Thoracic POCUS: Current trends and perspectives of point-of-care ultrasound

J. Terrill Huggins, MD Professor of Medicine Division of Pulmonary, Critical Care, Allergy and Sleep Medicine Medical University of South Carolina

IUSC Health

Changing What's Possible MUSChealth.org

Financial Disclosures

• UpToDate: Critical Care Ultrasonography

Objectives

- 1. Understand the technique of performing thoracic ultrasound and how certain reverberation artifacts have specific characteristics defining normal aerated lung pattern, interstitial syndromes and consolidation.
- 2. Review diagnostic algorithms incorporating lung ultrasound artifacts in achieving a confident and rapid clinical diagnosis
- 3. Understand the application of pleural ultrasound in the management of pleural disease (pneumothorax and pleural effusion)

If you can keep your head when all about you Are losing theirs and blaming it on you,
If you can trust yourself when all men doubt you, But make allowance for their doubting too;
If you can wait and not be tired by waiting, Or being lied about, don't deal in lies,
Or being hated, don't give way to hating, And yet don't look too good, nor talk too wise:

Yours is the Earth and everything that's in it, And—which is more—you'll be a Man, my son!

Ruyard Kipling 1943

...

...

...

Point of Care Ultrasound

Point of Care/Bedside US

- Fast
- Cheap
- Effective
- No Radiation
- Patient doesn't have to leave the floor

Why are you here?

- I don't need this. I have a stethoscope
- I don't need this. I have a CXR
- OK I need this. How do I do it?
- I'm doing this. What do I do with the findings?

Indications

- -Acute Respiratory Failure
- Pleural disease assessment pleural effusion pneumothorax pleural mass/nodule
- Procedural

thoracentesis

chest tube

- indwelling pleural catheter
- Screening for early ILD and assess for ILD progression
- Compliment volume assessment to assess "lung water"
- Defining upper airway anatomy

ORIGINAL INVESTIGATION

Diagnosing Pneumonia by Physical Examination

Relevant or Relic?

Arch Intern Med. 1999;159:1082-1087

best, modest ability to predict the presence of pneumonia and is inconsistently interpreted, even by expert examiners."

the pulmonary examination has, at

Sensitivity 47% - 69% Specificity 58% - 75%.

Comparative Diagnostic Performances of Auscultation, Chest Radiography, and Lung Ultrasonography in Acute Respiratory Distress Syndrome

Daniel Lichtenstein, M.D.,* Ivan Goldstein, M.D.,† Eric Mourgeon, M.D.,† Philippe Cluzel, M.D., Ph.D.,‡ Philippe Grenier, M.D.,§ Jean-Jacques Rouby, M.D., Ph.D.||

Anesthesiology 2004; 100:9-15

	Auscultation, %	Chest Radiography, %	Lung Ultrasonography, %
Pleural effusion Sensitivity Specificity Diagnostic accuracy	42 90 61	39 85 47	92 93 93
Alveolar consolidation Sensitivity Specificity Diagnostic accuracy	8 100 36	68 95 75	93 100 97
Alveolar–interstitial syndrome Sensitivity Specificity Diagnostic accuracy	34 90 55	60 100 72	98 88 95

Lung Ultrasound:7 Guiding Principles 1. Keep It Simple and Cost Effective: The machine does not need to be complex

2. Gravity Rules: Gas is toward the Sky, Fluids to the Earth

3. Define the Rules of the Game: Thoracic Points

- 4. Find the Pleural Line
- 5. Lung US Focuses in on Artifacts
- 6. Lung Sliding (2-D and M-mode)

7. All acute life-threatening disorders abut the visceral pleura surface

Lichtenstein; BLUE-Protocol and FALLS-Protocol: Two Applications of Lung US in the Critically III. CHEST 2015; 147(6):1659-1670

Original Research

CRITICAL CARE MEDICINE

Relevance of Lung Ultrasound in the Diagnosis of Acute Respiratory Failure* The BLUE Protocol

Daniel A. Lichtenstein, MD, FCCP; and Gilbert A. Mezière, MD

4 Year Observational Study of 301 Consecutive Adult Patients with Acute Respiratory Failure

Lung US -- Can yield the correct diagnosis in 90.5% of cases

3 Zones: 6 Different Points

FIGURE 7. A decision tree utilizing lung ultrasonography to guide diagnosis of severe dyspnea.

Step 1: Is Lung Sliding Present?

Sensitivity was 95.3%, Specificity 91.1% with a Negative predictive value of 100% (p<0.001)

Lichentenstein, DA. Menu, Y: A Bedside Ultrasound Sign Ruling Out Pneumothorax in the Critically III. Lung Sliding. CHEST. 1995; 108 (5):1345-1348

M-mode for Presence of Lung Sliding

Present: Stratosphere Sign

Absent: Barcode Sign

Step 2: It's as simple as A, B, C! Analyze the Artifacts

- Secondary Pulmonary Lobule:
- A Lines: Thin Interlobular Septum
- B Lines: Widened Sub-pleura Interlobular Septum
- C- Profile: Anterior Consolidation

A-Lines: Reverberation Artifacts

A-lines:

Reverberation Artifacts created by repetitive reflection of ultrasound waves between the pleural line, a strong reflector and the transducer.

B-Lines: Fluid Filled Interlobular Septum

Interpretation

A-line pattern

- Normal lung
- COPD
- Asthma
- Pulmonary Emboli
- Pneumothorax*

Other

B-line pattern

- Pulmonary edema
- DAH
- ARDS
- Pneumonia
- ILD

Interstitial and Alveolar syndromes

C-Profile: Alveoli are Filled with Fluid or Debris

FIGURE 7. A decision tree utilizing lung ultrasonography to guide diagnosis of severe dyspnea.

A-Lines: No Lung Sliding with Lung Point

"Lung Point": Sensitivity of 66%, but with a Specificity of 100% for Pneumothorax

Lichtenstein, et. Al. The Lung Point: An Ultrasound Sign Specific to Pneumothorax. Intensive Care Med 2000 Oct: 26 (10): 1434-40

Lung Sliding

Lung Sliding:

- Sens 100% Spec 78%
- Presence of lung sliding *rules out* PTX

Lung Point:

- Sens 79% Spec 100%
- Presence of a lung point *rules in* PTX

Causes of loss of lung sliding

Pleural separation	Pleural Adhesions	Non-ventialtion
Pneumothorax	Inflammatory adhesions	Apnea
Pleural Effusion	Pneumonia Acute lung injury	Severe hyperinflation Asthma
Artifact Mimics	Pleurodesis	COPD
Subcutaneous emphysema	ILD/fibrotic lung disorders	Atelectasis One-lung intubation
		Endotrachaal intubation

complication

Lung Sliding/A-lines: Acute Respiratory Failure

Intensivist performed compression ultrasonography: 86% sensitivity and 96% Specificity; Diagnostic Accuracy of 95%

Kory et. Al. Accuracy of Ultrasonography Performed by Critical Care Physicians for the Diagnosis of DVT. CHEST 2011; 139(3): 538-542

FIGURE 7. A decision tree utilizing lung ultrasonography to guide diagnosis of severe dyspnea.

Research

Chest sonography: a useful tool to differentiate acute cardiogenic pulmonary edema from acute respiratory distress syndrome Roberto Copetti^{*1}, Gino Soldati² and Paolo Copetti¹

Address: ¹Emergency Department S. Antonio Abate General Hospital, Tolmezzo, Italy and ²Emergency Department Valle del Serchio General Hospital, Lucca, Italy

Email: Roberto Copetti* - robcopet@tin.it; Gino Soldati - g.soldati@usl2.toscana.it; Paolo Copetti - paolo.cop@libero.it

* Corresponding author

Published: 29 April 2008 Cardiovascular Ultrasound 2008, 6:16 doi:10.1186/1476-7120-6-16 Received: 25 February 2008 Accepted: 29 April 2008

Research

Chest sonography: a useful tool to differentiate acute cardiogenic pulmonary edema from acute respiratory distress syndrome Roberto Copetti^{*1}, Gino Soldati² and Paolo Copetti¹

58 Patients Affected by Acute Lung Injury/ARDS and Acute Pulmonary Edema

SONOGRAPHIC SIGNS	SENSITIVITY		SPECIFICITY	
	ALI/ARDS	APE	ALI/ARDS	APE
AIS	100%	100%	0%	0%
Pleural line abnormalities	100%	25%	45%	0%
Reduction or absence of lung sliding	100%	0%	100%	0%
"Spared areas"	100%	0%	100%	0%
Consolidations	83.3%	0%	100%	0%
Pleural effusion	66.6%	95%	5%	33.3%
"Lung pulse"	50%	0%	100%	50%

Table 4: Sensitivity and specificity of each ultrasonographic sign in the two groups.

Chest sonography: a useful tool to differentiate acute cardiogenic pulmonary edema from acute respiratory distress syndrome Roberto Copetti^{*1}, Gino Soldati² and Paolo Copetti¹

Address: ¹Emergency Department S. Antonio Abate General Hospital, Tolmezzo, Italy and ²Emergency Department Valle del Serchio General Hospital, Lucca, Italy

Email: Roberto Copetti* - robcopet@tin.it; Gino Soldati - g.soldati@usl2.toscana.it; Paolo Copetti - paolo.cop@libero.it * Corresponding author

How About In ARDS? Injured Lung, Probably on Higher PEEP

Thickened Pleura and Subpleural Consolidations: a diagnostic feature of severe CVOID-19 pneumonia?

Point-of-Care Lung Ultrasound findings in novel coronavirus disease-19 pnemoniae: a case report and potential applications during COVID-19 outbreak

D. BUONSENSO^{1,2}, A. PIANO³, F. RAFFAELLI^{2,4}, N. BONADIA³, K. DE GAETANO DONATI⁴, F. FRANCESCHI³

¹Department of Woman and Child Health and Public Health, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy ²Università Cattolica del Sacro Cuore, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Rome, Italy ³Medicina d'Urgenza - Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy ⁴Department of Infectious Diseases, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy

COVID-19 Positive Patient

Thickened Pleura

Subpleural Consolidations

Thickened Pleura

Buonsenso, et al. Point-of –Care Lung Ultrasound Findings in Novel Coronavirus Disease -19: A Case Report of Potential Applications. Eu Rev Med Pharmacol Sci. 2020 Mar; 24

LUS Findings in Severe COIVD-19 Pneumonia

Thickened, "lumpy bumpy" pleura and subpleural consolidations were so true 2001, 2008, and 2012!

Sonography of Lung and Pleura in Pulmonary Embolism*

Sonomorphologic Characterization and Comparison With Spiral CT Scanning

Angelika Reissig, MD; Jens-Peter Heyne, MD; and Claus Kroegel, MD, PhD, FCCP

Prospective application of clinician-performed lung ultrasonography during the 2009 H1N1 influenza A pandemic: distinguishing viral from bacterial pneumonia

Lessons From Our Last Pandemic:

Case Series of 20 patients with H1N1 Influenza with a goal to distinguish from Bacterial Pneumonia.

Tsung et al. Critical Care Ultrasound 2012: 4:16

Anechoic Pleural Effusion

Pleural Effusions

Non-Septate Complex Pleural Effusion: Hemothorax

Accuracy of Pleural Ultrasonography in Diagnosing Complicated Parapneumonic PE

	Ultrasound (n=66)	Chest CT (n=66)	CXR (n=66)
Sensitivity % (95% CI)	69.2% (48.2% to 85.7%)	76.9% (56.3% to 91.0%)	61.5% (40.6% to 79.8%)
Specificity % (95% CI)	90.0%* (76.3% to 97.2%)	65.0% (48.3% to 79.4%)	60.0% (43.3% to 75.1%)
PPV % (95% CI)	81.8%* (59.7% to 94.8%)	58.8% (40.7% to 75.3%)	50% (31.9% to 68.1%)
NPV % (95% CI)	81.8% (67.3% to 91.8%)	81.3% (63.6% to 92.8%)	70.6% (52.5% to 84.9%
LR+ estimate (95% CI)	6.92* (3.18 to 28.1)	2.20 (1.42 to 3.75)	1.54 (0.94 to 2.63)
LR— estimate (95% CI)	0.34 (0.15 to 0.55)	0.36 (0.12 to 0.66)	0.64 (0.32 to 1.05)

*p<0.05 when compared with chest CT and when compared with CXR.

CXR, chest radiograph; LR—, negative likelihood ratio; LR+, positive likelihood ratio; NPV, negative predictive value; PPV, positive predictive value.

Svigals, Z et al Thorax, 2017;72: 94-95

Clinical Application of POCUS

Case 1

58-year-old WM presents with undiagnosed transudative pleural effusion

2 prior therapeutic thoracentesis (serous fluid and both are transudates)

Referred to MUSC for further evaluation

PMH: COPD Type II DM

Meds: Albuterol Budesonide/Formoterol Insulin Metformin

Case 1 : Undiagnosed Transudative Pleural Effusion

Case 2

- 64-year-old AAF with end-stage COPD on home O2 at 4 LPM
- Developed a LUL cavitary lung mass and small pleural effusion
- Therapeutic thoracentesis revealed a serosanguineous, lymphocytic exudative pleural effusion
- Cytology was negative

Case 2: Non-contrast Chest CT

Case 2: CT/PET Images

Case 2

Pleural US shows parietal based nodule

US-guided pleural biopsy performed using a2 18 G Coaxial needle

Cytology times 2 were negative for malignancy

Biopsy c/w non-small cell lung cancer

Case 3

- 74 y/o veteran who presented with an intracranial hemorrhage several days prior who develops increasing oxygen requirement overnight from 2 L to 8L Oxymizer!
- Your Patient Has Increase In O2 Overnight!

• Do whole body ultrasound (WBU!)

Clot In Transit!!!

Limitations

- Obesity
- Patient positioning
- Experience / Skill
- Equipment

Conclusions:

- 1. Lung Ultrasound is easy, effective, and can help guide therapy.
- 2. Bilateral A-line pattern in an acutely dyspneic pattern has a limited differential and includes airway disorders (asthma or COPD exacerbation) or vascular disease (PE).
- 3. Subpleural Consolidations Can be seen in more than just COVID-19
- 4. Be Skeptical of Publications LUS pattern is not diagnostic of COVID PNA; however, LUS patterns can determine the severity of COVID related pulmonary involvement.
- 5. Ultrasound should be used as an aid to clinical judgement and not to replace it! If your images and clinical judgement don't align- Don't be afraid to pursue further imaging.
- 6. Pleural exudates can assume the appearance of an anechoic pleural effusion in 50% of cases; however, the identification of complexity is most likely representative of an exudative cause.
- 7. Due to a high specificity, PPV and positive LR, few patients are subjected to the placement of a small-bore chest tube in patients who are presenting with a high clinical suspicion of a parapneumonic pleural effusion. Place a 14 F chest tube and submit the PFA after placement.

