Pro:

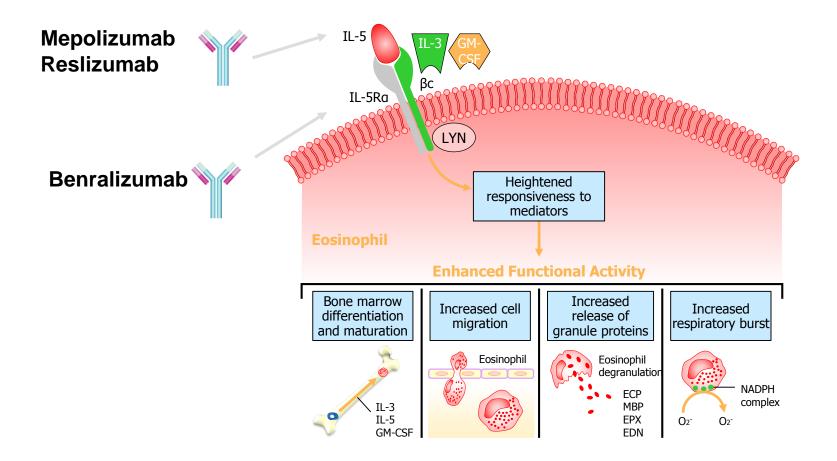
"The severe asthma patient with eosinophilic phenotype should always be treated with Anti-Interleukin-5 therapies"

Mario Castro MD, MPH

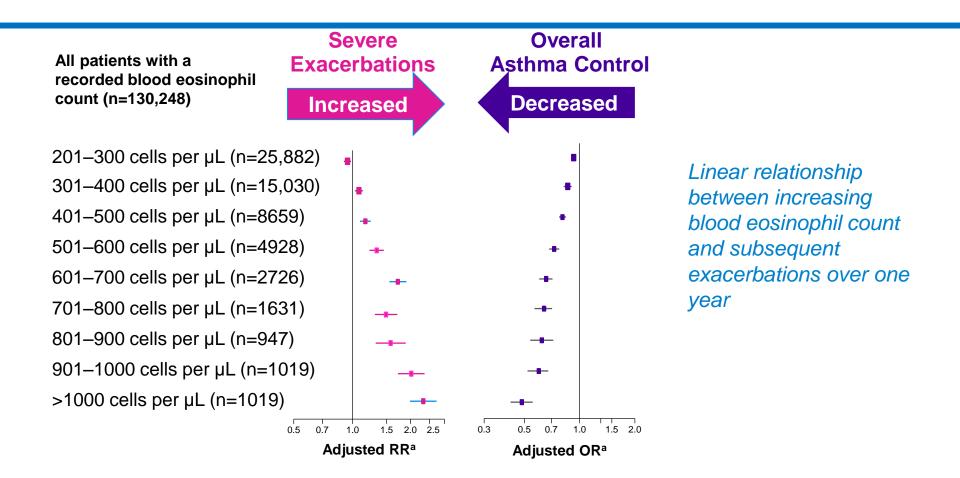
Asthma & Airway Translational Research Unit University of Kansas Medical Center Kansas City, Kansas, USA

- Principal Investigator (Grant Funding): AstraZeneca, Chiesi, GSK, Novartis, Sanofi Aventis
- Consultant: Genentech, Novartis, Sanofi Aventis, Teva, Theravance, VIDA
- Speaker: Astra-Zeneca, Genentech, GSK, Regeneron, Sanofi, Teva
- Royalties: Elsevier

Objectives


- To comprehend the role of IL-5 in eosinophilic asthma
- Assess the efficacy and safety of anti-IL 5 monoclonal antibodies in the treatment of uncontrolled severe asthma

Pro Arguments: The severe asthma patient with eosinophilic phenotype should always be treated with Anti-Interleukin-5 therapies


- Severe uncontrolled eosinophilic asthma is the best identified phenotype associated with increased morbidity
- Anti-IL5 mAb (mepo, res, benra) are highly efficacious with an acceptable safety profile – the prototype of Precision Medicine!
- Anti-IL4R mAb (dupi) is highly efficacious as well and should be reserved for the T2 phenotype
- To advance the treatment of respiratory disease, we need to move away from the "lumping" approach as new targeted therapy becomes available

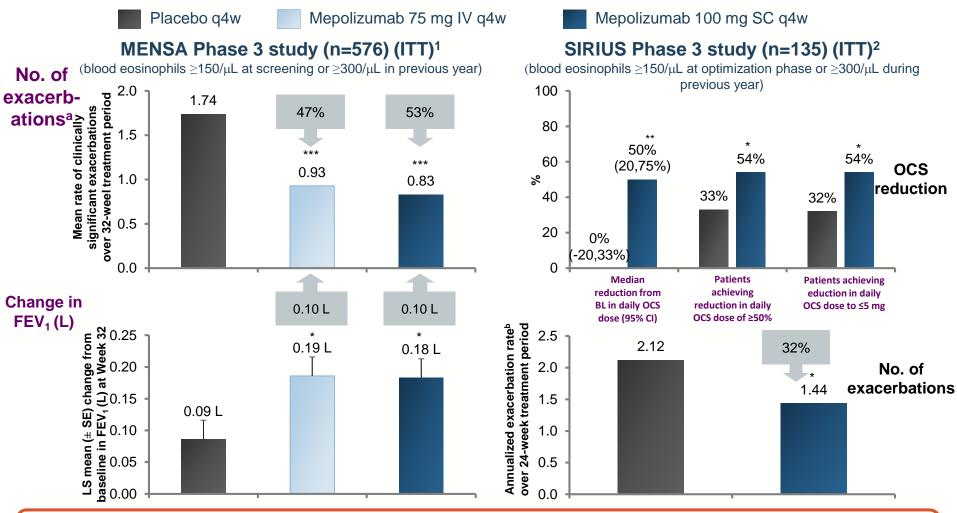
Targeting the Eosinophilic Phenotype - Anti-IL-5 or IL-5Rα

5

The Eosinophil Phenotype is clearly linked to worse asthma control and increased risk of severe exacerbations

^aData from medical records of asthmatics,12–80 years of age, with 2 years of continuous records, including 1 year before (baseline) and 1 year after (outcome) their most recent eosinophil count. Patients assigned to 9 eosinophil count categories compared with a reference category of 200 cells per µL or less (N=68,407). Adjusted for age, sex, body-mass index, smoking status and Charlson comorbidity index score.

^bSub-population of patients with available blood eosinophil counts to two decimal places.

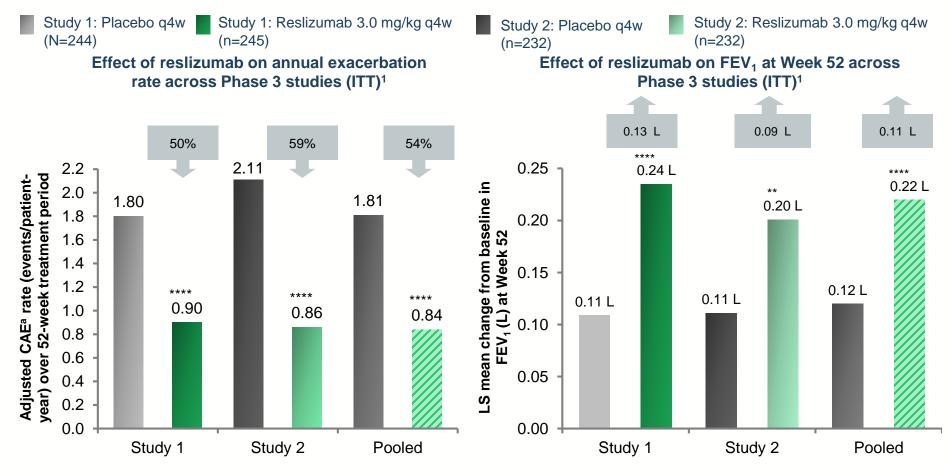

OR=odds ratio; RR=rate ratio.

Adapted from Price DB, et al. Lancet Respir Med. 2015;3:849-858.

PRO ANTI-IL5 FOR EOSINOPHILIC ASTHMA

Anti-IL5 mAb (mepo, res, benra) are highly efficacious with an acceptable safety profile – **the prototype of Precision Medicine!**

Mepolizumab (SC) Reduced Asthma Exacerbations, OCS Use, and Improved Lung Function in Patients with Severe Asthma with an Eosinophilic Phenotype


• Mepolizumab also improved QoL and asthma control in patients with severe asthma with an eosinophilic phenotype^{1,2}

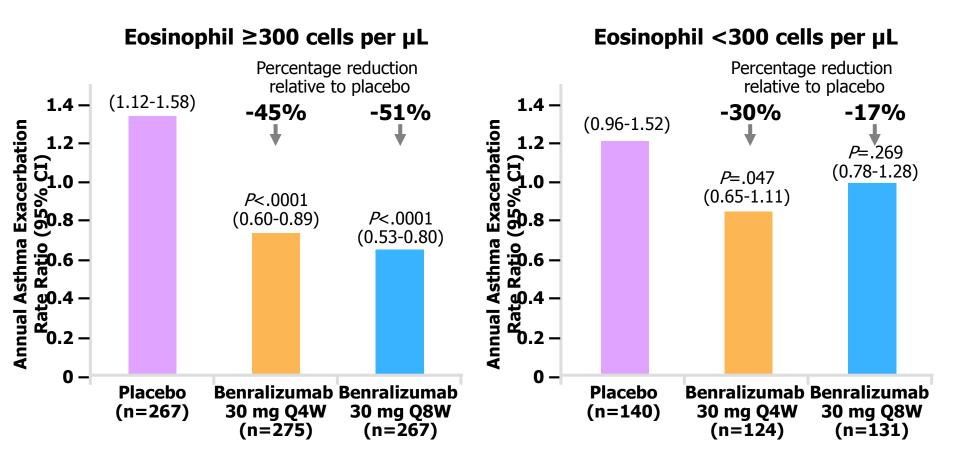
Most common AE with mepolizumab (n=263) versus placebo (n=257): Headache (19% vs 18%), injection-site reactions (8% vs 3%)³

*p<0.05; **p<0.01; ***p<0.001; ***p<0.001. aWorsening of asthma requiring systemic corticosteroids for ≥ 3 days, or ER visit, or hospitalization; Worsening of asthma leading to the doubling (or more) of existing maintenance dose of OCS for ≥ 3 days, or emergency room visit, or hospitalization

Ortega HG, et al. N Engl J Med. 2014;371:1198–1207;
Bel EH, et al. N Engl J Med. 2014;371:1189–1197;

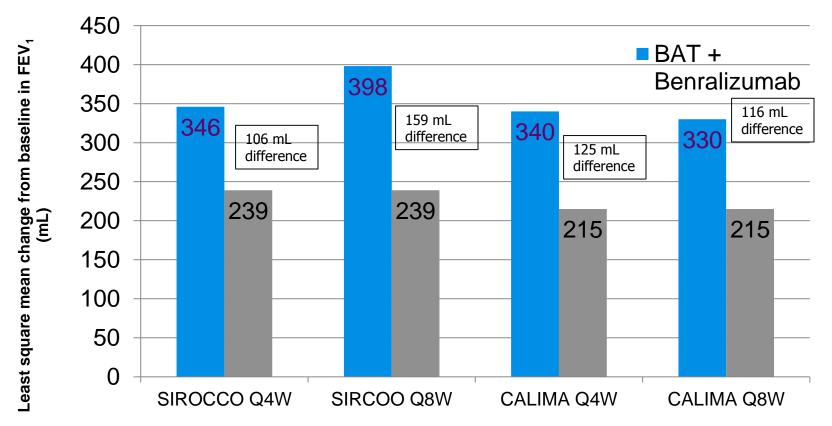
Reslizumab (IV) Reduced Exacerbations, and Improved Lung Function and QoL in Patients with Inadequately Controlled Asthma (Blood Eosinophils ≥400/µL)

- Reslizumab also improved QoL in patients with severe asthma with an eosinophilic phenotype¹
- In two Phase 3 trials, reslizumab SC did not meet its primary endpoint of significantly reducing CAEs and daily OCS dose²
- Most common AE with reslizumab (n=1131) vs placebo (n=730): Oropharyngeal pain (2.6% vs 2.2%)³


p<0.01; **p<0.0001

^aWorsening of asthma requiring systemic corticosteroids in patients not already receiving treatment, or a two-times increase in dose of either ICS or systemic corticosteroids for ≥3 days, or the need for asthma-related emergency treatment AQLQ, Asthma Quality of Life; CAE, clinical asthma exacerbation

 Castro M, et al. Lancet Respir Med. 2015;3:355–366; 2. Teva press-release. <u>http://www.tevapharm.com</u> /news/teva_announces_top_line_results_from_phase_iii_studies_of_subcutaneously_administered_ reslizumab_in_patients_with_severe_eosinophilic_asthma_01_18.aspx. Accessed February 2018; 3. Cinqair (reslizumab) Prescribing Information. Frazer, PA: Teva Respiratory, LLC. 2016


Benralizumab Reduced Frequency of Asthma Exacerbations (Primary Endpoint)

Annual asthma exacerbation rate estimates at 48 weeks according to baseline blood eosinophil concentrations

Benralizumab Impact on FEV₁

Change from Baseline Over 48 Weeks (SIROCCO) or 56 Weeks (CALIMA)^{1,2}

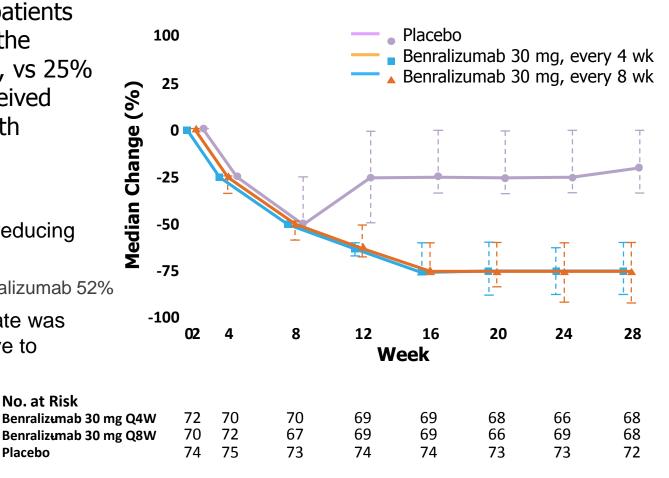
Data are for patients with a baseline blood eosinophil (EOS) level of \geq 300 cells per µL. Patients were on background asthma therapy (BAT) of high-dose inhaled corticosteroids (ICS) plus long-acting beta agonists (LABA)

Bleecker ER, et al. *Lancet.* 2016; 388:2115-2127. FitzGerald JM, et al. *Lancet.* 2016;388:2128-2141.

Benralizumab 30 mg SC is licensed for the treatment of severe eosinophilic asthma

Benralizumab Reduced Oral Glucocorticoid **Dose in Severe Asthma (Primary Endpoint)**

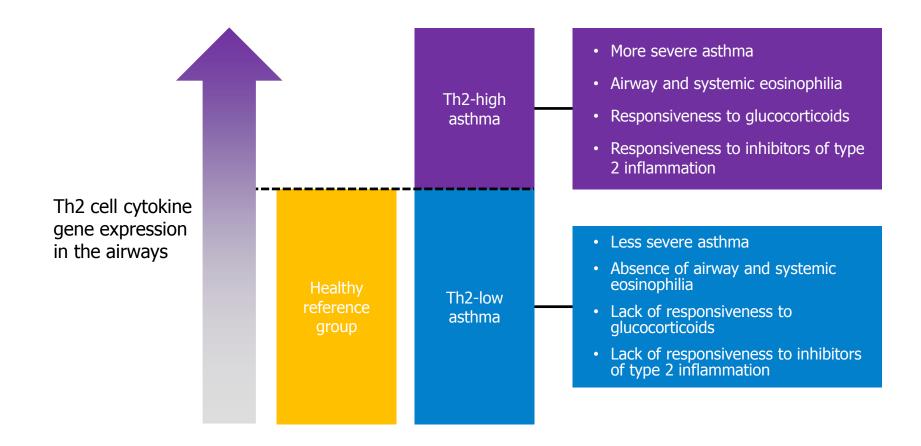
 75% median reduction from baseline in the final oral glucocorticoid dose in patients who received either of the benralizumab regimens, vs 25% in the patients who received placebo (P<.001 for both comparisons)


- Other results:
 - Proportion of patients reducing OCS dose by 100%
 - Placebo 19% versus benralizumab 52%

No. at Risk

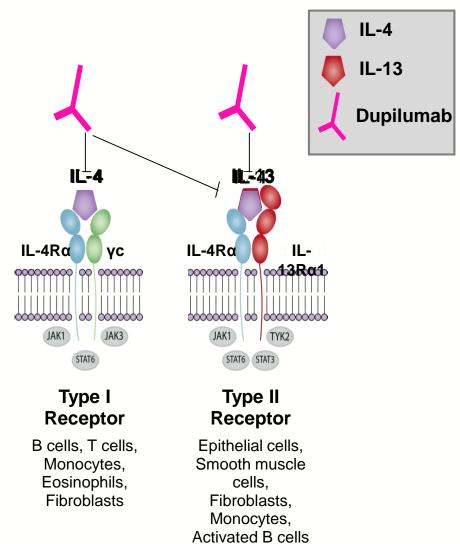
Placebo

Annual exacerbation rate was reduced by 70% relative to placebo (*P*<0.001)

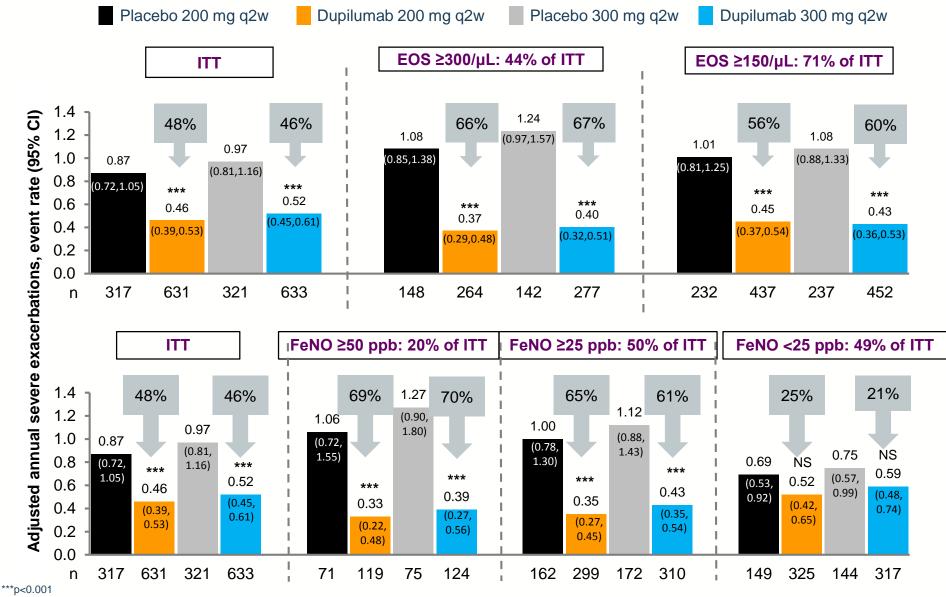

Change from Baseline in Oral Glucocorticoid Dose

PRO ANTI-IL5 FOR EOSINOPHILIC ASTHMA

Anti-IL4R mAb (dupi) is highly efficacious as well and should be reserved for the T2 phenotype


Phenotypes of asthma by Th2 cell cytokine gene expression

Dupilumab Exerts its Mechanism of Action by Inhibiting IL-4 and IL-13


IL-4 and IL-13 bind to a shared subunit, IL-4Rα IĽ**÷**4 2 Dupilumab, a human monoclonal IgG4 antibody, binds to IL-4R α , blocking both IL-4 and IL-13 signalling IL-4Rα VC ÓÓ. 3 JAK1 JAK3 IL-4 and IL-13 pathways have STAT6 unique and overlapping function Type I Receptor B cells, T cells, Monocytes, Eosinophils, Fibroblasts Gandhi NA, et al. Nat Rev Drug Discov. 2016;15:35-50

 γ c, gamma chain; IL-4R α , interleukin-4 receptor alpha; IL-13R α , interleukin-13 receptor alpha 1; JAK, janus kinase; STAT, signal transducer and activator of transcription; TYK, tyrosine kinase

Dupilumab 200, 300 mg SC is licensed for the treatment of severe eosinophilic asthma

Phase 3 QUEST: Dupilumab (SC) Significantly Reduced the Rate of Severe Exacerbations across Range of Baseline EOS and FeNO Levels

Castro M, et al. N Engl J Med. 2018, ATS 2018; Wenzel S, et al. ATS 2018

Dupilumab 200, 300 mg SC is licensed for the treatment of severe eosinophilic asthma

Phase 3 VENTURE: Dupilumab (SC) Significantly Reduced OCS Use at Week 24

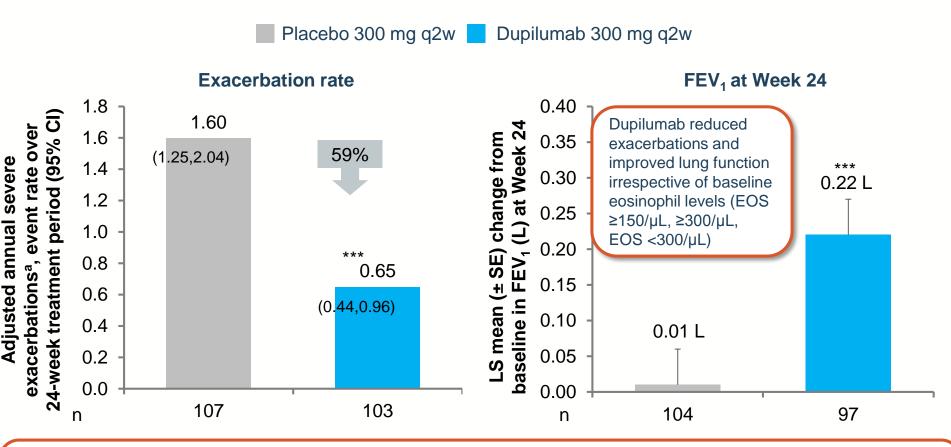
Placebo 300 mg q2w Dupilumab 300 mg g2w **Proportion of patients no** Mean percent reduction in OCS dose at Week 24 longer requiring OCS at **Week 24** 100 100 from baseline at Week 24 (%) 90 90 ^Datients no longer requiring *** 80 80 70% at Week 24 (%) 70 70 ** 60 60 52% 50 42% 50 40 40 29% ocs 30 30 20 20 10 10 0 0 107 103 107 103

At Week 24, significantly more patients treated with dupilumab compared with placebo achieved:

n

- ≥50% reduction in OCS dose; 80% vs 53% (p<0.001) •
- Reduction of OCS dose to <5 mg/day relative to baseline; 72% vs 37% (p<0.001) •
- Maximum possible OCS dose reduction; 52% vs 30% (p=0.002) •

p<0.01; *p<0.001


n

Mean (± SE) reduction in OCS dose

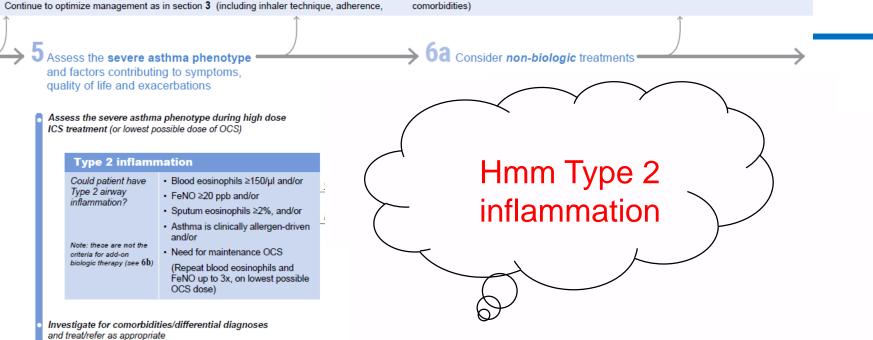
Rabe KF, et al. N Engl J Med. 2018., ATS 2018

Dupilumab 200, 300 mg SC is licensed for the treatment of severe eosinophilic asthma

Phase 3 VENTURE: Dupilumab (SC) Significantly Reduced OCS Use and Exacerbations, and Improved Lung Function and Asthma Control

- Asthma control: Dupilumab also significantly improved asthma control (ACQ-5) (nominal p=0.002)¹
- Safety:
 - QUEST, most common TEAEs were viral URTIs (18% vs19%) and ISR (HLT) (17% vs 8%, dupilumab vs placebo)²
 - VENTURE, most common TEAEs were eosinophilia^b (14% vs1%) and ISR (HLT) (9% vs 4%, dupilumab vs. placebo)³
- ***p<0.001

- ^bCombination of 'Eosinophil count increase' and 'Eosinophilia'
- HLT, High-Level Term; ISR, injection-site reactions; URTI, upper respiratory tract infection


^aDeterioration of asthma leading to hospitalization, emergency room visit, or treatment for \geq 3 days with systemic corticosteroids at \geq 2 times the current dose

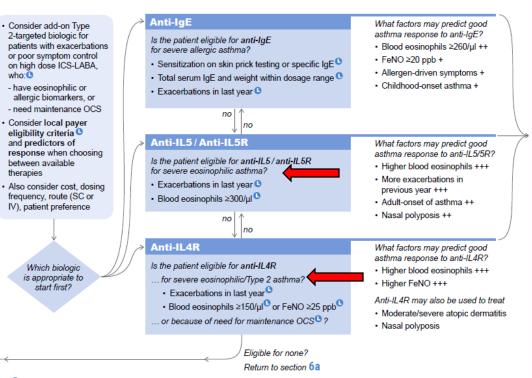
PRO ANTI-IL5 FOR EOSINOPHILIC ASTHMA

To advance the treatment of respiratory disease, we need to move away from the "lumping" approach as new targeted therapy becomes available

Assess and treat severe asthma phenotypes

- Consider: CBC, CRP, IgG, IgA, IgM, IgE, fungal precipitins; CXR and/or HRCT chest; DLCO
- Skin prick testing or specific IgE for relevant allergens, if not already done
- Other directed testing (e.g. ANCA, CT sinuses, BNP, echocardiogram) based on clinical suspicion
- Consider need for social/psychological support
- Involve multidisciplinary team care (if available)
- Invite patient to enroll in registry (if available) or clinical trial (if appropriate)

© Global Initiative for Asthma, www.ginasthma.org



SPECIALIST CARE; SEVERE ASTHMA CLINIC IF AVAILABLE

Continue to optimize management as in section 3 (including inhaler technique, adherence, comorbidities)

Consider add-on biologic Type 2 = targeted treatments

Check local eligibility criteria for specific biologic therapies as these may vary from those listed

© Global Initiative for Asthma, www.ginasthma.org

Other Biologics and Small Molecules Under Development for Type 2 Inflammatory Diseases

Agent	МоА	Mode of	Clinical phase	Patient populations
Agent	MOA	administration	Chincal phase	ratient populations
Asapiprant ^{1,2}	Prostaglandin D2 antagonist	?	Preclinical, 3 for allergic rhinitis	Allergic asthma, allergic rhinitis
RPC4046 ^{3,4}	IL-13R antagonist/anti-IL-13 mAb	SC/IV	2 for EoE, 1 in asthma	Eosinophilic esophagitis, moderate-to-severe asthma
ADC3680/ADC3608 B ³	CRTh2 antagonist	Oral	2	Inadequately controlled asthma
AMG- 282/RG6149 ^{3,5}	IL-33 antagonist/anti-IL-33 mAb	SC/IV	2 for asthma, 1 for CRSwNP	Mild atopic asthma, CRSwNP
ANB020 ^{3,6}	IL-33 antagonist/anti-IL-33 mAb	SC/IV	2	Severe asthma (eosinophilic phenotype), peanut allergy, AD
SB010 ³	Anti-GATA3 DNAzyme	Oral	2	Mild asthma
GSK3772847 ³	IL-33 antagonist/anti-IL-33 mAb	IV	2	Moderate-to-severe asthma
MK-1029 ³	CRTh2 antagonist	Oral	2	Persistent asthma uncontrolled by montelukast
SAR440340/ REGN3500 ³	IL-33 antagonist/anti-IL-33 mAb	SC	2	Moderate-to-severe asthma
Timapiprant ³	CRTh2 antagonist	Oral	2	Severe asthma of eosinophilic phenotype, moderate-to-severe AD
ABM125 ⁷	IL-25 antagonist	IV	3	Poorly controlled asthma after rhinovirus infection
Fevipiprant ³	CRTh2 antagonist	Oral	3 for asthma, 2 in AD	Uncontrolled asthma, moderate-to-severe AD
Tezepelumab ³	TSLP antagonist	SC	3	Inadequately controlled severe asthma
Lebrikizumab ^{3,13}	IL-13R antagonist/anti-IL-13 mAb	SC	Discontinued in asthma , 2 in AD	Uncontrolled asthma with ICS, moderate-to- severe AD
Tralokinumab ^{2,14}	IL-13R antagonist/anti-IL-13 mAb	SC	Discontinued in asthma , 3 in AD	Uncontrolled asthma, AD

Pro Arguments: The severe asthma patient with eosinophilic phenotype should always be treated with Anti-Interleukin-5 therapies

- Targeted phenotype therapy can lead to personalized medical therapy for asthma
- Doesn't Richard Martin and National Jewish want to practice Precision Medicine?