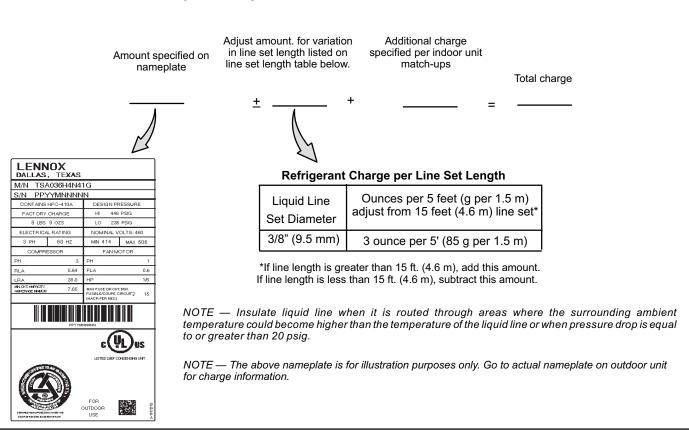
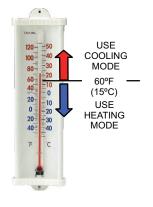
Figure 30. Checking Indoor Airflow over Evaporator Coil using Delta-T Chart Formula

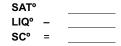
WEIGH IN

CHARGING METHOD

CALCULATING SYSTEM CHARGE FOR OUTDOOR UNIT VOID OF CHARGE

If the system is void of refrigerant, first, locate and repair any leaks and then weigh in the refrigerant charge into the unit. To calculate the total refrigerant charge:


Figure 31. Using HFC-410A Weigh In Method

Page 42 XP16

SUBCOOLING

CHARGING METHOD

- 1. Check the airflow as illustrated in figure 30 to be sure the indoor airflow is as required. (Make any air flow adjustments before continuing with the following procedure.)
- 2. Measure outdoor ambient temperature; determine whether to use **cooling mode** or **heating mode** to check charge.
- 3. Connect gauge set.
- Check liquid and vapor line pressures. Compare pressures with either heat or cooling mode normal operating pressures in the Normal Operating Pressures Tables, Second Stage — High Capacity.

NOTE — The reference table is a general guide. Expect minor pressure variations. Significant differences may mean improper charge or other system problem.

5. Set thermostat for heat/cool demand, depending on mode being used:

USING COOLING MODE — When the outdoor ambient temperature is 60°F (15°C) and above. Target subcooling values (second stage - high capacity) in the Normal Operating Pressures Tables are based on 70 to 80°F (21-27°C) indoor return air temperature; if necessary, operate heating to reach that temperature range; then set thermostat to cooling mode setpoint to 68°F (20°C) which should call for second-stage (high capacity) cooling. When pressures have stabilized, continue with Step 6.

USING HEATING MODE — When the outdoor ambient temperature is below 60°F (15°C). Target subcooling values (second-stage - high capacity) in the Normal Operating Pressures Tables are based on 65-75°F (18-24°C) indoor return air temperature; if necessary, operate cooling to reach that temperature range; then set thermostat to heating mode setpoint to 77°F (25°C) which should call for second-stage (high capacity) heating. When pressures have stabilized, continue with Step 6.

- **6**. Read the liquid line temperature; record in the LIQ^o space.
- 7. Read the liquid line pressure; then find its corresponding temperature in the temperature/ pressure chart listed in table 7 and record it in the SAT° space.
- 8. Subtract LIQ° temperature from SAT° temperature to determine subcooling; record it in SC° space.
- 9. Compare SC^o results with tables under Indoor unit match ups, being sure to note any additional charge for line set and/or match-up.
- **10**. If subcooling value is greater than shown in tables under indoor unit matchups for the applicable unit, remove refrigerant; if less than shown, add refrigerant.
- If refrigerant is added or removed, repeat steps 5 through 6 to verify charge.
- **12**. Disconnect gauge set and re-install both the liquid and suction service valve caps.

Figure 32. Using HFC-410A Subcooling Method — Second Stage (High Capacity)

Table 7. HFC-410A Temperature (°F) - Pressure (Psig)

°F	Psig	°F	Psig	°F	Psig	°F	Psig
32	100.8	63	178.5	94	290.8	125	445.9
33	102.9	64	181.6	95	295.1	126	451.8
34	105.0	65	184.3	96	299.4	127	457.6
35	107.1	66	187.7	97	303.8	128	463.5
36	109.2	67	190.9	98	308.2	129	469.5
37	111.4	68	194.1	99	312.7	130	475.6
38	113.6	69	197.3	100	317.2	131	481.6
39	115.8	70	200.6	101	321.8	132	487.8
40	118.0	71	203.9	102	326.4	133	494.0
41	120.3	72	207.2	103	331.0	134	500.2
42	122.6	73	210.6	104	335.7	135	506.5
43	125.0	74	214.0	105	340.5	136	512.9
44	127.3	75	217.4	106	345.3	137	519.3
45	129.7	76	220.9	107	350.1	138	525.8
46	132.2	77	224.4	108	355.0	139	532.4
47	134.6	78	228.0	109	360.0	140	539.0
48	137.1	79	231.6	110	365.0	141	545.6
49	139.6	80	235.3	111	370.0	142	552.3
50	142.2	81	239.0	112	375.1	143	559.1
51	144.8	82	242.7	113	380.2	144	565.9
52	147.4	83	246.5	114	385.4	145	572.8
53	150.1	84	250.3	115	390.7	146	579.8
54	152.8	85	254.1	116	396.0	147	586.8
55	155.5	86	258.0	117	401.3	148	593.8
56	158.2	87	262.0	118	406.7	149	601.0
57	161.0	88	266.0	119	412.2	150	608.1
58	163.9	89	270.0	120	417.7	151	615.4
59	166.7	90	274.1	121	423.2	152	622.7
60	169.6	91	278.2	122	428.8	153	630.1
61	172.6	92	282.3	123	434.5	154	637.5
62	175.4	93	286.5	124	440.2	155	645.0

Page 44 XP16

APPENDIX A - UNIT CHARGING STICKERS

This section contains all published charging stickers for the various versions of this model. Below is a table listing the applicable sticker to unit model number.

Table 8. Applicable Charging Sticker by Unit Model Number

Unit Model Number			Unit Charging S	Sticker Numbers									
	401193S	401233S	580094-01	580275-01	580523-01	580655-01							
	Reference charging stickers above are located at the end of this manual.												
XP16-024-230-XX	-01	-03	-04	-05, -06, -07	-08								
XP16-036-230-XX	-01, -02	-03	-04	-05, -06	-07	-08							
XP16-048-230-XX	-01, -02 -03 -04		-05, -06	-07									
XP16-060-230-XX	-01, -02 -03 -04		-05, -06	-07									

XP16 CHARGING PROCEDURE

If the system is low on charge, follow the appropriate procedure outlined below. Charging should be done with unit operating in the cooling mode, if possible.

Charge Using The Weigh-in Method—Outdoor Temperature < 65°F (18°C)

If the system is void of refrigerant, or if the outdoor ambient temperature is cool, the refrigerant charge should be weighed into the unit. Do this after any leaks have been repaired.

- Recover the refrigerant from the unit.
- Conduct a leak check, then evacuate as previously outlined.
- 3. Weigh in the unit nameplate charge. If weighing facilities are not available or if you are charging the unit during warm weather, follow one of the other procedures outlined be-

Charge Using The Subcooling Method—Outdoor Temperature < 65°F (18°C)

When the outdoor ambient temperature is below 65°F (18°C), use the subcooling method to charge the unit. It may be necessary to restrict the air flow through the outdoor coil to achieve pressures in the 325-375 psig (2240-2585 kPa) range. These higher pressures are necessary for checking the charge. Block equal sections of air intake panels and move obstructions sideways until the liquid pressure is in the 325-375 psig (2240-2585 kPa) range. See figure 1.

Block coil one side at a time with cardboard/plastic until proper testing pressures are reached.

Figure 1. Blocking Outdoor Coil

- 1. With manifold gauge hose still on the liquid service port and unit operating stably, use a digital thermometer to record the liquid line temperature. At the same time, record the liquid line pressure reading.
- 2. Use a temperature/pressure chart for R-410A to determine the saturation temperature for the liquid line pressure reading
- 3. Subtract the liquid line temperature from the saturation temperature (according to the chart) to determine subcooling. (Saturation temperature - Liquid line temperature = Subcooling)
- Compare subcooling values with those in table 1; if subcooling is greater than shown, recover some refrigerant. If subcooling is less than shown, add some refrigerant.

Charge Using Normal Operating Pressures/Approach Method—Outdoor Temperature >65°F (18°C)

When outdoor ambient temperature is above 65°F (18°C), use approach charge method. For best results, indoor temperature should be 70°F (21°C) to 80°F (26°C). Monitor system pressures while charging.

- Record outdoor ambient temperature using a digital thermometer.
- 2. Attach high pressure gauge set; operate unit for several minutes; allow system pressures to stabilize.
- 3. Compare stabilized pressures with those provided in table 3. Minor variations in these pressures may be expected due to differences in installations. Significant differences could mean that the system is not properly charged or that a problem exists with some component in the system. Pressures higher than those listed indicate that the system is overcharged. Pressures lower than those listed indicate that the system is undercharged. Verify adjusted charge using the approach method.
- 4. Use the same digital thermometer to check both outdoor ambient temperature and liquid line temperature. Verify the unit charge using the approach method.
- 5. The difference between the ambient and liquid temperatures should match values given in table 2. If values do not agree with the those in table 2, add refrigerant to lower the approach temperature or recover refrigerant from the system to increase the approach temperature.

02/06

Using the Normal Operating Pressures Table

Use table 3 as a general guide when performing maintenance checks. This is not a procedure for charging the unit (see Charging/Checking Charge section). Minor variations in normal operating pressures may be expected due to differences in installations. Significant differences could mean that the system is not properly charged or that a problem exists with some component in the system.

XP16 Model	-0	24	-0	36	-0	48	-0	60
Table 1 - Sul	cooling	Values						
Saturation Tem				Temperat	ture °F (°	C) <u>+</u> 1°F	(0.5°C)	
Temp. °F (°C)	8 (4	1.4)	7 (3	3.9)	9	(5)	8 (4	4.4)
Table 2 - Apr	oroach \	/alues			Ц		l.	
Liquid Line Ten			utdoor An	nbient Te	mperatur	e °F (°C)	+ 1°F (0.	.5°C)
Temp. °F (°C)	8 (4	1.4)	9	(5)	8 (4	4.4)	8 (4	4.4)
Table 3 - Nor	mal Ope	erating	Pressu	res (Liq	. <u>+</u> 10 &	Vap. <u>+</u> 5	psig) **	
Temp. °F (°C)*	Liquid	Vapor	Liquid	Vapor	Liquid	Vapor	Liquid	Vapo
Cooling - Fir	st Stage	(Low C	Capacity	v)				
65 (18.3)	232	146	225	144	235	144	225	138
75 (23.9)	264	148	261	147	268	145	264	141
85 (29.4)	307	149	302	149	310	147	305	142
95 (35.0)	353	151	349	151	356	148	352	146
105 (40.6)	403	153	397	153	407	150	405	148
115 (46.1)	460	155	461	157	466	152	459	150
Cooling - Se	cond St	age (Hi	gh Capa	acity)				
65 (18.3)	240	143	239	139	244	140	241	134
75 (23.9)	279	145	278	141	283	141	280	136
85 (29.4)	322	147	322	143	326	144	324	137
95 (35.0)	371	149	367	146	374	147	373	138
105 (40.6)	423	151	426	148	427	148	425	142
115 (46.1)	485	154	489	151	491	151	486	146
Heating - Fir	st Stage	(Low C	Capacity	/)				
40 (4.4)	337	93	328	98	369	75	351	63
50 (10)	322	117	333	118	366	114	335	92
Heating - Se	cond St	age (Hig	gh Capa	acity)				
20 (-7.0)	279	62	296	62	311	58	308	59
30 (-1.0)	288	76	309	75	334	72	323	70
40 (4.4)	302	93	322	92	354	89	318	69
50 (10)	306	112	336	113	381	108	329	82

These are most-popular-match-up pressures. Indoor match up, indoor air quality, and indoor load cause pressures to vary.

401193S

HEAT PUMP CHARGING PROCEDURE

FOR COMPLETE CHARGING DETAILS, REFER TO THE OUTDOOR UNIT INSTALLATION INSTRUCTION.

Maintenance checks using the Normal Operating Pressures table

Table 1 may be used to help perform maintenance checks. This table is not a procedure for charging the system and any minor variations in the pressures may be expected due to differences in installations. However, significant deviations could mean that the system is not properly charged or that a problem exists with some component in the system. The values in this Table 2 are "most-popular-match-up" pressures; indoor match up, indoor air quantity, and indoor load will cause the pressures to vary.

Match-ups/Charge Levels and Lineset Lengths

Table 2 lists all the Lennox recommended indoor unit match-ups along with the charge levels for the various sizes of outdoor units. Charge levels on the unit nameplate are based on installations with 15' (4.6m) linesets; be sure to consider any difference in lineset length (see Installation Instructions for more details).

Charge Using the Weigh-in Method

If the system is void of refrigerant, locate and repair any leaks and then weigh in the refrigerant charge into the unit. For charge adjustments, be sure to consider lineset length differences and, referring to table 2, adjust for the matchup difference.

- Recover the refrigerant from the unit.
- Conduct leak check; evacuate as previously outlined.
 Weigh in the unit nameplate charge, adjusting for matchup and lineset length differences. If weighing facilities are not available use the Subcooling method.

Charge Using the Subcooling Method

Cooling Mode—When the outdoor ambient temperature is 60°F (15°C) and above, use the cooling mode to adjust the charge using the subcooling method. Target subcooling values in table 2 are based on 70 to 80°F (21-27°C) indoor return air temperature.

Heating Mode—When the outdoor ambient temperature is below 60°F (15°C), use the heating mode to adjust the charge using the subcooling charge levels (table). Target subcooling values in table 2 are based on 65-75°F (18-24°C) indoor return air temperature.

Table 1 - Normal Operating Pressures (Liquid ±10 & Suction ±5 psig)

*Temperature of the	Model	-024	-036	-048	-060
air entering the		XP16 Only	XP16/SF	PB Residential I	Products
outdoor coil.	°F (°C)*	Liquio	Line Pressure	/Vapor Line Pre	essure
	65 (18)	232 / 146	225 / 144	235 / 144	225 / 138
	75 (24)	264 / 148	261 / 147	268 / 145	264 / 141
Cooling	85 (29)	307 / 149	302 / 149	310 / 147	305 / 142
First Stage (Low Capacity)	95 (35)	353 / 151	349 / 151	356 / 148	352 / 146
() () ()	105 (41)	403 / 153	397 / 153	407 / 150	405 / 148
	115 (45)	460 / 155	461 / 157	466 / 152	459 / 150
	65 (18)	240 / 143	239 / 139	244 / 140	241 / 134
	75 (24)	279 / 145	278 / 141	283 / 141	280 / 136
Cooling	85 (29)	322 / 147	322 / 143	326 / 144	324 / 137
Second Stage (High Capacity)	95 (35)	371 / 149	367 / 146	374 / 147	373 / 138
(3	105 (41)	423 / 151	426 / 148	427 / 148	425 / 142
	115 (45)	485 / 154	489 / 151	491 / 151	486 / 146
Heating First Stage	50 (10)	322 / 117	333 / 118	366 / 114	335 / 92
(Low Capacity)	40 (4.5)	337 / 93	328 / 98	369 / 75	351 / 63
	50 (10)	306 / 112	336 / 113	381 / 108	329 / 82
Heating Second Stage	40 (4.5)	302 / 93	322 / 92	354 / 89	318 / 69
(High Capacity)	30 (-1)	288 / 76	309 / 75	334 / 72	323 / 70
	20 (-7)	279 / 62	296 / 62	311 / 58	308 / 59

Table 2. Indeed Unite Matching and Cube aline Charge Lavele

INDOOR HEAT MATCHUP PUMP	Target Subcooling Heat Cool (±5°F) (±1°F) **Add charge			INDOOR HEAT MATCHUP PUMP	Target Subcool Heat C (<u>+</u> 5°F) (ling	**Add charge		INDOOR HEAT MATCHUP PUMP	Target Subcooling Heat Cool (<u>+</u> 5°F) (<u>+</u> 1°F)			Add arge	
XP16-024			lb	oz	XP16-036/SPB			lb	oz	XP16-0	48/SPB		lb	oz
CBX26UH-018	20	8	1	5	CH23-51	17	7	0	13	CH23-68	15	13	0	7
CBX26UH-024	20	8	1	5	CH23-65	12	8	1	10	CB27UH-048	17	7	0	0
CB27UH-024	12	6	0	12	CBX26UH-030	25	8	1	14	CB27UH-060	17	7	0	0
CB27UH-030	13	9	1	12	CBX26UH-036	25	8	1	14	CB30U-51, -65	17	7	0	0
CB30U-21/26	12	6	0	12	CB27UH-036	17	8	2	4	CBX32M-048, -060	17	7	0	0
CB30U-31	13	9	1	12	CB27UH-042	17	8	2	4	CBX32MV-068	16	10	0	3
CBX32M-018/024	12	6	0	12	CB30U-31	17	6	0	0	CH33-60D-2F	18	4	0	2
CBX32M-030	13	9	1	12	CB30U-41/46	17	8	2	4	CH33-62D-2F	15	10	0	4
CBX32MV-024/030	13	9	1	12	CBX32M-030	17	6	0	0	CR33-60	40	4	0	2
CBX32MV-036	12	9	0	10	CBX32M-036	17	8	2	4	CX34-60D-6F	18	4	0	2
CH33-25B	17	4	0	0	CBX32MV-024/030	17	6	0	0	CX34-62D-6F	16	8	0	2
CH33-36A-2F	12	6	0	10	CBX32MV-036	17	8	2	4	XP16XP16-	-060/SPB		lb	oz
CH33-36B-2F	17	4	0	0	C33-44C	17	8	1	14	CH23-68	13	14	3	3
CH33-36C-2F	12	7	1	2	CH33-42B-2F	17	7	0	13	CH23-65	18	2	0	0
CR33-24A/B-F	20	4	0	0	CH33-44/48B-2F	12	8	1	8	CBX26UH-060	13	14	3	5
CR33-30/36A/B/C-F	20	8	1	6	CH33-48C-2F	10	8	1	6	CB27UH-060	13	10	2	1
CR33-48	21	9	0	3	CH33-43B	9	10	1	6	CBX32M-060	13	10	2	1
CX34-25A/B-6F	12	6	0	12	CH33-49C	9	10	1	6	CBX32MV-068	13	12	2	9
CX34-31A/B-6F	20	9	1	12	CR33-48B/C-F	25	8	2	0	CH33-60D-2F	15	6	1	3
CX34-36A/B/C-6F	17	5	0	5	CR33-50/60C-F	25	9	0	14	CH33-62D-2F	13	12	2	10
CX34-38A/B-6F Serial No# before 6007K	31	7	0	8	CX34–38A/B–6F Serial No# before 6007K	31	7	1	5	CR33-50/60C-F	30	6	1	3
CX34–38A/B–6F Serial No# 6007K and after	10	8	0	11	CX34–38A/B–6F Serial No# 6007K and after	10	8	1	12	CR33-60D-F	30	6	1	3
CX34-19	18	4	0	1	CX34-43B/C-6F	10	8	1	6	CX34-49C-6F	13	9	1	14
		•			CX34-60D	9	9	0	14	CX34-60D-6F	15	6	1	3
**Amount of charge required in	addition	al to c	harge	shov	vn on unit nameplate. (Remember	to conside	er lines	set le	ngth	CX34-62C-6F	13	11	2	6
difference.)			·		. ,				-	CX34-62D-6F	13	11	2	5

401233S

01/08

R-410A CHARGING INFORMATION

FOR COMPLETE CHARGING DETAILS, REFER TO THE OUTDOOR UNIT INSTALLATION INSTRUCTION.

Maintenance checks using the Normal Operating Pressures table

Table 1 may be used to help perform maintenance checks. This table is not a procedure for charging the system and any minor variations in the pressures may be expected due to differences in installations. However, significant deviations could mean that the system is not properly charged or that a problem exists with some component in the system. The values in this Table 2 are "most-popular-match-up" pressures; indoor match up, indoor air quantity, and indoor load will cause the pressures to vary.

Match-ups/Charge Levels and Line Set Lengths

Table 2 lists all the Lennox recommended indoor unit match-ups along with the charge levels for the various sizes of outdoor units. Charge levels on the unit nameplate are based on installations with 15' (4.6m) line sets; be sure to consider any difference in line set length (see Installation Instructions for more details).

Charge Using the Weigh-in Method

If the system is void of refrigerant, locate and repair any leaks and then weigh in the refrigerant charge into the unit. For charge adjustments, be sure to consider line set length differences and, referring to table 2, adjust for the matchup difference.

- 1 Recover the refrigerant from the unit.
- 2 Conduct leak check; evacuate as previously outlined.
- 3 Weigh in the unit nameplate charge, adjusting for matchup and line set length differences. If weighing facilities are not available use the Subcooling method.

Charge Using the Subcooling Method

Cooling Mode—When the outdoor ambient temperature is 60°F (15°C) and above, use the cooling mode to adjust the charge using the subcooling method. Target subcooling values in table 2 are based on 70 to 80°F (21-27°C) indoor return air temperature.

Heating Mode—When the outdoor ambient temperature is below 60°F (15°C), use the heating mode to adjust the charge using the subcooling charge levels (table). Target subcooling values in table 2 are based on 65-75°F (18-24°C) indoor return air temperature.

Table 1 - R-410A Normal Operating Pressures (Liquid +10 & Suction +5 psig)

*Temperature of the	Model	-024	-036	-048	-060
air entering the		XP16 Only	XP16/SF	PB Residential I	Products
outdoor coil.	°F (°C)*	Liquid	Line Pressure	/Vapor Line Pre	essure
	65 (18)	232 / 146	225 / 144	235 / 144	225 / 138
	75 (24)	264 / 148	261 / 147	268 / 145	264 / 141
Cooling First Stage	85 (29)	307 / 149	302 / 149	310 / 147	305 / 142
(Low Capacity)	95 (35)	353 / 151	349 / 151	356 / 148	352 / 146
(105 (41)	403 / 153	397 / 153	407 / 150	405 / 148
	115 (45)	460 / 155	461 / 157	466 / 152	459 / 150
	65 (18)	240 / 143	239 / 139	244 / 140	241 / 134
	75 (24)	279 / 145	278 / 141	283 / 141	280 / 136
Cooling Second Stage	85 (29)	322 / 147	322 / 143	326 / 144	324 / 137
(High Capacity)	95 (35)	371 / 149	367 / 146	374 / 147	373 / 138
,,	105 (41)	423 / 151	426 / 148	427 / 148	425 / 142
	115 (45)	485 / 154	489 / 151	491 / 151	486 / 146
Heating First Stage	50 (10)	333 / 116	318 / 116	354 / 115	365/ 113
(Low Capacity)	40 (4.5)	314 / 88	304 / 89	324 / 92	341 / 89
	50 (10)	346 / 109	333 / 110	370 / 110	369 / 107
Heating Second Stage	40 (4.5)	321 / 89	314 / 88	345 / 92	348 / 86
(High Capacity)	30 (-1)	303 / 74	303 / 77	322 / 70	335 / 73
	20 (-7)	286 / 59	289 / 63	305 / 61	318 / 59

Table 2 - R-410A Indoor Coil/Units Matchups and Subcooling Charge Levels

INDOOR HEAT	Targ Subco	et oling	*A	dd	INDOOR HEAT	Targ Subco	et oling	*A	dd	INDOOR HEAT		get ooling	*A	ıdd
MATCHUP PUMP	Heat +5°F	Cool +1°F	cha	ırge	MATCHUP PUMP	Heat ±5°F	Cool +1°F	cha	arge	MATCHUP PUMP	Heat +5°F	Cool +1°F	cha	arge
XP16-024			lb	oz	XP16-036/SPB			lb	oz	XP16-048	S/SPB		lb	oz
CB30U-21/26	12	6	0	12	C33-44C	17	8	1	14	CB27UH-048	17	7	0	0
CB30U-31	13	9	1	12	CB27UH-036	17	8	2	4	CB27UH-060	17	7	0	0
CBX26UH-018	20	8	1	5	CB27UH-042	17	8	2	4	CB30U-51, -65	17	7	0	0
CBX26UH-024	20	8	1	5	CB30U-31	17	6	0	0	CBX32M-048, -060	17	7	0	0
CB27UH-024	12	6	0	12	CB30U-41/46	17	8	2	4	CBX32MV-048, -060	17	7	0	0
CB27UH-030	13	9	1	12	CBX26UH-030	25	8	1	14	CBX32MV-068	16	10	0	3
CBX32M-018/024	12	6	0	12	CBX26UH-036	25	8	1	14	CH23-68	15	13	0	7
CBX32M-030	13	9	1	12	CBX32M-030	17	6	0	0	CH33-60D-2F	18	4	0	2
CBX32MV-024/030	13	9	1	12	CBX32M-036	17	8	2	4	CH33-62D-2F	15	10	0	4
CBX32MV-036	12	9	0	10	CBX32MV-024/030	17	6	0	0	CR33-60	40	4	0	2
CBX40UHV-024, -030	13	9	1	12	CBX32MV-036	17	8	2	4	CX34-60D-6F	18	4	0	2
CBX40UHV-036	12	9	0	10	CBX40UHV-024, -030	17	6	0	0	CX34-62D-6F	16	8	0	2
CH33-25B	17	4	0	0	CBX40UHV-036, -042	17	8	2	4	XP16-060)/SPB		lb	oz
CH33-36A-2F	12	6	0	10	CH23-51	17	7	0	13	CB27UH-060	13	10	2	1
CH33-36B-2F	17	4	0	0	CH23-65	12	8	1	10	CBX26UH-060	13	14	3	5
CH33-36C-2F	12	7	1	2	CH33-42B-2F	17	7	0	13	CBX32M-060	13	10	2	1
CR33-24A/B-F	20	4	0	0	CH33-44/48B-2F	12	8	1	8	CBX32MV-060	13	10	2	1
CR33-30/36A/B/C-F	20	8	1	6	CH33-48C-2F	10	8	1	6	CBX32MV-068	13	12	2	9
CR33-48	21	9	0	3	CH33-43B	9	10	1	6	CH23-68	13	14	3	3
CX34-25A/B-6F	12	6	0	12	CH33-49C	9	10	1	6	CH23-65	18	2	0	0
CX34-31A/B-6F	20	9	1	12	CR33-48B/C-F	25	8	2	0	CH33-60D-2F	15	6	1	3
CX34-36A/B/C-6F	17	5	0	5	CR33-50/60C-F	25	9	0	14	CH33-62D-2F	13	12	2	10
CX34-38A/B-6F SN before 6007K	31	7	0	8	CX34–38A/B–6F SN before 6007K	31	7	1	5	CR33-50/60C-F	30	6	1	3
CX34–38A/B–6F SN 6007K and after	10	8	0	11	CX34–38A/B–6F SN 6007K and after	10	8	1	12	CR33-60D-F	30	6	1	3
CX34-19	18	4	0	1	CX34-43B/C-6F	10	8	1	6	CX34-49C-6F	13	9	1	14
SN indicates coil serial number.		•			CX34-60D	9	9	0	14	CX34-60D-6F	15	6	1	3
										CX34-62C-6F	13	11	2	6
Amount of charge required in additi	ount of charge required in additional to charge shown on un				neplate. (Remember to consider line set	length dif	rerence.)		CX34-62D-6F	13	11	2	5

05/09

580094-01

HFC-410A CHARGING INFORMATION

FOR COMPLETE CHARGING DETAILS, REFER TO THE OUTDOOR UNIT INSTALLATION INSTRUCTION.

Maintenance checks using the Normal Operating Pressures table

Table 1 may be used to help perform maintenance checks. This table is not a procedure for charging the system and any minor variations in the pressures may be expected due to differences in installations. However, significant deviations could mean that the system is not properly charged or that a problem exists with some component in the system. The values in this Table 2 are "most-popular-match-up" pressures; indoor match up, indoor air quantity, and indoor load will cause the pressures to vary.

Match-ups/Charge Levels and Line Set Lengths

Table 2 lists all the Lennox recommended indoor unit match-ups along with the charge levels for the various sizes of outdoor units. Charge levels on the unit nameplate are based on installations with 15' (4.6m) line sets; be sure to consider any difference in line set length (see Installation Instructions for more details).

Charge Using the Weigh-in Method

If the system is void of refrigerant, locate and repair any leaks and then weigh in the refrigerant charge into the unit. For charge adjustments, be sure to consider line set length differences and, referring to table 2, adjust for the matchup difference.

- 1 Recover the refrigerant from the unit.
- 2 Conduct leak check; evacuate as previously outlined.
- 3 Weigh in the unit nameplate charge, adjusting for matchup and line set length differences. If weighing facilities are not available use the Subcooling method.

Charge Using the Subcooling Method

Cooling Mode—When the outdoor ambient temperature is 60°F (15°C) and above, use the cooling mode to adjust the charge using the subcooling method. Target subcooling values in table 2 are based on 70 to 80°F (21-27°C) indoor return air temperature.

Heating Mode—When the outdoor ambient temperature is below 60°F (15°C), use the heating mode to adjust the charge using the subcooling charge levels (table). Target subcooling values in table 2 are based on 65-75°F (18-24°C) indoor return air temperature.

Table 1 - HFC-410A Normal Operating Pressures (Liquid ±10 & Suction ±5 psiq)

			ρ.						
	Size	-02	24	-0:	36	-04	18	-06	60
	Model	XP16	Only		>	(P16 and	SPB*H4	1	
	°F (°C)	Liq	Vap	Liq	Vap	Liq	Vap	Liq	Vap
	No	rmal Op	erating F	ressure	s - Cool	ing			
	65 (18.3)	226	144	220	141	224	143	230	137
	75 (23.9)	260	145	254	144	259	143	267	139
First Stage	85 (29.4)	301	148	295	148	302	147	311	141
(Low Capacity) Pressure	95 (35.0)	346	151	340	150	346	149	357	144
1.0000.0	105 (40.6)	396	153	389	153	396	152	398	147
	115 (46.1)	451	156	444	156	450	155	453	149
	65 (18.3)	241	140	232	129	238	138	232	131
	75 (23.9)	279	142	269	136	278	140	276	133
Second Stage	85 (29.4)	321	144	312	140	321	142	320	136
(High Capacity) Pressure	95 (35.0)	369	146	346	142	372	144	367	138
1.0000.0	105 (40.6)	421	148	409	145	424	147	421	141
	115 (46.1)	480	151	465	148	481	149	479	144
	No	rmal Op	erating F	ressure	s - Heat	ing			
First Stage (Low Capacity)	50 (10)	312	112	350	115	336	114	385	108
Pressure	60 (15.5)	330	130	372	136	363	135	414	126
	20 (-7.0)	299	64	321	61	289	57	332	59
Second Stage	30 (-1.0)	312	79	347	74	294	69	349	67
(High Capacity)	40 (4.4)	325	93	367	90	321	80	361	75
Pressure	50 (10)	344	110	387	110	341	110	383	85
	60 (15.5)	358	128	395	131	361	128	425	122

Table 2 - HFC-410A Indoor Coil/Units Matchups and Subcooling Charge Levels

Indoor Unit Match-up	Heating ±5°F	Cooling <u>+</u> 1°F		dd	Indoor Unit Match-up	Heating <u>+</u> 5°F	Cooling ±1°F	*A	dd arge	Indoor Unit Match-up	Heating <u>+</u> 5°F	Cooling ±1°F		dd arge
·	Subc	ooling	lb.	oz.	-	Subce	ooling	lbs.	oz.	-	Subc	ooling	lbs.	oz.
	XP16-024				CBX40UHV-042	24	11	3	0	CH33-60D	13	8	0	0
CBX26UH-024	45	6	0	15	CBX40UHV-048	24	11	3	0	CH33-62D	11	9	1	4
CBX27UH-024-230	20	7	0	9	CH33-43B	13	10	2	7	CR33-50/60C	15	7	0	10
CBX27UH-030-230	17	7	1	3	CH33-48C	37	11	2	11	CR33-60D	16	7	0	10
CBX32MV-024/030	20	7	0	9	CH33-43C	37	11	2	11	CX34-60D	14	8	1	0
CBX32MV-036	17	7	1	3	CR33-48B/C	49	7	0	9	CX34-62D	9	9	1	6
CBX40UHV-024	17	7	1	3	CX34-43B/C	29	9	2	11	CX34-62C	8	9	1	9
CBX40UHV-030	17	7	1	3	CX34-50/60C 29 9 2 11				Х	P16/SPB*H4	-060			
CBX40UHV-036	17	7	1	3	Х	P16/SPB*H4	-048	•		CBX26UH-060	20	9	4	13
CH33-31B	31	8	1	12	CBX26UH-048-230	10	8	1	4	CBX27UH-060-230	10	6	2	3
CR33-30/36A/B/C	45	4	0	0	CBX27UH-048-230	19	9	1	4	CBX32M-060	17	6	1	12
CX34-31A/B	24	7	1	11	CBX27UH-060-230	13	14	3	3	CBX32MV-060	17	6	1	12
CX34-38A/B	18	8	1	10	CBX32M-048	19	9	1	4	CBX32MV-068	15	7	2	1
Х	P16/SPB*H4-	036			CBX32M-060	14	9	1	11	CBX40UHV-060	17	6	1	12
CBX26UH-036	50	5	0	0	CBX32MV-048	19	9	1	4	CH23-68	37	9	2	10
CBX27UH-036-230	22	7	0	9	CBX32MV-060	14	9	1	11	CH33-50/60C	33	8	1	0
CBX27UH-042-230	24	11	3	0	CBX32MV-068	9	8	1	11	CH33-62D	16	7	1	4
CBX32M-036	22	7	0	9	CBX40UHV-048	19	9	1	4	CR33-50/60C	24	7	0	0
CBX32MV-036	22	7	0	9	CBX40UHV-060	14	9	1	11	CR33-60D	24	7	0	0
CBX32MV-048	24	11	3	0	CH23-68	24	10	1	12	CX34-62C	21	9	2	16
CBX40UHV-030	22	7	0	9	CH33-49C	19	9	2	5	CX34-62D	13	7	1	4
CBX40UHV-036	22	7	0	9	CH33-50/60C	19	9	2	5	*Amount of charge required in additional to charge shown nameplate. (Remember to consider line set length differer				

12/09

580275-01

HFC-410A CHARGING INFORMATION

Maintenance checks using the Normal Operating Pressures table

Table 1 may be used to help perform maintenance checks. This table is not a procedure for charging the system and any minor variations in the pressures may be expected due to differences in installations. However, significant deviations could mean that the system is not properly charged or that a problem exists with some component in the system. The values in this Table 2 are "most-popular-match-up" pressures; indoor match up, indoor air quantity, and indoor load will cause the pressures to vary.

Match-ups/Charge Levels and Line Set Lengths

Table 2 lists all the Lennox recommended indoor unit match-ups along with the charge levels for the various sizes of outdoor units. Charge levels on the unit nameplate are based on installations with 15' (4.6m) line sets; be sure to consider any difference in line set length (see Installation Instructions for more details).

Charge Using the Weigh-in Method

If the system is void of refrigerant, locate and repair any leaks and then weigh in the refrigerant charge into the unit. For charge adjustments, be sure to consider line set length differences and, referring to table 2, adjust for the matchup difference.

- 1 Recover the refrigerant from the unit.
- 2 Conduct leak check; evacuate as previously outlined.
- Weigh in the unit nameplate charge, adjusting for matchup and line set length differences. If weighing facilities are not available use the Subcooling method.

Charge Using the Subcooling Method

Cooling Mode—When the outdoor ambient temperature is 60°F (15°C) and above, use the cooling mode to adjust the charge using the subcooling method. Target subcooling values in table 2 are based on 70 to 80°F (21-27°C) indoor return air temperature.

Heating Mode—When the outdoor ambient temperature is below 60°F (15°C), use the heating mode to adjust the charge using the subcooling charge levels (table). Target subcooling values in table 2 are based on 65-75°F (18-24°C) indoor return air temperature.

Table 1 -	Table 1 - Normal Operating Pressures (Liquid ±10 & Suction ±5 psig)												
	Size -024 -036 -048 -060 Model XP16												
	Model				XP	16							
	°F (°C)	Liq	Vap	Liq	Vap	Liq	Vap	Liq	Vap				
Normal Operating	Pressures - C	Cooling											
	65 (18.3)	226	144	220	144	224	143	230	137				
F: . 0:	75 (23.9)	260	145	254	146	259	145	269	139				
First Stage (Low Capacity)	85 (29.4)	301	148	295	148	297	147	313	142				
Pressure	95 (35.0)	346	151	338	150	346	149	361	144				
	105 (40.6)	396	153	389	153	395	151	411	147				
	115 (46.1)	451	156	444	156	452	155	466	151				
	65 (18.3)	240	142	234	138	232	138	237	131				
	75 (23.9)	278	144	269	140	271	140	275	133				
Second Stage (High Capacity)	85 (29.4)	325	147	311	142	313	142	319	135				
Pressure	95 (35.0)	372	149	355	144	362	145	368	138				
	105 (40.6)	423	151	409	145	415	147	419	141				
	115 (46.1)	484	153	463	149	473	150	479	145				
Normal Operating	Pressures - F	leating											
First Stage (Low Capacity)	50 (10)	334	116	350	119	332	115	369	112				
Pressure	60 (15.5)	358	134	382	138	352	132	394	120				
	20 (-7.0)	288	66	334	67	288	62	321	60				
Second Stage	30 (-1.0)	308	81	359	82	301	75	335	71				
(High Capacity)	40 (4.4)	327	96	391	95	318	92	363	90				
Pressure	50 (10)	350	113	414	112	337	109	380	107				
	60 (15.5)	373	132	445	128	355	126	403	126				

Indoor Unit Match-up	Heating <u>+</u> 5°F	Cooling <u>+</u> 1°F		dd arge	Indoor Unit Match-up	Heating +5°F	Cooling +1°F		dd arge	Indoor Unit Match-up	Heating <u>+</u> 5°F	Cooling <u>+</u> 1°F		dd arge
·	Subc	ooling	lb.	oz.		Subc	ooling	lbs.	oz.		Subc	ooling	lbs.	oz.
	XP16-024				CBX40UHV-042	24	11	3	0	CH33-60D	13	6	0	0
CBX26UH-024	45	6	0	15	CBX40UHV-048	24	11	3	0	CH33-62D	11	7	1	4
CBX27UH-024-230	20	7	0	9	CH33-43B	13	10	2	7	CR33-50/60C	15	5	0	10
CBX27UH-030-230	17	7	1	3	CH33-48C	37	11	2	11	CR33-60D	16	5	0	10
CBX32MV-024/030	20	7	0	9	CH33-43C	37	11	2	11	CX34-60D	14	6	1	0
CBX32MV-036	17	7	1	3	CR33-48B/C	49	7	0	9	CX34-62D	9	7	1	6
CBX40UHV-024	17	7	1	3	CX34-43B/C	29	9	2	11	CX34-62C	8	7	1	9
CBX40UHV-030	17	7	1	3	CX34-50/60C	29	9	2	11)	P16/SPB*H4	-060		
CBX40UHV-036	17	7	1	3	Х	P16/SPB*H4	048			CBX26UH-060	20	9	4	13
CH33-31B	31	8	1	12	CBX26UH-048-230	10	6	1	4	CBX27UH-060-230	10	6	2	3
CR33-30/36A/B/C	45	4	0	0	CBX27UH-048-230	19	7	1	4	CBX32M-060	17	6	1	12
CX34-31A/B	24	7	1	11	CBX27UH-060-230	13	12	3	3	CBX32MV-060	17	5	1	12
CX34-38A/B	18	8	1	10	CBX32M-048	19	7	1	4	CBX32MV-068	15	7	2	1
х	P16/SPB*H4	036			CBX32M-060	14	7	1	11	CBX40UHV-060	17	6	1	12
CBX26UH-036	50	5	0	0	CBX32MV-048	19	7	1	4	CH23-68	37	9	2	10
CBX27UH-036-230	22	7	0	9	CBX32MV-060	14	7	1	11	CH33-50/60C	33	8	1	0
CBX27UH-042-230	24	11	3	0	CBX32MV-068	9	6	1	11	CH33-62D	16	7	1	4
CBX32M-036	22	7	0	9	CBX40UHV-048	19	7	1	4	CR33-50/60C	24	7	0	0
CBX32MV-036	22	7	0	9	CBX40UHV-060	14	7	1	11	CR33-60D	24	7	0	0
CBX32MV-048	24	11	3	0	CH23-68	24	8	1	12	CX34-62C	21	9	2	16
CBX40UHV-030	22	7	0	9	CH33-49C	19	7	2	5	CX34-62D	13	7	1	4
CBX40UHV-036	22	7	0	9	CH33-50/60C	19	7	2	5	*Amount of charge required in additional to charge shown on ur nameplate. (Remember to consider line set length difference.)				

12/2012

580523-01

HFC-410A CHARGING INFORMATION

Maintenance Checks Using the Normal Operating Pressures Table

Table 1 may be used to help perform maintenance checks. This table is not a procedure for charging the system. Minor variations in the pressures can be expected due to differences in installations. However, significant deviations could mean that the system is not properly charged or that a problem exists with some component in the system.

Match-Ups/Charge Levels and Line Set Lengths

Table 2 lists all the Lennox recommended indoor unit match-ups along with the charge levels for the various sizes of outdoor units. Charge levels on the unit nameplate are based on installations with 15' (4.6m) line sets; consider any difference in line set length (see Installation Instructions for more details).

Charge Using the Weigh-In Method

If the system is void of refrigerant, locate and repair any leaks, then weigh the refrigerant charge into the unit. For charge adjustments, consider line set length differences and, referring to table 2, adjust for the match-up

- 1 Recover the refrigerant from the unit.
- 2 Conduct a leak check and then evacuate the system.
- Weigh in the unit nameplate charge, adjusting for match-up and line set length differences. If weighing facilities are not available, use the Subcooling method.

NOTE - See system installation instructions to calculate charge required for longer line sets.

Charge Using the Subcooling Method

Cooling Mode—When the outdoor ambient temperature is 60°F (15°C) and above, use the cooling mode to adjust the charge using the subcooling method. Target subcooling values in table 2 are based on 70 to 80°F (21-27°C) indoor return air temperature.

Heating Mode—When the outdoor ambient temperature is below 60°F (15°C), use the subcooling method to adjust the charge using the subcooling charge levels in table 2. Target subcooling values in table 2 are based on 65-75°F (18-24°C) indoor return air temperature.

Table 1 -	Normal O	peratin	g Press	sures (Liquid	<u>+</u> 10 &	Suction	า <u>+</u> 5 ps	sig)
	Size	-0	24	-0	36	-0)48	-0	60
	Model				XP	16			
	°F (°C)	Liq	Vap	Liq	Vap	Liq	Vap	Liq	Vap
	Nor	mal Oper	rating Pre	ssures (osig) - Co	ooling			
	65 (18.3)	226	144	216	142	224	143	230	137
	75 (23.9)	260	145	251	144	259	145	269	139
First Stage	85 (29.4)	301	148	291	146	297	147	313	142
(Low Capacity) Pressure	95 (35.0)	346	151	337	148	346	149	361	144
1.0000.0	105 (40.6)	396	153	382	150	395	151	411	147
	115 (46.1)	451	156	438	153	452	155	466	151
	65 (18.3)	240	142	227	134	232	138	237	131
	75 (23.9)	278	144	261	138	271	140	275	133
Second Stage	85 (29.4)	325	147	305	140	313	142	319	135
(High Capacity) Pressure	95 (35.0)	372	149	349	142	362	145	368	138
1.0000.0	105 (40.6)	423	151	401	144	415	147	419	141
	115 (46.1)	484	153	463	146	473	150	479	145
	Non	mal Oper	rating Pre	ssures (p	osig) – He	eating	1	1	I
First Stage (Low Capacity)	50 (10)	334	116	384	119	332	115	369	112
Pressure	60 (15.5)	358	134	410	139	352	132	394	120
	20 (-7.0)	288	66	334	67	288	62	321	60
Second Stage	30 (-1.0)	308	81	362	82	301	75	335	71
(High Capacity)	40 (4.4)	327	96	373	95	318	92	363	90
Pressure	50 (10)	350	113	400	114	337	109	380	107
	60 (15.5)	373	132	427	133	355	126	403	126

Indoor Unit Match-Up	Heating <u>+</u> 5°F	Cooling <u>+</u> 1°F		dd arge	Indoor Unit Match-Up	Heating <u>+</u> 5°F	Cooling <u>+</u> 1°F		dd arge	Indoor Unit Match-Up	Heating <u>+</u> 5°F	Cooling ±1°F		dd arge
·	Subc	ooling	lb.	oz.	· ·	Subc	ooling	lbs.	oz.		Subc	ooling	lbs.	oz.
	XP16-024			•	CBX40UHV-048	17	9	1	1	CH33-60D	13	6	0	0
CBX26UH-024	45	6	0	15	CH33-43B	11	7	0	11	CH33-62D	11	7	1	4
CBX27UH-024-230	20	7	0	9	CH33-48C	20	7	1	2	CR33-50/60C	15	5	0	10
CBX27UH-030-230	17	7	1	3	CH33-43C	21	7	0	15	CR33-60D	16	5	0	10
CBX32MV-024/030	20	7	0	9	CR33-48B	53	6	0	0	CX34-60D	14	6	1	0
CBX32MV-036	17	7	1	3	CR33-48C	53	6	0	0	CX34-62D	9	7	1	6
CBX40UHV-024	17	7	1	3	CX34-43B/C	15	7	0	11	CX34-62C	8	7	1	9
CBX40UHV-030	17	7	1	3	CX34-50/60C	15	7	0	11	х	P16/SPB*H4	-060		
CBX40UHV-036	17	7	1	3	х	P16/SPB*H4	-048			CBX26UH-060	20	9	4	13
CH33-31B	31	8	1	12	CBX26UH-048-230	10	6	1	4	CBX27UH-060-230	10	6	2	3
CR33-30/36A/B/C	45	4	0	0	CBX27UH-048-230	19	7	1	4	CBX32M-060	17	6	1	12
CX34-31A/B	24	7	1	11	CBX27UH-060-230	13	12	3	3	CBX32MV-060	17	5	1	12
CX34-38A/B	18	8	1	10	CBX32M-048	19	7	1	4	CBX32MV-068	15	7	2	1
Х	P16/SPB*H4	-036		1	CBX32M-060	14	7	1	11	CBX40UHV-060	17	6	1	12
CBX27UH-036-230	25	7	1	6	CBX32MV-048	19	7	1	4	CH23-68	37	9	2	10
CBX27UH-042-230	17	9	1	1	CBX32MV-060	14	7	1	11	CH33-50/60C	33	8	1	0
CBX32M-036	24	7	1	6	CBX32MV-068	9	6	1	11	CH33-62D	16	7	1	4
CBX32MV-036	24	7	1	6	CBX40UHV-048	19	7	1	4	CR33-50/60C	24	7	0	0
CBX32MV-048	17	9	1	1	CBX40UHV-060	14	7	1	11	CR33-60D	24	7	0	0
CBX40UHV-030	24	7	1	6	CH23-68	24	8	1	12	CX34-62C	21	9	2	16
CBX40UHV-036	24	7	1	6	CH33-49C	19	7	2	5	CX34-62D	13	7	1	4
CBX40UHV-042	17	9	1	1	CH33-50/60C	19	7	2	5		d in addition to charge shown on unit ude additional charge required for ext			

580655-01

8/2013

HFC-410A CHARGING INFORMATION – FOR COMPLETE CHARGING DETAILS, REFER TO THE OUTDOOR UNIT INSTALLATION AND SERVICE PROCEDURE Maintenance Checks Using the Normal Operating Pressures Table Table 1 - Normal Operating Pressures (Liquid ±10 & Suction ±5 psig)

Table 1 may be used to help perform maintenance checks. This table is not a procedure for charging the system. Minor variations in the pressures can be expected due to differences in installations. However, significant deviations could mean that the system is not properly charged or that a problem exists with some component in the system.

Match-Ups/Charge Levels and Line Set Lengths

Table 2 lists all the Lennox recommended indoor unit match-ups along with the charge levels for the various sizes of outdoor units. Charge levels on the unit nameplate are based on installations with 15' (4.6m) line sets; consider any difference in line set length (see Installation Instructions for more details).

Charge Using the Weigh-In Method

If the system is void of refrigerant, locate and repair any leaks, then weigh the refrigerant charge into the unit. For charge adjustments, consider line set length differences and, referring to table 2, adjust for the match-up difference.

- 1 Recover the refrigerant from the unit.
- 2 Conduct a leak check and then evacuate the system.
- 3 Weigh in the unit nameplate charge, adjusting for match-up and line set length differences. If weighing facilities are not available, use the Subcooling method.

NOTE - See system installation instructions to calculate charge required for longer line sets.

Charge Using the Subcooling Method

Cooling Mode—When the outdoor ambient temperature is 60°F (15°C) and above, use the cooling mode to adjust the charge using the subcooling method. Target subcooling values in table 2 are based on 70 to 80°F (21-27°C) indoor return air temperature.

Heating Mode—When the outdoor ambient temperature is below 60°F (15°C), use the subcooling method to adjust the charge using the subcooling charge levels in table 2. Target subcooling values in table 2 are based on 65-75°F (18-24°C) indoor return air temperature.

			•	,	•	_			٠,				
	Size	-0	24	-0	36	-0	48	-0	60				
	°F (°C)	Liq	Vap	Liq	Vap	Liq	Vap	Liq	Vap				
Pressure **													
	` '	226	144	216	142	224	143	230					
First Ots	75 (23.9)	260	145	251	144	259	145	269	139				
	85 (29.4)	301	148	291	146	297	147	313	142				
	95 (35.0)	346	151	337	148	346	149	361	144				
	105 (40.6)	396	153	382	150	395	151	411	147				
	115 (46.1)	451	156	438	153	452	155	466	151				
	65 (18.3)	240	142	227	134	232	138	237	131				
	75 (23.9)	278	144	261	138	271	140	275	133				
	85 (29.4)	325	147	305	140	313	142	319	135				
	95 (35.0)	372	149	349	142	362	145	368	138				
	105 (40.6)	423	151	401	144	415	147	419	141				
	115 (46.1)	484	153	463	146	473	150	479	145				
	Nor	mal Oper	rating Pre	ssures (p	osig) - He	eating							
	50 (10)	334	116	384	119	332	115	369	112				
	60 (15.5)	358	134	410	139	352	132	394	120				
	20 (-7.0)	288	66	334	67	288	62	321	60				
Second Stage	30 (-1.0)	308	81	362	82	301	75	335	71				
(High Capacity)	40 (4.4)	327	96	373	95	318	92	363	90				
Pressure	50 (10)	350	113	400	114	337	109	380	107				
	60 (15.5)	373	132	427	133	355	126	403	126				

ded line set lengths.)

Table 2 - HFC-410A Indoor Coil/Units Match-Ups and Subcooling Charge Levels

Indoor Unit Match-Up	Heating <u>+</u> 5°F	Cooling +1°F		dd arge	Indoor Unit Match-Up	Heating <u>+</u> 5°F	Cooling <u>+</u> 1°F		dd arge	Indoor Unit Match-Up	Heating <u>+</u> 5°F	Cooling +1°F	-	\dd arge
•	Subce	ooling	lb.	oz.	•	Subce	ooling	lb.	oz.	1	Subc	ooling	lb.	oz.
	XP16-024				CBX40UHV-042	17	9	1	1	CH33-50/60C	19	7	2	5
CBX25UHV-030	45	9	0	15	CBX40UHV-048	17	9	1	1	CH33-60D	13	6	0	0
CBX26UH-024	45	6	0	15	CH33-43B	11	7	0	11	CH33-62D	11	7	1	4
CBX27UH-024-230	20	7	0	9	CH33-48C	20	7	1	2	CR33-50/60C	15	5	0	10
CBX27UH-030-230	17	7	1	3	CH33-43C	21	7	0	15	CR33-60D	16	5	0	10
CBX32MV-024/030	20	7	0	9	CR33-48B	53	6	0	0	CX34-60D	14	6	1	0
CBX32MV-036	17	7	1	3	CR33-48C	53	6	0	0	CX34-62D	9	7	1	6
CBX40UHV-024	17	7	1	3	CX34-43B/C	15	7	0	11	CX34-62C	8	7	1	9
CBX40UHV-030	17	7	1	3	CX34-50/60C	15	7	0	11	х	P16/SPB*H4-	060	•	
CBX40UHV-036	17	7	1	3	Х	P16/SPB*H4-	048			CBX25UHV-060	15	4	1	10
CH33-31B	31	8	1	12	CBX25UHV-048	12	7	0	4	CBX26UH-060	20	9	4	13
CR33-30/36A/B/C	45	4	0	0	CBX26UH-048-230	10	6	1	4	CBX27UH-060-230	10	6	2	3
CX34-31A/B	24	7	1	11	CBX27UH-048-230	19	7	1	4	CBX32M-060	17	6	1	12
CX34-38A/B	18	8	1	10	CBX27UH-060-230	13	12	3	3	CBX32MV-060	17	5	1	12
Х	P16/SPB*H4-	036			CBX32M-048	19	7	1	4	CBX32MV-068	15	7	2	1
CBX25UH-036 CBX25UHV-036	59	7	0	15	CBX32M-060	14	7	1	11	CBX40UHV-060	17	6	1	12
CBX27UH-036-230	25	7	1	6	CBX32MV-048	19	7	1	4	CH23-68	37	9	2	10
CBX27UH-042-230	17	9	1	1	CBX32MV-060	14	7	1	11	CH33-50/60C	33	8	1	0
CBX32M-036	24	7	1	6	CBX32MV-068	9	6	1	11	CH33-62D	16	7	1	4
CBX32MV-036	24	7	1	6	CBX40UHV-048	19	7	1	4	CR33-50/60C	24	7	0	0
CBX32MV-048	17	9	1	1	CBX40UHV-060	14	7	1	11	CR33-60D	24	7	0	0
CBX40UHV-030	24	7	1	6	CH23-68	24	8	1	12	CX34-62C	21	9	2	16
CBX40UHV-036	24	7	1	6	CH33-49C	19	7	2	5	CX34-62D	13	7	1	4
										*Amount of charge require nameplate. (Does not incl				

HFC-410A CHARGING INFORMATION - FOR COMPLETE CHARGING PROCEDURES, REFER TO THE APPLICABLE INSTALLATION OR SERVICE MANUAL Table 1 - Normal Operating Pressures (Liquid +10 & Suction +5 psig) Maintenance Checks Using the Normal Operating Pressures Table

Table 1 may be used to help perform maintenance checks. This table is not a procedure for charging the system. Minor variations in the pressures can be expected due to differences in installations. However, significant deviations could mean that the system is not properly charged or that a problem exists with some component in the system.

Matched System Components/Charge Levels/Line Set Lengths/Liquid Line Sizing

Table 2 lists all the Lennox recommended indoor unit matches along with the charge levels for the various sizes of outdoor units. Charge levels on the unit nameplate are based on installations with 15' (4.6m) line sets; consider line set length and liquid line sizing differences when calculating charge adjustments. For each additional foot of 3/8" liquid line set, add 0.6 ounces or for 1/2" liquid lines, add 1.0 ounce of additional charge.

Charge Using the Weigh-In Method

If the system is void of refrigerant, locate and repair any leaks, then weigh the refrigerant charge into the unit. For charge adjustments, consider line set length differences and, referring to table 2, adjust for the match-up

- 1 Recover the refrigerant from the unit.
- 2 Conduct a leak check and then evacuate the system.
- 3 Weigh in the unit nameplate charge, adjusting for match-up and line set length differences. If weighing facilities are not available, use the Subcooling method.

Charge Using the Subcooling Method

Cooling Mode—When the outdoor ambient temperature is 60°F (15°C) and above, use the cooling mode to adjust the charge using the subcooling method. Target subcooling values in table 2 are based on 70 to 80°F (21-27°C) indoor return air temperature.

Heating Mode—When the outdoor ambient temperature is below 60°F (15°C), use the subcooling method to adjust the charge using the subcooling charge levels in table 2. Target subcooling values in table 2 are based on 65-75°F (18-24°C) indoor return air temperature.

Size	^							
OIZO	-0	24	-0	36	-0	48	-0	60
°F (°C)	Liq	Vap	Liq	Vap	Liq	Vap	Liq	Vap
Nori	mal Oper	ating Pre	ssures (p	osig) – Co	ooling			
65 (18.3)	226	144	216	142	224	143	230	137
75 (23.9)	260	145	251	144	259	145	269	139
85 (29.4)	301	148	291	146	297	147	313	142
95 (35.0)	346	151	337	148	346	149	361	144
105 (40.6)	396	153	382	150	395	151	411	147
115 (46.1)	451	156	438	153	452	155	466	151
65 (18.3)	240	142	227	134	232	138	237	131
75 (23.9)	278	144	261	138	271	140	275	133
85 (29.4)	325	147	305	140	313	142	319	135
95 (35.0)	372	149	349	142	362	145	368	138
105 (40.6)	423	151	401	144	415	147	419	141
115 (46.1)	484	153	463	146	473	150	479	145
Norr	nal Oper	ating Pre	ssures (p	sig) – He	eating			
50 (10)	334	116	384	119	332	115	369	112
60 (15.5)	358	134	410	139	352	132	394	120
20 (-7.0)	288	66	334	67	288	62	321	60
30 (-1.0)	308	81	362	82	301	75	335	71
40 (4.4)	327	96	373	95	318	92	363	90
50 (10)	350	113	400	114	337	109	380	107
60 (15.5)	373	132	427	133	355	126	403	126
	°F (°C) Non 65 (18.3) 75 (23.9) 85 (29.4) 95 (35.0) 105 (40.6) 115 (46.1) 65 (18.3) 75 (23.9) 85 (29.4) 95 (35.0) 105 (40.6) 115 (46.1) Non 50 (10) 60 (15.5) 20 (-7.0) 30 (-1.0) 40 (4.4) 50 (10)	°F (°C) Liq Normal Oper 65 (18.3) 226 75 (23.9) 260 85 (29.4) 301 95 (35.0) 346 105 (40.6) 396 115 (46.1) 451 65 (18.3) 240 75 (23.9) 278 85 (29.4) 325 95 (35.0) 372 105 (40.6) 423 115 (46.1) 484 Normal Oper 50 (10) 334 60 (15.5) 358 20 (-7.0) 288 30 (-1.0) 308 40 (4.4) 327 50 (10) 350	°F (°C) Liq Vap Normal Operating Pre 65 (18.3) 226 144 75 (23.9) 260 145 85 (29.4) 301 148 95 (35.0) 346 151 105 (40.6) 396 153 115 (46.1) 451 156 65 (18.3) 240 142 75 (23.9) 278 144 85 (29.4) 325 147 95 (35.0) 372 149 105 (40.6) 423 151 115 (46.1) 484 153 Normal Operating Pre 50 (10) 334 116 60 (15.5) 358 134 20 (-7.0) 288 66 30 (-1.0) 308 81 40 (4.4) 327 96	°F (°C) Liq Vap Liq Normal Operating Pressures (p 65 (18.3) 226 144 216 75 (23.9) 260 145 251 85 (29.4) 301 148 291 95 (35.0) 346 151 337 105 (40.6) 396 153 382 115 (46.1) 451 156 438 65 (18.3) 240 142 227 75 (23.9) 278 144 261 85 (29.4) 325 147 305 95 (35.0) 372 149 349 105 (40.6) 423 151 401 115 (46.1) 484 153 463 Normal Operating Pressures (p 50 (10) 334 116 384 60 (15.5) 358 134 410 20 (-7.0) 288 66 334 30 (-1.0) 308 81 362 40 (4.4) 327 96 373	°F (°C) Liq Vap Liq Vap Normal Operating Pressures (psig) - Co 65 (18.3) 226 144 216 142 75 (23.9) 260 145 251 144 85 (29.4) 301 148 291 146 95 (35.0) 346 151 337 148 105 (40.6) 396 153 382 150 115 (46.1) 451 156 438 153 65 (18.3) 240 142 227 134 75 (23.9) 278 144 261 138 85 (29.4) 325 147 305 140 95 (35.0) 372 149 349 142 105 (40.6) 423 151 401 144 115 (46.1) 484 153 463 146 Normal Operating Pressures (psig) - He 50 (10) 334 116 384 119 60 (15.5) 358 134 410 1	°F (°C) Liq Vap Liq Vap Liq Normal Operating Pressures (psig) - Cooling 65 (18.3) 226 144 216 142 224 75 (23.9) 260 145 251 144 259 85 (29.4) 301 148 291 146 297 95 (35.0) 346 151 337 148 346 105 (40.6) 396 153 382 150 395 115 (46.1) 451 156 438 153 452 65 (18.3) 240 142 227 134 232 75 (23.9) 278 144 261 138 271 85 (29.4) 325 147 305 140 313 95 (35.0) 372 149 349 142 362 105 (40.6) 423 151 401 144 415 115 (46.1) 484 153 463 146 473	°F (°C) Liq Vap Liq Vap Liq Vap Normal Operating Pressures (psig) - Cooling 65 (18.3) 226 144 216 142 224 143 75 (23.9) 260 145 251 144 259 145 85 (29.4) 301 148 291 146 297 147 95 (35.0) 346 151 337 148 346 149 105 (40.6) 396 153 382 150 395 151 115 (46.1) 451 156 438 153 452 155 65 (18.3) 240 142 227 134 232 138 75 (23.9) 278 144 261 138 271 140 85 (29.4) 325 147 305 140 313 142 95 (35.0) 372 149 349 142 362 145 105 (40.6) 423 15	°F (°C) Liq Vap Liq Liq

Table 2 - HEC-410A Indoor Coil/Units Match-Ups and Subcooling Charge Levels

Indoor Unit Match-Up	Heating <u>+</u> 5°F	Cooling <u>+</u> 1°F		dd arge	Indoor Unit Match-Up	Heating <u>+</u> 5°F	Cooling ±1°F		dd arge	Indoor Unit Match-Up	Heating <u>+</u> 5°F	Cooling <u>+</u> 1°F		dd arge		
	Subc	ooling	lb.	oz.		Subc	ooling	lb.	oz.		Subc	ooling	lb.	OZ.		
	XP16-024				CBX40UHV-042	17	9	1	1	CH33-50/60C	19	7	2	5		
CBX25UHV-024	49	5	0	0	CH33-43C	21	7	0	15	CR33-60D	16	5	0	10		
CBX25UHV-030	45	9	0	15	CBX40UHV-048	17	9	1	1	CH33-60D	13	6	0	0		
CBX26UH-024	45	6	0	15	CH33-43B	11	7	0	11	CH33-62D	11	7	1	4		
CBX27UH-024-230	20	7	0	9	CH33-48C	20	7	1	2	CR33-50/60C	15	5	0	10		
CBX27UH-030-230	17	7	1	3	CH33-43C	21	7	0	15	CR33-60D	16	5	0	10		
CBX32MV-024/030	20	7	0	9	CR33-48B	53	6	0	0	CX34-60D	14	6	1	0		
CBX32MV-036	17	7	1	3	CR33-48C	53	6	0	0	CX34-62D	9	7	1	6		
CBX40UHV-024	17	7	1	3	CX34-43B/C	15	7	0	11	CX34-62C	8	7	1	9		
CBX40UHV-030	17	7	1	3	CX34-50/60C	15	7	0	11	Х	P16/SPB*H4-	-060				
CBX40UHV-036	17	7	1	3	х	XP16/SPB*H4-048 C			CBX25UHV-060	15	4	1	10			
CH33-31B	31	8	1	12	CBX25UHV-048	12	7	0	4	CBX26UH-060	20	9	4	13		
CR33-30/36A/B/C	45	4	0	0	CBX26UH-048-230	10	6	1	4	CBX27UH-060-230	10	6	2	3		
CX34-31A/B	24	7	1	11	CBX27UH-048-230	19	7	1	4	CBX32M-060	17	6	1	12		
CX34-38A/B	18	8	1	10	CBX27UH-060-230	13	12	3	3	CBX32MV-060	17	5	1	12		
Х	P16/SPB*H4	036	•		CBX32M-048	19	7	1	4	CBX32MV-068	15	7	2	1		
CBX25UH-036 CBX25UHV-036	59	7	0	15	CBX32M-060	14	7	1	11	CBX40UHV-060	17	6	1	12		
CBX27UH-036-230	25	7	1	6	CBX32MV-048	19	7	1	4	CH23-68	37	9	2	10		
CBX27UH-042-230	17	9	1	1	CBX32MV-060	14	7	1	11	CH33-50/60C	33	8	1	0		
CBX32M-036	24	7	1	6	CBX32MV-068	9	6	1	11	CH33-62D	16	7	1	4		
CBX32MV-036	24	7	1	6	CBX40UHV-048	19	7	1	4	CR33-50/60C	24	7	0	0		
CBX32MV-048	17	9	1	1	CBX40UHV-060	14	7	1	11	CR33-60D	24	7	0	0		
CBX40UHV-030	24	7	1	6	CH23-68	24	8	1	12	CX34-62C	21	9	2	16		
CBX40UHV-036	24	7	1	6	CH33-49C	19	7	2	5	CX34-62D	13	7	1	4		

set lenaths.)

HFC-410A CHARGING INFORMATION - FOR COMPLETE CHARGING PROCEDURES, REFER TO THE APPLICABLE INSTALLATION OR SERVICE MANUAL Maintenance Checks Using the Normal Operating Pressures Table Table 1 - Normal Operating Pressures (Liquid ±10 & Suction ±5 psig)

Table 1 may be used to help perform maintenance checks. This table is not a procedure for charging the system. Minor variations in the pressures can be expected due to differences in installations. However, significant deviations could mean that the system is not properly charged or that a problem exists with some component in the system.

Matched System Components/Charge Levels/Line Set Lengths/Liquid Line Sizing

Table 2 lists all the Lennox recommended indoor unit matches along with the charge levels for the various sizes of outdoor units. Charge levels on the unit nameplate are based on installations with 15' (4.6m) line sets: consider line set length and liquid line sizing differences when calculating charge adjustments. For each additional foot of 3/8" liquid line set, add 0.6 ounces or for 1/2" liquid lines, add 1.0 ounce of additional charge.

Charge Using the Weigh-In Method

If the system is void of refrigerant, locate and repair any leaks, then weigh the refrigerant charge into the unit. For charge adjustments, consider line set length differences and, referring to table 2, adjust for the match-up difference.

- 1 Recover the refrigerant from the unit.
- 2 Conduct a leak check and then evacuate the system.
- 3 Weigh in the unit nameplate charge, adjusting for match-up and line set length differences. If weighing facilities are not available, use the Subcooling method.

Charge Using the Subcooling Method

Cooling Mode—When the outdoor ambient temperature is 60°F (15°C) and above, use the cooling mode to adjust the charge using the subcooling method. Target subcooling values in table 2 are based on 70 to 80°F (21-27°C) indoor return air temperature.

Heating Mode—When the outdoor ambient temperature is below 60°F (15°C), use the subcooling method to adjust the charge using the subcooling charge levels in table 2. Target subcooling values in table 2 are based on 65-75°F (18-24°C) indoor return air temperature.

	Size	-0	24	-0	36	-0	48	-0	60
	°F (°C)	Liq	Vap	Liq	Vap	Liq	Vap	Liq	Vap
	Nor	mal Oper	ating Pre	ssures (p	osig) – Co	ooling			
	65 (18.3)	226	144	216	142	224	143	230	137
	75 (23.9)	260	145	251	144	259	145	269	139
First Stage (Low Capacity)	85 (29.4)	301	148	291	146	297	147	313	142
Pressure	95 (35.0)	346	151	337	148	346	149	361	144
1.0000.0	105 (40.6)	396	153	382	150	395	151	411	147
	115 (46.1)	451	156	438	153	452	155	466	151
	65 (18.3)	240	142	227	134	232	138	237	131
	75 (23.9)	278	144	261	138	271	140	275	133
Second Stage	85 (29.4)	325	147	305	140	313	142	319	135
(High Capacity) Pressure	95 (35.0)	372	149	349	142	362	145	368	138
1.0000.0	105 (40.6)	423	151	401	144	415	147	419	141
	115 (46.1)	484	153	463	146	473	150	479	145
	Non	mal Oper	ating Pre	ssures (p	sig) – He	eating	I	I	
First Stage (Low Capacity)	50 (10)	334	116	384	119	332	115	369	112
Pressure	60 (15.5)	358	134	410	139	352	132	394	120
	20 (-7.0)	288	66	334	67	288	62	321	60
Second Stage	30 (-1.0)	308	81	362	82	301	75	335	71
(High Capacity)	40 (4.4)	327	96	373	95	318	92	363	90
Pressure	50 (10)	350	113	400	114	337	109	380	107
	60 (15.5)	373	132	427	133	355	126	403	126

Indoor Unit Match-Up	Heating <u>+</u> 5°F	Cooling +1°F		dd arge	Indoor Unit Match-Up	Heating <u>+</u> 5°F	Cooling +1°F		dd arge	Indoor Unit Match-Up	Heating <u>+</u> 5°F	Cooling +1°F		ldd arge
·	Subce	ooling	lb.	oz.	1	Subc	ooling	lb.	oz.	1	Subc	ooling	lb.	oz.
	XP16-024				CBX40UHV-036	24	7	1	6	CR33-60D	16	5	0	10
CBX25UHV-024	49	5	0	13	CBX40UHV-042	17	9	1	1	CH33-60D	13	6	0	0
CBX25UHV-030	45	9	1	12	CH33-43C	21	7	0	15	CH33-62D	11	7	1	4
CBX26UH-024	45	6	1	12	CBX40UHV-048	17	9	1	1	CR33-50/60C	15	5	0	10
CBX27UH-024-230	20	7	1	6	CH33-43B	11	7	0	11	CR33-60D	16	5	0	10
CBX27UH-030-230	17	7	2	0	CH33-48C	20	7	1	2	CX34-60D	14	6	1	0
CBX32MV-024/030	20	7	1	6	CH33-43C	21	7	0	15	CX34-62D	9	7	1	6
CBX32MV-036	17	7	2	0	CR33-48B	53	6	0	0	CX34-62C	8	7	1	9
CBX40UHV-024	17	7	2	0	CR33-48C	53	6	0	0	CX35-49C	13	7	0	7
CBX40UHV-030	17	7	2	0	CX34-43B/C	15	7	0	11	CX35-60C	10	7	2	4
CBX40UHV-036	17	7	2	0	CX34-50/60C	15	7	0	11	CX35-60D	18	8	2	15
CH33-31B	31	8	2	9	Х	XP16/SPB*H4-048				XP16/SPB*H4-060				
CH35-30B	26	6	0	14	CBX25UHV-048	12	7	0	4	CBX25UHV-060	15	4	1	10
CR33-30/36A/B/C	45	4	0	13	CBX26UH-048-230	10	6	1	4	CBX26UH-060	20	9	4	13
CX34-31A/B	24	7	2	8	CBX27UH-048-230	19	7	1	4	CBX27UH-060-230	10	6	2	3
CX34-38A/B	18	8	2	7	CBX27UH-060-230	13	12	3	3	CBX32M-060	17	6	1	12
CX35-30A/B	24	7	0	0	CBX32M-048	19	7	1	4	CBX32MV-060	17	5	1	12
CX35-36A/B	18	7	1	2	CBX32M-060	14	7	1	11	CBX32MV-068	15	7	2	1
х	P16/SPB*H4-	036			CBX32MV-048	19	7	1	4	CBX40UHV-060	17	6	1	12
CBX25UH-036 CBX25UHV-036	59	7	0	15	CBX32MV-060	14	7	1	11	CH23-68	37	9	2	10
CBX27UH-036-230	25	7	1	6	CBX32MV-068	9	6	1	11	CH33-50/60C	33	8	1	0
CBX27UH-042-230	17	9	1	1	CBX40UHV-048	19	7	1	4	CH33-62D	16	7	1	4
CBX32M-036	24	7	1	6	CBX40UHV-060	14	7	1	11	CR33-50/60C	24	7	0	0
CBX32MV-036	24	7	1	6	CH23-68	24	8	1	12	CR33-60D	24	7	0	0
CBX32MV-048	17	9	1	1	CH33-49C	19	7	2	5	CX34-62C	21	9	2	16
CBX40UHV-030	24	7	1	6	CH33-50/60C	19	7	2	5	CX34-62D	13	7	1	4
			,	,	CH35-51C	19	7	2	5	*Amount of charge require nameplate. (Does not incl ded line set lengths.)				

HFC-410A CHARGING INFORMATION – FOR COMPLETE CHARGING PROCEDURES, REFER TO THE APPLICABLE INSTALLATION OR SERVICE MANUAL Maintenance Checks Using the Normal Operating Pressures Table Table 1 - Normal Operating Pressures (Liquid ±10 & Suction ±5 psig)

Table 1 may be used to help perform maintenance checks. This table is not a procedure for charging the system. Minor variations in the pressures can be expected due to differences in installations. However, significant deviations could mean that the system is not properly charged or that a problem exists with some component in the system.

Matched System Components/Charge Levels/Line Set Lengths/Liquid Line Sizing

Table 2 lists all the Lennox recommended indoor unit matches along with the charge levels for the various sizes of outdoor units. Charge levels on the unit nameplate are based on installations with 15' (4.6m) line sets; consider line set length and liquid line sizing differences when calculating charge adjustments. For each additional foot of 3/8" liquid line set, add 0.6 ounces or for 1/2" liquid lines, add 1.0 ounce of additional charge.

Charge Using the Weigh-In Method

If the system is void of refrigerant, locate and repair any leaks, then weigh the refrigerant charge into the unit. For charge adjustments, consider line set length differences and, referring to table 2, adjust for the match-up difference.

- 1 Recover the refrigerant from the unit.
- 2 Conduct a leak check and then evacuate the system.
- 3 Weigh in the unit nameplate charge, adjusting for match-up and line set length differences. If weighing facilities are not available, use the Subcooling method.

Charge Using the Subcooling Method

Cooling Mode—When the outdoor ambient temperature is 60°F (15°C) and above, use the cooling mode to adjust the charge using the subcooling method. Target subcooling values in table 2 are based on 70 to 80°F (21-27°C) indoor return air temperature.

Heating Mode—When the outdoor ambient temperature is below 60°F (15°C), use the subcooling method to adjust the charge using the subcooling charge levels in table 2. Target subcooling values in table 2 are based on 65-75°F (18-24°C) indoor return air temperature.

			_	,				•	•	
	Size	-0	24	-0	36	-0	48	-060		
	°F (°C)	Liq	Vap	Liq	Vap	Liq	Vap	Liq	Vap	
	Nori	nal Oper	ating Pre	ssures (p	osig) - Co	oling	•			
	65 (18.3)	226	144	216	142	224	143	230	137	
F: . 0.	75 (23.9)	260	145	251	144	259	145	269	139	
First Stage (Low Capacity)	85 (29.4)	301	148	291	146	297	147	313	142	
Pressure	95 (35.0)	346	151	337	148	346	149	361	144	
	105 (40.6)	396	153	382	150	395	151	411	147	
	115 (46.1)	451	156	438	153	452	155	466	151	
	65 (18.3)	240	142	227	134	232	138	237	131	
	75 (23.9)	278	144	261	138	271	140	275	133	
Second Stage (High Capacity)	85 (29.4)	325	147	305	140	313	142	319	135	
Pressure	95 (35.0)	372	149	349	142	362	145	368	138	
	105 (40.6)	423	151	401	144	415	147	419	141	
	115 (46.1)	484	153	463	146	473	150	479	145	
	Norr	nal Oper	ating Pre	ssures (p	osig) – He	eating				
First Stage (Low Capacity)	50 (10)	334	116	384	119	332	115	369	112	
Pressure	60 (15.5)	358	134	410	139	352	132	394	120	
	20 (-7.0)	288	66	334	67	288	62	321	60	
Second Stage	30 (-1.0)	308	81	362	82	301	75	335	71	
(High Capacity)	40 (4.4)	327	96	373	95	318	92	363	90	
Pressure	50 (10)	350	113	400	114	337	109	380	107	
	60 (15.5)	373	132	427	133	355	126	403	126	

Indoor Unit Match-Up	Heating <u>+</u> 5°F	Cooling <u>+</u> 1°F		dd rge	Indoor Unit Match-Up	Heating <u>+</u> 5°F	Cooling <u>+</u> 1°F		dd arge	Indoor Unit Match-Up	Heating <u>+</u> 5°F	Cooling +1°F	*Add Charge	
•	Subc	ooling	lb.	oz.		Subco	ooling	lb.	oz.		Subc	ooling	lb.	oz.
	XP16-024				CBX40UHV-042	17	9	1	1	CH35-51C	19	7	2	5
CBX25UHV-024	49	5	0	13	CBA27UHE-042	19	6	0	10	CR33-60D	16	5	0	10
CBX25UHV-030	45	9	1	12	CH33-43C	21	7	0	15	CH33-60D	13	6	0	0
CBX26UH-024	45	6	1	12	CBX40UHV-048	17	9	1	1	CH33-62D	11	7	1	4
CBX27UH-024-230	20	7	1	6	CH33-43B	11	7	0	11	CR33-50/60C	15	5	0	10
CBX27UH-030-230	17	7	2	0	CH33-48C	20	7	1	2	CR33-60D	16	5	0	10
CBX32MV-024/030	20	7	1	6	CH33-43C	21	7	0	15	CX38/CX34-60D	14	6	1	0
CBX32MV-036	17	7	2	0	CR33-48B	53	6	0	0	CX38/CX34-62D	9	7	1	6
CBX40UHV-024	17	7	2	0	CR33-48C	53	6	0	0	CX38/CX34-62C	8	7	1	9
CBX40UHV-030	17	7	2	0	CX38/CX34-43B/C	15	7	0	11	CX35-49C	13	7	0	7
CBX40UHV-036	17	7	2	0	CX38/CX34-50/60C	15	7	0	11	CX35-60C	10	7	2	4
CBA27UHE-024	16	6	0	7	Х	P16/SPB*H4-	048			CX35-60D	18	8	2	15
CH33-31B	31	8	2	9	CBX25UHV-048	12	7	0	4	Х	P16/SPB*H4	060		
CH35-30B	26	6	0	14	CBX26UH-048-230	10	6	1	4	CBX25UHV-060	15	4	1	10
CR33-30/36A/B/C	45	4	0	13	CBX27UH-048-230	19	7	1	4	CBX26UH-060	20	9	4	13
CX38/CX34-31A/B	24	7	2	8	CBX27UH-060-230	13	12	3	3	CBX27UH-060-230	10	6	2	3
CX38/CX34-38A/B	18	8	2	7	CBX32M-048	19	7	1	4	CBX32M-060	17	6	1	12
CX35-30A/B	24	7	0	0	CBX32M-060	14	7	1	11	CBX32MV-060	17	5	1	12
CX35-36A/B	18	7	1	2	CBX32MV-048	19	7	1	4	CBX32MV-068	15	7	2	1
Х	(P16/SPB*H4-	-036			CBX32MV-060	14	7	1	11	CBX40UHV-060	17	6	1	12
CBX25UH-036 CBX25UHV-036	59	7	0	15	CBX32MV-068	9	6	1	11	CBA27UHE-060	16	6	2	2
CBX27UH-036-230	25	7	1	6	CBX40UHV-048	19	7	1	4	CH23-68	37	9	2	10
CBX27UH-042-230	17	9	1	1	CBX40UHV-060	14	7	1	11	CH33-50/60C	33	8	1	0
CBX32M-036	24	7	1	6	CBA27UHE-048	17	8	0	7	CH33-62D	16	7	1	4
CBX32MV-036	24	7	1	6	CBA27UHE-060	14	9	0	0	CR33-50/60C	24	7	0	0
CBX32MV-048	17	9	1	1	CH23-68	24	8	1	12	CR33-60D	24	7	0	0
CBX40UHV-030	24	7	1	6	CH33-49C	19	7	2	5	CX38/CX34-62C	21	9	2	16
CBX40UHV-036	24	7	1	6	CH33-50/60C	19	7	2	5	CX38/CX34-62D	13	7	1	4